
Introduction to
 Concurrent Versions System

Overview

Conceptual Overview
A typical work session
Revisions
Branching and Merging
Multiple developers
How to start to use our CVS server
CVS Resource

Conceptual Overview

What is CVS?
CVS is a version control system. It is used to record the history of your
source files.
CVS also helps you if you are part of a group of people working on the same
project

What is CVS not?
Not a build system
Not a substitute for management
Not a substitute for developer communication

Why use CVS?
Bugs can creep in when software is modified, and may not be detected until
a long time after the modification is made. With CVS, we can retrieve old
versions to find which change caused the bug
CVS can also help when a project is being worked on by multiple people,

where overwriting each others changes is easy to happen
CVS solves this problem by having each developer work in his/her own directory and

then instructing CVS to merge the work when each developer is done.

Conceptual Overview (Contd.)

CVS repository structure

/var/lib/cvs

CVSROOT

DMI

DCI

DMA

CPP

Java

CPP

Java

Administrative files

Ptree DMI C++ src

Conceptual Overview (Cont'd.)

CVS repository stores a complete copy of all the files and
directories which are under version control.
CVS can access a repository by a variety of means.
Use cvs command to perform all the repository operations. Don’t
operate repository directly!
CVSROOT contains some administrative files

modules file is the most important one, which can be use to define
all modules in the repository.
We can group out source files into modules

Module1 file1, file2, file3
Module2 file4, file5
Module-n file6, file7, file8, file9

A typical work session

Some environment variables involved (BASH style)
CVSROOT (three ways to access CVS repository)

CVSROOT=/var/lib/cvs
CVSROOT=:pserver:user@hostname:/var/lib/cvs

CVS_AUTH_PORT
$CVS_AUTH_PORT=2401

CVSROOT=:ext:user@hostname:/var/lib/cvs
CVS_RSH

$CVS_RSH=ssh

CVSEDITOR
$CVSEDITOR=/usr/bin/vim

Don’t forget to run export!

A typical work session (Contd.)

Before start
Generally, using a remote repository is
just like using a local one, except that
the format of the repository name is
different
Using “pserver”

$cvs login

Get your own working copy
$cvs co DirName|ModuleName
$cvs co DMI

Current working dir

DMI

CPP

Java

Ptree DMI C++ src

CVS

CVS

CVS

Working copy directory structure
The `CVS' directory is used internally by CVS.

A typical work session (Contd.)

Add new file or dir
$cvs add DirName|FileName
$cvs commit
DirName|FileName
$cvs commit –m “log info”
DirName|FileName
Example:

cd DMI\CPP
mkdir masum
$cvs add masum
$cvs commit masum

Current working dir

DMI

CPP

Java

Ptree DMI C++ src

CVS

CVS

CVS

masum

A typical work session (Contd.)

Clean up
Clean up working repository

$rm –rf dirName
$cvs release –d dirName|FileName

A typical work session (Contd.)

View difference
$cvs diff –r ver1 –r ver2 fileName

History browsing
$cvs log
$cvs history

View modules
$cvs checkout –c

View file status
$cvs status filename …

Revisions
Revision numbers

Look like 1.1 -> 1.2 -> 1.3 -> 1.4
By default, CVS will assign numeric revisions by leaving
the first number the same and incrementing the second
number.
To bring all your files up to revision 3.0 (including those that
haven't changed), you might invoke:

$ cvs commit -r 3.0
Tags-symbolic revisions

A symbolic name to a certain revision number of a file
Example:

cd /DMI/C++
$cvs tag ptree-first-stage .
$cvs checkout -r ptree-first-stage

Revisions (Contd.)

When we tag more than one file with the same
tag, you can think about the tag as a handle.
When you pull on the handle, you get all the
tagged revisions.

Branching and Merging

Why branching? To maintain several versions
at the same time, e.g. one developing version
and one stable version.
Create a branch, assuming you're in a
working copy:

$ cvs tag -b rel-1-0-patches
Create a branch without reference to any
working copy, by using rtag:

$ cvs rtag -b -r rel-1-0 rel-1-0-patches tc

Branching and Merging (Contd.)

You can merge changes made on a branch
into your working copy by giving the `-j
branchname' flag to the update
subcommand.

$ cvs update -j R1fix m.c
$ cvs commit -m "Included R1fix"

A conflict can result from a merge operation.

Multiple developers

What’s the problem?
Two solutions

Reserved checkouts
Allow ONLY one person to edit each file at a time
Very counter-productive
$cvs admin -l

Unreserved checkouts (default)
Allow more than one person to edit their working copy of a file
simultaneously
What will happen using this solution?
CVS provides mechanisms to facilitate the communication
without actually enforcing rules like reserved checkouts do

Multiple developers (Contd.)

How to use unreserved checkouts?
Check file status before “commit” changes
When you want (need) to update or merge a file,
use the update command.
Your modifications to a file are never lost when
you use update. If no newer revision exists,
running update has no effect. If you have edited
the file, and a newer revision is available, CVS will
merge all changes into your working copy.

All non-overlapping modifications are incorporated
And the overlapping section will cause conflict

Multiple developers (Contd.)

You can resolve the conflict by editing the
file, removing the markers and the erroneous
line.

overlapping section is marked with `<<<<<<<',
`=======' and `>>>>>>>'.

Then go ahead and commit this file as a new
revision into the repository again.

Multiple developers (Contd.)

Mechanisms to track who is edition files
Tell CVS to watch certain files

$cvs watch on files
$cvs watch off files

Tell CVS to notify you
$cvs watch add [-a action] files
$cvs watch remove [-a action] files

How to edit a file which is being watched
$cvs edit files
$cvs unedit files

Multiple developers (Contd.)

Information about who is watching and
editing

$cvs watchers files …
$cvs editors files …

How to start to use our CVS server

Remotely access:
pserver (Using RSH):

CVSROOT=:pserver:username@midas2.cs.ndsu.nodak.edu:/var/lib/cvs

ext (using an external rsh program)
CVSROOT=:ext:username@midas2.cs.ndsu.nodak.edu:/var/lib/cvs
CVS_RSH="ssh"

export CVSROOT CVS_RSH

How to start to use our CVS server

Suggest to use module name instead using the directory
name directly.

I may need to know files you are working on
Configure files for using our cvs server:
http://www.cs.ndsu.nodak.edu/~datasurg/kddcup/darron/cvs_
config_files/

.bashrc

.bash_profile
Download the file, merge them to your original .bashrc and
.bash_profile using your favorite editor
Before try any cvs command, run appropriate alias

http://www.cs.ndsu.nodak.edu/~datasurg/kddcup/darron/cvs_config_files/
http://www.cs.ndsu.nodak.edu/~datasurg/kddcup/darron/cvs_config_files/

CVS Resource

Get CVS manual
man cvs

CVS Links
CVS Home: http://www.cvshome.org/
http://www.cvshome.org/new_users.html
http://www.loria.fr/~molli/cvs-index.html
http://cvsbook.red-bean.com/cvsbook.html
http://www.loria.fr/~molli/cvs/cvs-FAQ/cvsfaq0.html
http://sfsetup.sourceforge.net/tutorial_index.html

Mailing List:
Info-cvs: info-cvs-requests@gnu.org

http://www.cvshome.org/
http://www.cvshome.org/new_users.html
http://www.loria.fr/~molli/cvs-index.html
http://cvsbook.red-bean.com/cvsbook.html
http://www.loria.fr/~molli/cvs/cvs-FAQ/cvsfaq0.html
http://sfsetup.sourceforge.net/tutorial_index.html

	Introduction to�	Concurrent Versions System �
	Overview
	Conceptual Overview
	Conceptual Overview (Contd.)
	Conceptual Overview (Cont'd.)
	A typical work session�
	A typical work session (Contd.)
	A typical work session (Contd.)
	A typical work session (Contd.)
	A typical work session (Contd.)
	Revisions�
	Revisions (Contd.)�
	Branching and Merging
	Branching and Merging (Contd.)
	Multiple developers
	Multiple developers (Contd.)
	Multiple developers (Contd.)
	Multiple developers (Contd.)
	Multiple developers (Contd.)
	How to start to use our CVS server
	How to start to use our CVS server
	CVS Resource

