COMP417
Introduction to Robotics and Intelligent Systems

Occupancy Grid Mapping With Known Poses
Sonar sensing

“The sponge”

sonar timeline

<table>
<thead>
<tr>
<th>0</th>
<th>75μs</th>
<th>.5s</th>
</tr>
</thead>
<tbody>
<tr>
<td>a “chirp” is emitted into the environment</td>
<td>typically when reverberations from the initial chirp have stopped</td>
<td>after a short time, the signal will be too weak to be detected</td>
</tr>
</tbody>
</table>

Why is sonar sensing limited to between ~12 in. and ~25 feet?
Sonar effects

(a) Sonar providing an accurate range measurement

(b-c) Lateral resolution is not very precise; the closest object in the beam’s cone provides the response

(d) Specular reflections cause walls to disappear

(e) Open corners produce a weak spherical wavefront

(f) Closed corners measure to the corner itself because of multiple reflections --> sonar ray tracing

resolution: time / space
Sonar modeling

- Initial time response
- Blank time
- Cone width
- Accumulated responses
- Spatial response
Sonar Modeling

- Models the response, h_R, with:

 $$h_R(t, z, a, \alpha) = \frac{2c \cos \alpha}{\pi a \sin \alpha} \sqrt{1 - \frac{c^2(t - 2z/c)^2}{a^2 \sin^2 \alpha}}$$

 - c = speed of sound
 - a = diameter of sonar element
 - t = time
 - z = orthogonal distance
 - α = angle of environment surface

- Then, add noise to the model to obtain a probability:

 $$p(S \mid o)$$

 chance that the sonar reading is S, given an obstacle at location o
Using sonar to create maps

What should we conclude if this sonar reads 10 feet?

what would a local map look like?
Using sonar to create maps

What should we conclude if this sonar reads 10 feet?

Local Map
- unoccupied
- occupied

there isn't something here

there is something somewhere around here

10 feet
Using sonar to create maps

What should we conclude if this sonar reads 10 feet?

- There isn't something here
- There is something somewhere around here

Local Map
- Unoccupied
- No information
- Occupied

or ...
Using sonar to create maps

What should we conclude if this sonar reads 10 feet...

and how do we add the information that the next sonar reading (as the robot moves) reads 10 feet, too?
Combining sensor readings

• The key to making accurate maps is combining lots of data.
• But combining these numbers means we have to know what they are!

What should our map contain?

• small cells
• each represents a bit of the robot’s environment
• larger values => obstacle
• smaller values => free

what is in each cell of this sonar model / map?
An example map

Evidence grid of a tree-lined outdoor path

- lighter areas: lower odds of obstacles being present
- darker areas: higher odds of obstacles being present

how to combine them?
What is it a map of?

Several answers to this question have been tried:

pre '83 It’s a map of occupied cells.
\[o_{xy} \rightarrow \text{cell (x,y) is occupied} \]
\[\bar{o}_{xy} \rightarrow \text{cell (x,y) is unoccupied} \]

'83-'88 It’s a map of probabilities:
\[p(o \mid S_{1..i}) \rightarrow \text{The certainty that a cell is occupied,} \]
\[\text{given the sensor readings } S_1, S_2, \ldots, S_i \]
\[\frac{p(o \mid S_{1..i})}{p(\bar{o} \mid S_{1..i})} \rightarrow \text{The certainty that a cell is unoccupied,} \]
\[\text{given the sensor readings } S_1, S_2, \ldots, S_i \]

★ It’s a map of odds.
The odds of an event are expressed relative to the complement of that event.

The odds that a cell is occupied, given the sensor readings \(S_1, S_2, \ldots, S_i \)
\[\text{odds}(o \mid S_{1..i}) = \frac{p(o \mid S_{1..i})}{p(\bar{o} \mid S_{1..i})} \]
What we want to do

Mobile Robot
Occupancy Grid Mapping

Algorithm implemented in MATLAB
Footage from ZZ’s course homework 4
Pre-midterm recap & terminology review

• **Pose**: the rotation and translation of a robot, or in general its full state configuration.

• **Odometry**: the transformation of the body frame with respect to its initial pose (fixed frame of reference).

\[\frac{B_0}{B_t} T \]

• **Dynamics model**: what is the next state given current state and control?

\[x_{t+1} = f(x_t, u_t) \]

• Sensor measurement model: what is the expected measurement given the robot’s current state?

\[z_t = h(x_t) \]
Perfect models vs. Reality

\[x_{t+1} = f(x_t, u_t) \]

Dynamics

\[z_t = h(x_t) \]

Noise as a random variable

\[x_{t+1} = f(x_t, u_t) + w_t \]
Perfect models vs. Reality

Dynamics

\[x_{t+1} = f(x_t, u_t) \]

Sensor Measurements

\[z_t = h(x_t) \]

\[z_t = x_t \]

e.g. GPS (simplified)

\[x_{t+1} = f(x_t, u_t) + w_t \]

Noise as a random variable

\[z_t = x_t + v_t, \quad v_t \sim \mathcal{N}(0, \sigma^2 I) \]

w and v do not necessarily follow the same distribution
Perfect models vs. Reality

Dynamics

\[x_{t+1} = f(x_t, u_t) \]

Sensor Measurements

\[z_t = h(x_t) \]

\[z_t = x_t \]

\[p(x_{t+1} \mid x_t, u_t) \]
probabilistic dynamics model

\[p(z_t \mid x_t) \]
probabilistic measurement model

e.g. GPS (simplified)
Why is mapping a problem?

Don’t we have all the information we need to build a map?

• Two main sources of uncertainty:

 • accumulating uncertainty in the pose (i.e. position, or dynamics)

\[p(x_{t+1} | x_t, u_t) \]

Uncertainty in the dynamics compounds into increasing uncertainty in odometry, as time passes.
Why is mapping a problem?

Don’t we have all the information we need to build a map?

• Two main sources of uncertainty:

 • uncertainty in the pose \(p(x_{t+1} \mid x_t, u_t) \)

 • uncertainty in sensor measurements
Why is mapping a problem?
Don’t we have all the information we need to build a map?

- Two main sources of uncertainty:
 - uncertainty in the pose \(p(x_{t+1}|x_t, u_t) \)
 - uncertainty in sensor measurements

![Sonar](image1.png) ![Laser](image2.png)

True value: 300cm
but measurements have noise
Why is mapping a problem?

Don’t we have all the information we need to build a map?

• If we had no uncertainty, i.e. \(x_{t+1} = f(x_t, u_t) \) and \(z_t = h(x_t) \) then mapping would be trivial.

• Today we will assume perfect pose estimation and odometry, but noisy sensor measurements. \(p(z_t|x_t) \)

• We are also going to assume a static map, no moving objects
Defining the problem

• The occupancy grid map is a binary random variable

\[m = \{m_{ij}\} \in \{0, 1\}^{W \times H} \]

width = #columns
height = #rows
of the occupancy grid
Defining the problem

- The occupancy grid map is a binary random variable
 \[
 \mathbf{m} = \{m_{ij}\} \in \{0, 1\}^{W \times H}
 \]
 width = \#columns
 height = \#rows
 of the occupancy grid

- The path of the robot up to time \(t\) is a sequence of random variables
 \(x_{1:t} = x_1, \ldots, x_t\) with
 \[x_i = (x_i, y_i, \theta_i)\]
 Odometry coordinates
Defining the problem

• The occupancy grid map is a binary random variable

\[m = \{ m_{ij} \} \in \{0, 1\}^{W \times H} \]

width = #columns
height = #rows of the occupancy grid

• The path of the robot up to time t is a sequence of random variables \(x_{1:t} = x_1, \ldots, x_t \) with \(x_i = (x_i, y_i, \theta_i) \)

Odometry coordinates

• At each time step the robot makes a measurement (sonar/laser). Measurements up to time t are a sequence of random variables

\[z_{1:t} = z_1, \ldots, z_t \] with \(z_i = \{ (r_i, \psi_i) \}^K \)

K = #beams, or #points in the scan

(range, angle) in the laser’s local coordinates
The goal of mapping

• To estimate the probability of any map, given path and measurements $p(m|z_{1:t}, x_{1:t})$?
The goal of mapping

• To estimate the probability of any map, given path and measurements $p(m|z_{1:t}, x_{1:t})$?
• This is intractable. E.g. for a 100 x 100 grid there are 2^{10000} possible binary maps.
The goal of mapping

• To estimate the probability of any map, given path and measurements $p(m|z_{1:t}, x_{1:t})$?

• This is intractable. E.g. for a 100 x 100 grid there are 2^{10000} possible binary maps.

• We can approximate $p(m|z_{1:t}, x_{1:t}) \approx \prod_{i,j} p(m_{i,j}|z_{1:t}, x_{1:t})$

Approximation ignores all dependencies between map cells, given known info. Assumes (for tractability) that cells are independent given given path and measurements.
Why is it an approximation?

(a) Scenario

(c) Nearby measurements

(d) Resulting maps when considering cells independently

(e) Resulting map when considering cells jointly

(f)
Evaluating the occupancy of a map cell

• How do we evaluate $p(m_{ij} = 1 | z_{1:t}, x_{1:t})$?

If we get a ping, is there something there?
Evaluating the occupancy of a map cell

• How do we evaluate $p(m_{ij} = 1 | z_{1:t}, x_{1:t})$?

Bayes’ Rule

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

Conditional Bayes’ Rule

$$p(A|B, C) = \frac{p(B|A, C)p(A|C)}{p(B|C)}$$
Evaluating the occupancy of a map cell

- How do we evaluate $p(m_{ij} = 1|z_{1:t}, x_{1:t})$?
- Using conditional Bayes’ rule we get

$$p(m_{ij} = 1|z_{1:t}, x_{1:t}) = \frac{p(z_t|z_{1:t-1}, x_{1:t}, m_{ij} = 1)p(m_{ij} = 1|z_{1:t-1}, x_{1:t})}{p(z_t|z_{1:t-1}, x_{1:t})}$$

Bayes’ Rule

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

Conditional Bayes’ Rule

$$p(A|B, C) = \frac{p(B|A, C)p(A|C)}{p(B|C)}$$
Evaluating the occupancy of a map cell

• How do we evaluate \(p(m_{ij} = 1 | z_{1:t}, x_{1:t}) \) ?

• Using conditional Bayes’ rule we get

\[
p(m_{ij} = 1 | z_{1:t}, x_{1:t}) = \frac{p(z_t | z_{1:t-1}, x_{1:t}, m_{ij} = 1)p(m_{ij} = 1 | z_{1:t-1}, x_{1:t})}{p(z_t | z_{1:t-1}, x_{1:t})}
\]

• And we simplify

\[
p(m_{ij} = 1 | z_{1:t}, x_{1:t}) = \frac{p(z_t | x_t, m_{ij} = 1)p(m_{ij} = 1 | z_{1:t-1}, x_{1:t-1})}{p(z_t | z_{1:t-1}, x_{1:t})}
\]

If \(C \) is independent of \(A \) given \(B \), then \(C \) provides no extra information about \(A \) after we know \(B \)

\[
p(A | B, C) = p(A | B)
\]
Evaluating the occupancy of a map cell

• How do we evaluate \(p(m_{ij} = 1|z_{1:t}, x_{1:t}) \)?

• Using conditional Bayes’ rule we get

\[
p(m_{ij} = 1|z_{1:t}, x_{1:t}) = \frac{p(z_t|z_{1:t-1}, x_{1:t}, m_{ij} = 1)p(m_{ij} = 1|z_{1:t-1}, x_{1:t})}{p(z_t|z_{1:t-1}, x_{1:t})}
\]

• And we simplify

\[
p(m_{ij} = 1|z_{1:t}, x_{1:t}) = \frac{p(z_t|x_t, m_{ij} = 1)p(m_{ij} = 1|z_{1:t-1}, x_{1:t-1})}{p(z_t|z_{1:t-1}, x_{1:t})}
\]

Note the similarity

Current measurement only depends on current state and map cell

Current state without current measurement provides no additional information about the occupancy of the map cell
Evaluating the occupancy of a map cell

• And we simplify:

\[p(m_{ij} = 1|z_{1:t}, x_{1:t}) = \frac{p(z_t|x_t, m_{ij} = 1)p(m_{ij} = 1|z_{1:t-1}, x_{1:t-1})}{p(z_t|z_{1:t-1}, x_{1:t})} \]

• Another way to write this:

\[belief_t(m_{ij} = 1) = \eta p(z_t|x_t, m_{ij} = 1) belief_{t-1}(m_{ij} = 1) \]

• Belief at time t-1 was updated to belief at time t based on likelihood of measurement received at time t.
Evaluating the occupancy of a map cell

• And we simplify:

\[p(m_{ij} = 1 | z_{1:t}, x_{1:t}) = \frac{p(z_t | x_t, m_{ij} = 1) p(m_{ij} = 1 | z_{1:t-1}, x_{1:t-1})}{p(z_t | z_{1:t-1}, x_{1:t})} \]

• Another way to write this:

\[belief_t(m_{ij} = 1) = \eta \ p(z_t | x_t, m_{ij} = 1) \ belief_{t-1}(m_{ij} = 1) \]

So, as long as we can evaluate the measurement likelihood

\[p(z_t | x_t, m_{ij} = 1) \]

and the normalization factor

\[\eta = 1 / p(z_t | z_{1:t-1}, x_{1:t}) \]

we can do the belief update.
Evaluating the occupancy of a map cell

• And we simplify:

\[p(m_{ij} = 1 | z_{1:t}, x_{1:t}) = \frac{p(z_t | x_t, m_{ij} = 1)p(m_{ij} = 1 | z_{1:t-1}, x_{1:t-1})}{p(z_t | z_{1:t-1}, x_{1:t})} \]

• Another way to write this:

\[belief_t(m_{ij} = 1) = \eta \ p(z_t | x_t, m_{ij} = 1) \ belief_{t-1}(m_{ij} = 1) \]

So, as long as we can evaluate the measurement likelihood

\[p(z_t | x_t, m_{ij} = 1) \]

and the normalization factor

\[\eta = 1 / p(z_t | z_{1:t-1}, x_{1:t}) \]

we can do the belief update.

Problem: this is hard to compute. How can we avoid it?
The log-odds trick for binary random variables

- We showed \[\text{belief}_t(m_{ij} = 1) = \eta \ p(z_t|x_t, m_{ij} = 1) \text{belief}_{t-1}(m_{ij} = 1) \]

- Define the log odds ratio \[l_t^{(ij)} = \log \frac{p(m_{ij} = 1|z_{1:t}, x_{1:t})}{p(m_{ij} = 0|z_{1:t}, x_{1:t})} = \log \frac{\text{belief}_t(m_{ij} = 1)}{\text{belief}_t(m_{ij} = 0)} \]
The log-odds trick for binary random variables

• We showed

\[\text{belief}_t(m_{ij} = 1) = \eta p(z_t | x_t, m_{ij} = 1) \text{belief}_{t-1}(m_{ij} = 1) \quad (1) \]

• Define the log odds ratio

\[l_t^{(ij)} = \log \frac{p(m_{ij} = 1 | z_{1:t}, x_{1:t})}{p(m_{ij} = 0 | z_{1:t}, x_{1:t})} = \log \frac{\text{belief}_t(m_{ij} = 1)}{\text{belief}_t(m_{ij} = 0)} \]

• Then (1) becomes

\[l_t^{(ij)} = \log \frac{p(z_t | x_t, m_{ij} = 1)}{p(z_t | x_t, m_{ij} = 0)} + l_{t-1}^{(ij)} \]
The log-odds trick for binary random variables

• We showed \[\text{belief}_t(m_{ij} = 1) = \eta p(z_t | x_t, m_{ij} = 1) \text{belief}_{t-1}(m_{ij} = 1) \quad (1) \]

• Define the log odds ratio \[l_t^{(ij)} = \log \frac{p(m_{ij} = 1 | z_{1:t}, x_{1:t})}{p(m_{ij} = 0 | z_{1:t}, x_{1:t})} = \log \frac{\text{belief}_t(m_{ij} = 1)}{\text{belief}_t(m_{ij} = 0)} \]

• Then (1) becomes \[l_t^{(ij)} = \log \frac{p(z_t | x_t, m_{ij} = 1)}{p(z_t | x_t, m_{ij} = 0)} + l_{t-1}^{(ij)} \]

• We can recover the original belief as \[\text{belief}_t(m_{ij} = 1) = 1 - \frac{1}{1 + \exp(l_t^{(ij)})} \]
The log-odds trick for binary random variables

- We showed \[\text{belief}_t(m_{ij} = 1) = \eta p(z_t|x_t, m_{ij} = 1) \text{belief}_{t-1}(m_{ij} = 1) \] (1)

- Define the log odds ratio \[l_t^{(ij)} = \log \frac{p(m_{ij} = 1|z_{1:t}, x_{1:t})}{p(m_{ij} = 0|z_{1:t}, x_{1:t})} = \log \frac{\text{belief}_t(m_{ij} = 1)}{\text{belief}_t(m_{ij} = 0)} \]

- Then (1) becomes \[l_t^{(ij)} = \log \frac{p(z_t|x_t, m_{ij} = 1)}{p(z_t|x_t, m_{ij} = 0)} + l_t^{(ij)} \]

So, as long as we can evaluate the log odds ratio for the measurement likelihood:

\[\log \frac{p(z_t|x_t, m_{ij} = 1)}{p(z_t|x_t, m_{ij} = 0)} \]

we can do the belief update.
Log-odds ratio for the measurement likelihood

• We want to compute $\log \frac{p(z_t|x_t, m_{ij} = 1)}{p(z_t|x_t, m_{ij} = 0)}$ to do the belief update.

• We apply conditional Bayes’ rule again:

$$p(z_t|x_t, m_{ij} = 1) = \frac{p(m_{ij} = 1|z_t, x_t) p(z_t|x_t)}{p(m_{ij} = 1|x_t)}$$
Log-odds ratio for the measurement likelihood

- We want to compute \[\log \frac{p(z_t | x_t, m_{ij} = 1)}{p(z_t | x_t, m_{ij} = 0)} \]

- We apply conditional Bayes’ rule again: \[p(z_t | x_t, m_{ij} = 1) = \frac{p(m_{ij} = 1 | z_t, x_t) p(z_t | x_t)}{p(m_{ij} = 1 | x_t)} \]

- If we take the log-odds ratio: \[\log \frac{p(z_t | x_t, m_{ij} = 1)}{p(z_t | x_t, m_{ij} = 0)} = \log \frac{p(m_{ij} = 1 | z_t, x_t)}{p(m_{ij} = 0 | z_t, x_t)} + \log \frac{p(m_{ij} = 0 | x_t)}{p(m_{ij} = 1 | x_t)} \]

- We can simplify further:

Knowing the current state provides no information about whether cell is occupied, if there are no observations.
Log-odds ratio for the measurement likelihood

• We want to compute \[\log \frac{p(z_t|x_t, m_{ij} = 1)}{p(z_t|x_t, m_{ij} = 0)} \]

• We apply conditional Bayes’ rule again: \[p(z_t|x_t, m_{ij} = 1) = \frac{p(m_{ij} = 1|z_t, x_t) p(z_t|x_t)}{p(m_{ij} = 1|x_t)} \]

• If we take the log-odds ratio: \[\log \frac{p(z_t|x_t, m_{ij} = 1)}{p(z_t|x_t, m_{ij} = 0)} = \log \frac{p(m_{ij} = 1|z_t, x_t)}{p(m_{ij} = 0|z_t, x_t)} + \log \frac{p(m_{ij} = 0|x_t)}{p(m_{ij} = 1|x_t)} \]

• We can simplify further:

\[
\log \frac{p(z_t|x_t, m_{ij} = 1)}{p(z_t|x_t, m_{ij} = 0)} = \log \frac{p(m_{ij} = 1|z_t, x_t)}{p(m_{ij} = 0|z_t, x_t)} + \log \frac{p(m_{ij} = 0)}{p(m_{ij} = 1)}
\]

Prior probability of cell being occupied.
Can choose uniform distribution, for example.
Log-odds ratio for the measurement likelihood

• We want to compute \(\log \frac{p(z_t|x_t, m_{ij} = 1)}{p(z_t|x_t, m_{ij} = 0)} \)

• We apply conditional Bayes’ rule again:
 \[p(z_t|x_t, m_{ij} = 1) = \frac{p(m_{ij} = 1|z_t, x_t) p(z_t|x_t)}{p(m_{ij} = 1|x_t)} \]

• If we take the log-odds ratio:
 \[\log \frac{p(z_t|x_t, m_{ij} = 1)}{p(z_t|x_t, m_{ij} = 0)} = \log \frac{p(m_{ij} = 1|z_t, x_t)}{p(m_{ij} = 0|z_t, x_t)} + \log \frac{p(m_{ij} = 0|x_t)}{p(m_{ij} = 1|x_t)} \]

• We can simplify further:

Inverse measurement model: what is the likelihood of the map cell being occupied given the current state and current measurement?
Log-odds ratio for the measurement likelihood

- We want to compute \(\log \frac{p(z_t|x_t, m_{ij} = 1)}{p(z_t|x_t, m_{ij} = 0)} \) but it’s hard

- Instead, we can compute the log-odds ratio of the measurement likelihood in terms of the inverse measurement model:

\[
\log \frac{p(z_t|x_t, m_{ij} = 1)}{p(z_t|x_t, m_{ij} = 0)} = \log \frac{p(m_{ij} = 1|z_t, x_t)}{p(m_{ij} = 0|z_t, x_t)} + \log \frac{p(m_{ij} = 0)}{p(m_{ij} = 1)}
\]

Inverse measurement model: what is the likelihood of the map cell being occupied given the current state and current measurement?
Inverse sensor measurement model

Given map cell (i,j), the robot’s state $x = (x, y, \theta)$, and beams $z = \{(r_k, \psi_k)\}$

Find index k of sensor beam that is closest in heading to the cell (i,j)

$p(m_{ij} = 1|z_t, x_t)$
Inverse sensor measurement model

Given map cell \((i, j) \), the robot’s state \(x = (x, y, \theta) \), and beams \(z = \{(r_k, \psi_k)\} \)

Find index \(k \) of sensor beam that is closest in heading to the cell \((i, j) \)

\[p(m_{ij} = 1|z_t, x_t) \]

If the cell \((i, j) \) is sufficiently closer than \(r_k \)

// Cell is most likely free
Return \(p_{\text{occupied}} \) that is well below 0.5
Inverse sensor measurement model

Given map cell \((i, j)\), the robot’s state \(\mathbf{x} = (x, y, \theta)\), and beams \(\mathbf{z} = \{(r_k, \psi_k)\}\)

Find index \(k\) of sensor beam that is closest in heading to the cell \((i, j)\)

If the cell \((i, j)\) is sufficiently farther than \(r_k\) or out of the field of view
 // We don't have enough information to decide whether cell is occupied
 Return prior occupation probability \(p(m_{ij} = 1)\)

If the cell \((i, j)\) is sufficiently closer than \(r_k\)
 // Cell is most likely free
 Return \(p_{occupied}\) that is well below 0.5

\[p(m_{ij} = 1 | \mathbf{z}_t, \mathbf{x}_t) \]
Inverse sensor measurement model

Given map cell \((i, j)\), the robot’s state \(x = (x, y, \theta)\), and beams \(z = \{(r_k, \psi_k)\}\)

Find index \(k\) of sensor beam that is closest in heading to the cell \((i, j)\)

If the cell \((i, j)\) is sufficiently farther than \(r_k\) or out of the field of view

// We don’t have enough information to decide whether cell is occupied

Return prior occupation probability \(p(m_{ij} = 1)\)

If the cell \((i, j)\) is nearly as far as the measurement \(r_k\)

// Cell is most likely occupied

Return \(p_{\text{occupied}}\) that is well above 0.5

If the cell \((i, j)\) is sufficiently closer than \(r_k\)

// Cell is most likely free

Return \(p_{\text{occupied}}\) that is well below 0.5

\[p(m_{ij} = 1 | z_t, x_t) \]
inverse_sensor_measurement_model((i, j), x = (x, y, θ), z = \{(r_k, ψ_k)\})

From Probabilistic Robotics, chapter 9.2

• Let \((x_i, y_i)\) be the center of the cell \((i, j)\)
• Let \(r = ||(x_i, y_i) - (x, y)||\)
• Let \(φ = \text{atan2}(y_i - y, x_i - x) - θ\) // Might need to ensure this angle difference is in \([-π, π]\)
• The index of the closest-in-heading beam to \((x_i, y_i)\) is \(k^* = \text{argmin}_k |φ - ψ_k|\)
• If \(r > \min\{r_{\text{max}}, r_k + \alpha/2\}\) or \(|φ - ψ_k| > \beta/2\)
 • Return the log odds ratio of the prior occupancy \(\log \frac{p(m_{ij} = 1)}{p(m_{ij} = 0)}\)

 Cell too far to be "seen"

• If \(r_k < r_{\text{max}}\) and \(|r - r_k| < \alpha/2\)
 • Return the log odds ratio of being occupied (corresponding to occupation probability > 0.5)
• If \(r \leq r_k\)
 • Return the log odds ratio of being free (corresponding to occupation probability < 0.5)
Recap

- We wanted to compute the likelihood of any map based on known states and observations

 \[p(m|z_{1:t}, x_{1:t}) \approx \prod_{i,j} p(m_{ij}|z_{1:t}, x_{1:t}) \]
Recap

- We wanted to compute the likelihood of any map based on known path and observations

\[p(m|z_{1:t}, x_{1:t}) \approx \prod_{i,j} p(m_{ij}|z_{1:t}, x_{1:t}) \]

- To evaluate \(p(m_{ij} = 1|z_{1:t}, x_{1:t}) = belief_t(m_{ij} = 1) \) we had to apply Bayes’ theorem, which revealed a way to recursively update the belief

\[belief_t(m_{ij} = 1) = \eta p(z_t|x_t, m_{ij} = 1) belief_{t-1}(m_{ij} = 1) \]
Recap

• We wanted to compute the likelihood of any map based on known path and observations

\[p(m|z_{1:t}, x_{1:t}) \approx \prod_{i,j} p(m_{ij}|z_{1:t}, x_{1:t}) \]

• To evaluate \(p(m_{ij} = 1|z_{1:t}, x_{1:t}) = belief_t(m_{ij} = 1) \) we had to apply Bayes’ theorem, which revealed a way to recursively update the belief

\[belief_t(m_{ij} = 1) = \eta p(z_t|x_t, m_{ij} = 1) belief_{t-1}(m_{ij} = 1) \]

• To avoid evaluating \(\eta \) we used the log odds ratio

\[l_t^{(ij)} = \log \frac{p(z_t|x_t, m_{ij} = 1)}{p(z_t|x_t, m_{ij} = 0)} + l_{t-1}^{(ij)} \]

Can do this for binary random variables
Recap

- We wanted to compute the likelihood of any map based on known path and observations
 \[p(m | z_{1:t}, x_{1:t}) \approx \prod_{i,j} p(m_{ij} | z_{1:t}, x_{1:t}) \]

- To evaluate \(p(m_{ij} = 1 | z_{1:t}, x_{1:t}) = belief_t(m_{ij} = 1) \) we had to apply Bayes’ theorem, which revealed a way to recursively update the belief
 \[belief_t(m_{ij} = 1) = \eta \, p(z_t | x_t, m_{ij} = 1) \, belief_{t-1}(m_{ij} = 1) \]

- To avoid evaluating \(\eta \) we used the log odds ratio
 \[l_t^{(ij)} = \log \frac{p(z_t | x_t, m_{ij} = 1)}{p(z_t | x_t, m_{ij} = 0)} + l_{t-1}^{(ij)} \]

- Computing the forward measurement model \(p(z_t | x_t, m_{ij} = 1) \) was hard, so we applied Bayes’ rule again, to get an inverse measurement model \(p(m_{ij} = 1 | z_t, x_t) \) and an easier-to-compute log-odds ratio:
 \[l_t^{(ij)} = l_{t-1}^{(ij)} + \log \frac{p(m_{ij} = 1 | z_t, x_t)}{p(m_{ij} = 0 | z_t, x_t)} - \log \frac{p(m_{ij} = 1)}{p(m_{ij} = 0)} \]
Occupancy Grid Algorithm

- Upon reception of a new laser/sonar/scan measurement \(z_t = \{(r_k, \psi_k)\} \)
- Let the robot’s current state be \(x_t = (x_t, y_t, \theta_t) \)
- Let the previous log-odds ratio of the occupancy belief be the 2D array \(l_{t-1}^{(ij)} \) where \(i \) is a row, \(j \) is a column
 In the beginning we set the prior \(l_0^{(ij)} = \log \frac{p(m_{ij} = 1)}{p(m_{ij} = 0)} \) where the occupancy probability is a design decision.
Occupancy Grid Algorithm

- Upon reception of a new laser/sonar/scan measurement \(z_t = \{(r_k, \psi_k)\} \)
- Let the robot’s current state be \(x_t = (x_t, y_t, \theta_t) \)
- Let the previous log-odds ratio of the occupancy belief be the 2D array \(l_{t-1}^{(ij)} \) where \(i \) is a row, \(j \) is a column
 - In the beginning we set the prior \(l_0^{(ij)} = \log \frac{p(m_{ij} = 1)}{p(m_{ij} = 0)} \) where the occupancy probability is a design decision.

- For all cells \((i,j)\) in the grid
 - If the cell \((i,j)\) is in the field of view of the robot’s sensor at state \(x_t \)
 \[l_t^{(ij)} = l_{t-1}^{(ij)} + \text{inverse-sensor-measurement-model}((i,j), x_t, z_t) - l_0^{(ij)} \]
 - Else
 \[l_t^{(ij)} = l_{t-1}^{(ij)} \]

- If asked, return the following 2D matrix of occupancy probabilities:
 \[\text{belief}_t(m_{ij} = 1) = 1 - \frac{1}{1 + \exp(l_t^{(ij)})} \]
Results

The maximum likelihood map is obtained by clipping the occupancy grid map at a threshold of 0.5
Tech Museum, San Jose

CAD map

occupancy grid map