
13: C Review

" C (Java,C++,Python) provide the following bitwise operations:
" & bitwise and
" | bitwise or
" ^ bitwise xor, also called exclusive or
" << left shift
" >> right shift
" ~ one's complement

" Notation: (z)i denotes the i-th bit in z (from right)

13: Bitwise &
" if (x)i == 1 and (y)i == 1 then (x & y)i == 1

" otherwise (x & y)i == 0

" Bitwise and is often used to clear bits or bytes. For example:

" x & 0xff clears all bytes but the low-order byte:

… B

low-order
byte

x
&

0…0 0…0 111111
11

0xff

0 … 0 Bx &
0xff

13: Bitwise ^

" if (x)i == (y)i then (x ^ y)i == 0
" otherwise (x ^ y)i == 1

" Bitwise xor clears those bits that are the same in both
arguments, and sets the other bits.

" Can be used to test if two words are equal, for example
" x ^ y

" returns 0 if x and y are equal.

Properties of XOR (^)

" XOR (like negation) has the property that it is
invertible, and it is it's own inverse.

" i.e. x XOR y XOR y = x
" e.g. x=1,y=1: 1 xor 1 = 0, 0 xor 1 = 1
" For entire characters, this is a common simple

encryption method.
– Let x ^ y = z, encrypted x (z can be transmitted)
– If the receiver knows y, then z ^ y = x

13: Left Shift

" Left shift: i << j

" The resulting word will have all bits shifted to the left by j
positions;

" for every bit that is shifted off the left end of the word, there is a
zero bit added at the right end.

" x <<= 1 is equivalent to x *= 2

" x <<= 2 is equivalent to x *= 4.

13: Examples of bitwise operations

" getBit() returns the i-th bit in w, using a bitwise and of its
first

" argument and MASK(j):

" #define MASK(j) (1 << j)

" int getBit(int w, unsigned j) {

" return ((w & MASK(j)) == 0) ? 0 : 1;

" }

make
a specific software tool

Reference book (not required):

Managing Projects with make
Andrew Oram and Steve Talbott

O'Reilly & Associates

Why make?

" When a project contains many source files, it can
be very time consuming to compile all of the
source files & error prone.

" We would like to re-compile only those files
which have changed.

" make is a utility which allows us to specify
dependencies, and to rebuild only the necessary
files according to the dependencies and
modification times.

Makefile

" in order to use make, we place all of our macro
definitions, dependencies, commands, and targets
into a file which must be called Makefile

" we then run make with a target (default is all)
make

make all

make clean

make install

Simple Targets

" we can define several targets in a makefile. We
simply list the target name, followed by any
dependencies (if any):

all: foo.c bar.c

 gcc -o foo foo.c bar.c -lm

 extract_comments < foo.c > foo.doc

foo: foo.o

 gcc -o foo foo.c

clean:

 /bin/rm -f ${OBJS}

Macros

" macros are specified in make as follows:
name = text string

" macro expansion:
$(name) ${name}

" example:
SRC=foo.c

${SRC}

Common Macros
SRCS=foo.c bar.c

CFLAGS=-Wall -ansi

LDFLAGS=-lm -lmylib

INCDIR=-I/home/ericb/include

LIBDIR=-L/home/ericb/lib

" example command in make:

gcc ${CFLAGS} ${INCDIR} -o foo ${SRCS}\
${LIBDIR} ${LDFLAGS}

Targets
" we can define several targets in a makefile. We simply list the

target name, followed by any dependencies (if any):
all: ${OBJS}

 ${CC} -o foo ${OBJS} ${LIBDIR} ${LDFLAGS}

foo: ${OBJS}

 ${CC} -o foo ${OBJS} ${LIBDIR} ${LDFLAGS}

clean:

 /bin/rm -f ${OBJS}

install: foo

 /bin/cp -f foo /usr/local/bin

Macro String Substitution

" make has a powerful string substitution operator
for macros:

SRCS = defs.c redraw.c calc.c

OBJS = ${SRCS:.c=.o}

same as:

OBJS = defs.o redraw.o calc.o

Suffix Rules

" suffix rules tell make how files are inter-dependent:
.c.o:

 ${CC} ${CFLAGS} ${INCDIR} -c $<

" the above tells make how to create a ".o" file from a ".c"
file.

" $< is set to the current dependency

" recall that -c to gcc means to compile only, not to link
(i.e., to produce a .o file)

Sample Complete Makefile
SRCS=foo.c bar.c
OBJS=foo.o bar.o barbar.o
CFLAGS=-Wall -ansi
LDFLAGS=-lm -lmylib
INCDIR=-I/home/ericb/include
LIBDIR=-L/home/ericb/lib

all: ${OBJS}
 ${CC} -o foo ${OBJS} ${LIBDIR} ${LDFLAGS}
foo: ${OBJS}
 ${CC} -o foo ${OBJS} ${LIBDIR} ${LDFLAGS}
clean:
 /bin/rm -f ${OBJS}
install: foo
 /bin/cp -f foo /usr/local/bin

bar.c: math.h fooie
do magic stuff

.c.o:
 ${CC} ${CFLAGS} ${INCDIR} -c $<

makedepend

" For large projects, it is hard to generate
dependencies on .h files and keep them up to
date.

" when a .h file has changed, we would like all the
.c files which included it to be recompiled

" to automatically append dependency rules to the
end of your makefile, run makedepend and tell it
which .c files to inspect:

makedepend *.c

