
1

Chapter 4:

Control Structures

Basic Control Structures

• -for (init;bool;inc) statement
• -while (bool) statement
• -if (bool) statement else statement
• switch (variable) {

 case value: statement
 case value: statement;
 default: statement
 }

Control Statements

• Java and C control structures differ in only one
respect:

• C does not support labeled break and
continue statements, which are useful for
controlling program flow through nested loops:

• for(i = 0; i < length; i++)
• for(j = 0; j < length1; j++)
• if(f(i, j) == 0)
• goto xdone;

• xdone:

This (goto)
should be
used with
discretion, or
not at all for
beginners.

 "Read
Two
Integers
with
prompt"
 Idiom

Example/* Program that reads two integer values, and
 * outputs the maximum of these values.
 */

int main() {
 int i, j;

 printf("Enter two integers:");
 if(scanf("%d%d", &i, &j) != 2) {

fprintf(stderr, "wrong input\n");
return EXIT_FAILURE;

}
 printf("Maximum of %d and %d is %d\n",
 i, j, i > j ? i : j);
 return EXIT_SUCCESS;
}

Control Statements

• The body of the if statement is indented to the right,
and all its instructions are aligned.

• No need for curly braces within a conditional
statement, when only one statement is present:

• if(condition) {
• single statement1
• } else {
• single statement2
• }

Control Statements

• The body of the if statement is indented to the right,
and all its instructions are aligned.

• No need for curly braces within a conditional
statement, when only one statement is present:
– BUT, IF YOU ALWAYS PUT IN THE BRACES

YOU’LL AVOID ONE OF THE MOST COMMON
SOURCES OF ERROR

• if(condition)
• single statement
• second statement

2

• if (cond) stmt

While statement

• while(expr) {
• stats
• }
• while(expr)
• {
• stats;
• }
• while(expr)
• {
• stats;
• }

Control Statements
• A while(1) loop is equivalent to:
• for(;;) {
• body
• }

• The following
• while(expr != 0)
• statement;
• is equivalent to:
• while(expr)
• statement;

But I strongly suggest either
 while (expr) statement;
or
 while (expr) {
 statement;
 }

Example• /* Example 4.4
• * Read characters until "." or EOF
and output

• * the ASCII value of the largest
input

• * character.
• */
• int main() {
• const char SENTINEL = '.';
• int aux;
• int maxi = 0;

•

printf("Enter characters,. to terminate\n");

 for (;;) {
 if((aux = getchar())== EOF || aux == SENTINEL)
 break;

 if(aux > maxi)
 maxi = aux;
 }

 printf("The largest value: %d\n", maxi);
 return EXIT_SUCCESS;
}

 Idiom?

Example

Read Characters Until Sentinel
while(1) {

 if((aux = getchar()) == EOF || aux == SENTINEL)
 break;

 ...
}

or:
while(1) {

 if((aux = getchar()) == EOF)
break;

 if(aux == SENTINEL)
 break;
 ...

or
while(1) {
 aux = getchar();
 if(aux == EOF || aux == SENTINEL) break;

 ...
}

3

Example/*
 * File: ex4-5.c
 * Read integers until 0 and output the
 * largest integer
 * It also stops on an incorrect integer and
 * end-of-file
 */
int main() {
 const int SENTINEL = 0;
 int i;
 int maxi;

 printf("Enter integers, 0 to stop\n");
 if(scanf("%d", &maxi)!= 1 || maxi == SENTINEL){
 printf("No value read\n");
 return EXIT_SUCCESS;
 }
 while(1) {
 if(scanf("%d", &i) != 1 || i == SENTINEL){
 break;
 }
 if(i > maxi) maxi = i;
 };
 printf("The largest value: %d\n", maxi);
 return EXIT_SUCCESS;
}

 Idiom?

Example

while(1) {
 if(scanf("%d", &i) != 1 || i == SENTINEL)

 break;
 …

}

Read Integers Until
Sentinel

while(1) {
printf("enter integers a and b, a < b:");

if(scanf("%d%d", &a, &b) == 2)
return EXIT_FAILURE;

if(a < b)
break;

…
}

Read Until Condition

Example• /* Read a and b until a < b */
• int main() {
• int a, b;
• while(1) {
• printf("enter two integers a and b, a < b:");
• if(scanf("%d%d", &a, &b) != 2) {
• fprintf(stderr, "wrong integer\n");
• return EXIT_FAILURE;
• }
• if(a < b)
• break;
• printf("a must be smaller than b\n");
• }
• … /* process */

 "Read until Condition"
 Idiom 4: Switch

• switch(c) {
• case ' ' : cblank++;
• break;
• case '\t': ctabs++;
• break;
• case '*' : cstars++;
• break;
• default : if(c >= 'a' && c <= 'z')
• clower++;
• break;
• }

4

 i = 8 cmp. i == 8

 Watch for off-by-one errors

 Avoid the following errors:

e1 & e2

e1 | e2

if(x = 1) … if ((x=1)!=0)

Errors

Chapter 5:

Text Files

5: Preview

• I/O operations on streams. Loose connection to files.
• Not such a clear division into input streams and output streams
• Files are sequences of bytes
• Text files: buffering (processing) is line-oriented
• Binary files: different processing.
• End-of-line; one of:
• a single carriage return symbol
• a single linefeed symbol
• a carriage return followed by a linefeed symbol
• End-of-file for interactive input: ^D (control-D)

5: File Handles and Opening Files

• FILE *fileHandle;

• fileHandle = fopen(fileName, fileMode);

• Examples
• FILE *f;
• FILE *g;

• f = fopen("test.dat”, "r");
• g = fopen("test.out", "wb");

5: Opening Files

• fileHandle = fopen(fileName, fileMode);

• "r" open for input; (file must exist)
• "w" open for output; (overwrite or create)
• "a" open for output; (always append to this file
• "r+" like "r" for I/O
• "w+" like "w" for I/O
• "a+" like "a" for I/O

• The above modes may be used to specify a binary mode, by
using the character b

5: Closing files and
predefined handles

• fclose(fileHandle);

• File handles are resources that you have to manage:
• close files as soon as you do not need them!

• You can use three predefined file handles in your programs:

• stdin the standard input stream
• stdout the standard output stream
• stderr the standard error stream
• mail me < foo > bar

5

Opening a file

if((fileHandle = fopen(fname, fmode)) == NULL)
 /* failed */

Closing a file

 if(fclose(fileHandle) == EOF)
 /* failed */

File idioms

 To declare FILE variables, do not use

FILE *f, g; (the "g" part is wrong)

 Do not use

open()
or
close()

File errors

5: Basic File I/O Operations

• Familiar More general cousin

• int getchar() int fgetc(fileHandle)

• int putchar(int) int fputc(int, fileHandle)

 Note nonstandard args

• int scanf(…) int fscanf(fileHandle, …)

• int printf(…) int fprintf(fileHandle, …)

• /*
• * Example 5-1
• * Program that reads three real values from the
• * file "t" and displays on the screen the
• * sum of these values
• */
• int main() {
• FILE *f;
• double x, y, z;

• if((f = fopen("t", "r")) == NULL) {
• fprintf(stderr, " can't read %s\n", "t");
• return EXIT_FAILURE;
• }

 "Opening a file"
 Idiom

Example

• /*
• * Example 5-1
• * Program that reads three real values from the
• * file "t" and displays on the screen the
• * sum of these values
• */
• #include <stdio.h>
• int main() {
• FILE *f;
• double x, y, z;
• char *fname = “t”;

• if((f = fopen(fname "r")) == NULL) {
• fprintf(stderr, " can't read %s\n", fname);
• return EXIT_FAILURE;
• }

 "Opening a file"
 Idiom

Example if(fscanf(f, "%lf%lf%lf", &x, &y, &z) != 3) {
 fprintf(stderr, "File read failed\n");
 return EXIT_FAILURE;
 }

 printf("%f\n", x + y + z);

 if(fclose(f) == EOF) {
 fprintf(stderr, "File close failed\n");
 return EXIT_FAILURE;
 }

 return EXIT_SUCCESS;
}

 Idiom?

 "Closing a file"
 Idiom

Example

6

Read Single Character from a File

if((c = fgetc(fileHandle)) == EOF)
 /* error */

Read Single Integer from a File

if(fscanf(fileHandle, "%d", &i) != 1)
 /* error */

Single item idioms

5: Testing for End-of-Line and End-of-File

• while((c = getchar()) != '\n') /* bug */
• putchar(c);
• putchar(c);

• while (((c = getchar()) != '\n')&&(c!=EOF))
• putchar(c);

• if(c != EOF)
• putchar(c);

Read a Line

while((c = getchar()) != '\n')
 ...

Read a Line from a File

while((c = fgetc(fileHandle)) != '\n')
 ...

Line idioms

Read until end-of-file
while((c = getchar()) != EOF)
 ...

Read from a file until end-of-file

while((c = fgetc(fileHandle)) != EOF)
 ...

Clear until end-of-line
while(getchar() != '\n')
 ;

End-of-line idioms

Examples

• Count occurrences of a specific letter in a file:
– open file
– read characters

• if it’s ‘a’ then increment count
– print result

• Print a string triggered by a one-character code
– read code character
– switch on character

• Strip carriage returns (Windows text->UNIX text)
– read characters from a file called “test1”
– if not a carriage return, dump it out.

Assignment 1 solution outline

• Assignment 1 solution discussion will be deferred
until next class.
– Some people are too stressed out.
– One person has a serious medical issue and wants to be

here.
– I want to cover material in preparation for your next

assignment.
– I want to examine the solutions that were submitted.

7

Assignment 2, C programming

• Assignment 2 will be distributed next class, barring
any unforeseen events.

• Due date will be about 8 school days after it is given
out.

Midterm

• The midterm is the Tuesday before February break.
• During class.
• Come to class as usual, unless otherwise instructed.

– Check the class web page or the preceding class for any
changes in plan re. the venue.

Example• /* look for occurrences of 'a' in a file "t"*/
• int main() {
• FILE *fileHandle;
• int i = 0; /* counter */
• int c;
• const int TARGET = 'a';

• if((fileHandle = fopen("t", "r")) == NULL) {
• fprintf(stderr, "can't open %s\n",
"t");

• return EXIT_FAILURE;
• }
• "Opening a file"

 Idiom

 while((c = fgetc(fileHandle)) != EOF){
 if(c == TARGET) i++;
}

 printf("There are %d occurrences of %c\n",
i, TARGET);

 if(fclose(fileHandle) == EOF) {
 fprintf(stderr, "can't close %s\n", "t");

return EXIT_FAILURE;
 }
 return EXIT_SUCCESS;
}

 "Closing a file"
 Idiom

 "Read from
a file until
end-of-
file"

 Idiom

Example

/* Simple menu:
 * h to say "Hello"
 * b to say "Good buy"
 * q to quit
 */
int main() {
 int c;

while(1) {
 printf("Enter your command (h/b/q)\n");
 c = getchar();

 while(getchar() != '\n') ; "Clear until end of line"
 Idiom

Example Exampleswitch(c) {
case 'h':
case 'H': printf("Hello\n");

break;
case 'b':
case 'B': printf("Good buy\n");

break;
case 'q':
case 'Q': return EXIT_SUCCESS;

 case EOF: ….

default: printf("unknown option\n");
}

 } /* end of while(1) */
}

8

/* Modify an existing file to remove all
 * occurrences of ^M (‘\r’) from file test1
 * (that’s the “carriage return” from the
 * windows world.)
 */
 int main() {
 int c;
 FILE *inOutFile;
 FILE *temp;

 if((inOutFile = fopen("test1", "r")) == NULL)
 return EXIT_FAILURE;

 if((temp = tmpfile()) == NULL)
 return EXIT_FAILURE;

 "Opening a file"
 Idiom

Example /* filter out all ^M (‘\r’) */
 while((c = fgetc(inOutFile)) != EOF)
 if(c != '\r') fputc(c, temp);

 if(fclose(inOutFile) == EOF)
 return EXIT_FAILURE;

 "Read from
a file until
end-of-
file"

 Idiom

 "Closing a file"
 Idiom

Example

 /* now, rewrite test1 and copy back */
 if((inOutFile = fopen("test1", "w")) == NULL)
 return EXIT_FAILURE;

 rewind(temp);

 while((c = fgetc(temp)) != EOF)
 fputc(c, inOutFile);

 if(fclose(inOutFile) == EOF)
 return EXIT_FAILURE;
}

Example

 "Opening a file"
 Idiom

 "Read until
 end-of-file"
 Idiom

 "Closing a file"
 Idiom

Chapter 6:

The C Preprocessor

Compilation
• C programs are transformed into executables in a

sequence of 3 steps:
– All these steps are performed apparently together by the

command
cc or gcc

– 1) Transform C code into C code, but support certain
simplifications.

• THIS IS THE JOB OF THE C-PREPROCESSOR: cpp
– 2) Compile C code into object code (compiler)
– 3) Combine object code modules into a single (more or

less) monolithic executable (linker, called “ld”)
• [footnote: on many systems there is dynamic linking that occurs just

before, or even during, execution and performs further linking.]

cpp

• macros (with and without parameters)
– e.g. EOF is actually (-1)

• conditional compilation
• file inclusion
• predefined macros
• applications for debugging

• macro macro replacement
 macro substitution

9

6: Parameterless Macros

• #define macroName macroValue

• During preprocessing, each occurrence of macroName in
the source file will be replaced with the text specified in
macroValue.

• #define PI 3.14
• #define SCREEN_W 80
• #define SCREEN_H 25
• #define PROMPT “Enter two \

integers “

• #define foo 9

• int foo;
• foo = 8;

• int 9;
• 9=8;

6: Parameterless Macros

• #define PROMPT printf("Enter real value: ")
• #define SKIP while(getchar() != '\n');
• #define ZX "this\
• is\
• a\
• long"

• #define A 2 + 4
• #define B A * 3

• #define A (2 + 4)
• #define B (A * 3)

• foobar = 3 * A

• {
• int c;
• PROMPT;
• c=getchar();
• SKIP
• }

Preprocessing

• Macros names will always appear in upper case.
– Not a rule from the compiler or cpp, but one you should

adhere to for the sake of readability.
• Any constant value, which might change during

software development should be defined as a macro,
or as a constant.
– (Older versions of C didn’t have constants.)

• By using macros, you are adding new constructs and
new functionality to the language – if you do this
inappropriately, the readability of your code may
suffer.

fubar.c

#include <stdio.h>
#define QQ 1
#define TT 1
#define cc main(c,v) int c; char **v;{char tt[12],qq[7]; int q=0,o=1,l=1,m=1;struct {int c;} f;
#define incest qq[6]='\0';tt[11]='\0';if(QQ==atoi(v[1])+1){(void)fprintf(stderr,"%s factorial = %d\n",v[1],

TT);exit(1);}o=c+f
#define x ;while(EOF!=(o=getchar())){if(l && q=='Q' &&

o=='Q'){l=0;(void)getchar();(void)fread(qq,6,1,stdin);(void)printf("Q %6d",atoi(qq)+1);}else
if(m && q=='T' && o=='T'){m=0;(void)fread(tt,11,1,stdin);(void)printf("T %9d\n",atoi(tt)*QQ);}else

{q=o;(void)putchar(o);}}exit(0);}
cc incest.c -o x
#define zxc ;{/*
cat incest.c | x $1 >! x1
if ($status != 0) then
exit
endif
mv x1 incest.c
chmod +x incest.c
exec incest.c $1
exit
*/

10

fubar.sh

• :
• # to run fubar in the 'proper' way

• # parse args
• if [$# -ne 1]; then
• echo "usage: $0 number" 1>&2
• exit 1
• fi

• # run/compile it
• rm -f ouroboros.c x1 x
• ex - <<EOF
• r fubar.c
• 7,8j
• w ouroboros.c
• EOF
• chmod +x ouroboros.c
• ouroboros.c $1
• rm -f ouroboros.c x1 x

vanb.c

main(Q,O)char**O;{if(--
Q){main(Q,O);O[Q][0]^=0X80;for(O[0][
0]=0;O[++O[0][0]]!=0;)if(O[O[0][0]][
0]>0)puts(O[O[0][0]]);puts("--------
--");main(Q,O);}}

• David Van Brackle
• Department of Computer Science
• University of Central Florida
• Orlando, Florida
• 32816
• USA

 This program computes all proper subsets of the set of
 arguments passed to it. Each subset is printed with one
 element on each line, followed by a line of ten dashes.

 Try:

 vanb the rug gary lent
 vanb unix is better than os/2

Selected notes from the author:

 The program has the following charming and possibly
 non-portable features:

 * It has no local or global variables,
 only the command-line parameters.

 * It calls main recursively.

 * It alters the command-line parameters.

 * It uses the fact that if the high bit is set in a character
 variable, the value is negative.

• 91% cc vanb.c
• 92% ./a.out the rug gary lent
rug
gary
lent

gary
lent

the
gary
lent

the
lent

lent

rug
lent

the
rug
lent

the
rug

rug

the

the
gary

gary

rug
gary

the
rug
gary

6: Predefined Macros

• __LINE__ current line number of the source file
• __FILE__ name of the current source file
• __TIME__ time of translation
• __STDC__ 1 if the compiler conforms to ANSI C

• printf("working on line %s\n", __LINE__);

6: Macros with Parameters

• #define macroName(parameters) macroValue

• Examples

• #define RANGE(i) (1 <= (i) && (i) <= maxUsed)
• #define R(x) scanf("%d",&x);

• #define READ(c, fileHandle) \

• (c = fgetc(fileHandle))
• Parenthesize aggressively!

11

Errors
#define PI = 3.14

#define PI 3.14;

#define F (x) (2*x) < F is parameterless (space)
 On use: y=F(2) ->> y=(x) (2*x)(2)
 #define F(x) (2*x)
 y=F(2) ->> y=(2*2);
 y=F(j*3) -->> y=(2*j*3)

• To be safe, enclose the entire macro body, as well as each occurrence of a
macro argument, in parentheses.

• Avoid side effects in macro arguments.

6: File Inclusion (cpp's job too)

cpp looks in 2 "kinds" of places:
• #include "filename" the current directory and ...
• #include <filename> special system (i.e. default) directories
 Aside: These defaults are controlled by the -I flag to cc/gcc
•
• All relevant definitions may be grouped in a single header file
• screen.h:
• #define SCREEN_W 80
• #define SCREEN_H 25

• #include "screen.h"
• int main() {
• …
• }

6: Standard Header Files

• stdio.h - the basic declarations needed to perform I/O

• ctype.h - for testing the state of characters

• math.h - mathematical functions, such as abs() and

sin()

• string.h - string comparison function (see man string)

6: Conditional Compilation (1)

• #if constantExpression1
• part1
• #elif constantExpression2
• part2
• #else
• part3
• #endif

6: Conditional Compilation (2)

#ifdef macroName <"if macro has been defined"
 partl
#else
 part2
#endif

#ifndef macroName < "if macro has not been defined"
 partl
#else
 part2
#endif

6: Debugging

• #if 0
• part to be excluded
• #endif

• #define DEB /* empty, but defined
*/

• #ifdef DEB
• /* some debugging statement, for
example */

• printf("value of i = %d", i);
• #endif
• /* production code */

12

Example
• int main() {
• int i, j;

• printf("Enter two integer values: ");
• if(scanf(%d%d, &i, &j) != 2)
• return EXIT_FAILURE;
• #ifdef DEB
• printf("entered %d and %d\n", i, j);
• #endif
• printf("sum = %d\n", i + j);

• return EXIT_FAILURE;
• }

Example int i, j;
#ifdef DEB
 int res;
#endif
if(
#ifdef DEB
 (res =
#endif
 scanf(%d%d, &i, &j)
#ifdef DEB
)
#endif
) != 2)

Example#ifdef DEB
 {
 switch(res) {
 case 0: printf("both values were wrong\n");

break;
case 1: printf("OK first value %d\n", i);

break;
case EOF: printf("EOF\n");

break;
case 2: printf("both OK\n");

break
}

#endif
 ...

6: Header files

• To avoid multiple inclusion:

• #ifndef SCREEN_H
• #define SCREEN_H
• ...
• /* contents of the header */
• #endif

Errors
 Avoid side effects in macro arguments:
#define SQR(x) (x*x)
SQR(i++);

 --> i++*i++

 probably want SQR(i); i++;

6: Portability

• #if IBMPC
• #include <ibm.h>
• #else
• #include <generic.h>
• /* use machine independent routines */
• #endif

• #ifdef IBMPC
• typedef int MyInteger
• #else
• typedef long MyInteger
• #endif

13

My favorite

• Debugging for when you are really stuck:
– printf is your friend.

• In desperation, use LOTS of printfs, but then
inserting them and removing them is a chore, and the
output becomes cluttered

myfunc(int x, char c)
{
 printf("Starting myfunc\n");
 x = c;
 printf("Assigned to x\n");
 etc.

My favorite (solution)

Define some debug-specific macro code (ideally in a
header)

#ifdef DEBUG
 #define debug(x) printf(x)
#else
 #define debug(x) /* x */
#endif

myfunc(int x, char c)
{
 debug("Starting myfunc\n");
 x = c;
 debug("Assigned to x\n");
 etc.

Define a macro at compile-time
with the flag:
 gcc -Dname
as in
 gcc -DDEBUG -DUSERID=3

Chapter 7:

Functions, Scope,
and

Introduction to Module-based
Programming

7: Preview

• - a review of functions
• - modularization of programs: multiple files &

separate compilation
• - scope rules
• - introduction to module based programming:
• header files for representing interfaces
• encapsulation of data in a file
• kinds of modules
• - module maintenance:
• modifying existing modules
• extending existing modules

7: Functions and Their Documentation

• A C program consists of one or more function
definitions, including exactly one that must be called
main

• The syntax for C functions is the same as the syntax
for Java methods

• All functions are stand-alone, which means that they
are not nested in any other construct, such as a class

• As in Java, parameters are passed by value

7: Function Declaration and Definition

• A declaration merely provides a function prototype:
• function header (includes the return type and the list of

parameters)

• void hex(unsigned char *p, int max);

• The declaration does not say anything about the
implementation.

• The definition of a function includes both the function
prototype and the function body, that is its implementation.

14

Function documentation

• Function declaration or definition (or both) should be preceded by
documentation:

• Function: name
• Purpose: a general description of the function
• (typically, this is a description of what it is supposed to do)
• Inputs: a list of parameters and global variables read in the function
• Returns: value to be returned
• Modifies: a list of parameters and global variables that are
• modified - describes any side-effects
• Error checking: describes your assumptions about actual
• parameters - what happens if actual parameters are incorrect
• Sample call:

Function documentation

• Documentation may also include a Bugs (or features)
section, which documents cases that the
implementation does not handle.

• Make sure comments and code agree

• In general, a function definition should not exceed one
page.
Code should be broken up; in particular, lines which are
too long should be avoided.
– Keep in mind that code is something that people will have

to read, often you, at some later date.

7: Review Function Parameters

• There are two types of function parameters:

• formal parameters (appear in a declaration or a definition of
a function)

• actual parameters (appear in a call to the function).

• int f(int x); here x is a formal parameter

• i = f(2*3); here 2*3 is the actual parameter
• corresponding to the formal

parameter.

Example• /* Function: maxi
• * Purpose: find the maximum of its integer
• * arguments
• * Inputs: two parameters
• * Returns: the maximum of parameters
• * Modifies: nothing
• * Error checking: none
• * Sample call: i = maxi(k, 3)
• */
• int maxi(int, int);

• int maxi(int i, int j) {
• return i > j ? i : j;
• }

Aside: MAX is often accomplished with a
macro

• Why?
– For a function the computer must

• prepare arguments for transmission (put them on the stack, perhaps)
• call the function
• execute the function (of course)
• return

– A function has a fixed type
– (However, a function avoids duplicated code)

• First, recall the expression (bool)?v1:v2
– which means roughly: if (bool) v1; else v2;

MAX as a macro

• #define MAX(a,b) a>b?a:b
• WRONG!

– imagine the code y = MAX(a,b)+2
– we get y = a>b?a:b+2

• which will assign either (a) or (b+2)
– Note also the contrast with y= 2+MAX(a,b)

• #define MAX(a,b) ((a)>(b)?(a):(b)) is just fine

15

Example/* Function: sqrtRev
 * Purpose: compute square root of inverse
 * Inputs: x (parameter)
 * Returns: square root of 1/x
 * Modifies: nothing
 * Error checking: none
 * Bugs: Fails if x <= 0 (book's (x==0) is not quite right

 here)
 * Sample call: d = sqrtRev(2.4);
*/

double sqrtRev(double);
#include <math.h> /* gcc -lm … */
double sqrtRev(double x) {
 return sqrt(1/x); /*SHOULD CHECK X>0*/
}

Example/* Function: oneOverNseries
 * Purpose: compute the sum of 1/N series
 * Inputs: n (parameter)
 * Returns: the sum of first n elements of
 * 1+ 1/2 + 1/3 + … 1/n
 * Modifies: nothing
 * Error checking: returns 0 if n negative
 * Sample call: i = oneOverNseries(100);
*/
double oneOverNseries(int n);

Exampledouble oneOverNseries(int n) {
double x;
int i;

if(n <= 0) return 0;

for(x = 1, i = 1; i < n; i++)
x += 1/((double)i);

return x;
}

/* Check boundary conditions */

Avoid

• if(n/10 == 0)
• return 1;
• else return 1 + digits(n/10);

• if(n/10 == 0)
• return (1);
• return (1 + digits(n/10));

• if(n /= 10)
• return 1;
• return 1 + digits(n);

7: void and Conversions

• Definition:
• int f() is equivalent to int f(void)
• Call:
• f(); is equivalent to (void)f();

(discarding the return value)

• The value of each actual parameter is implicitly converted to
the type of the corresponding formal parameter.

• The same rules apply to return type conversion.
• int f(int);
• double x = f(1.2);

7: exit Function

• To terminate the execution of an entire program:
• exit(int code);

• double f(double x) {
• if(x < 0) {
• fprintf(stderr, "negative x in %s\n",
• __FILE__);
• exit(EXIT_FAILURE); /* no return … */
• }
• return sqrt(x);
• }

16

 double v = f(2.5); /* call before decl. */
 double f() { … }

 double f() { return 2.5; }
A double f() /* too late */

 double f(double v) {
if(v == 0) return; /* no ret'n value */

 }
• The code parameter of exit() should be one of the two values:
 EXIT_SUCCESS or EXIT_FAILURE.

Errors

7: void and Conversions

• Recall this slide: int f() is equivalent to int f(void)
• Call:
• f(); is equivalent to (void)f();

(discarding the return value)

 The value of each actual parameter is implicitly converted to the type of the
corresponding formal parameter.

What about using a function that has not been defined yet?
THIS IS ALLOWED IN C!

7: Scope

• The lifetime of a variable is the period of time during
which memory is allocated to the variable

• Since storage is freed in the reverse order of
allocation, a stack is a convenient data structure to
represent it with

• (the run time stack)

• C's scope rules use files (Java uses classes).

7: Blocks and
Global Variables

• A block is like a compound statement, enclosed in braces, and it
may contain both definitions and statements.

• Global variables are defined outside the body of every function
in the file (lifetime of the main program):

• int flag = 0; /* global */
• int f() {
• …
• }
• int out = 1; /* global */
• int main() {
• ...
• }

Global variables

• Global variables should be used with caution, and always
carefully documented.
Changing the value of a global variable as a result of calling a
function should be avoided; these side-effects make testing,
debugging, and in general maintaining the code more difficult.

• The placement of the definition of a global variable defines its
scope, but also contributes to the readability of your program.
For short files all global variables are defined at the top;
 for long files they are defined in the logically related place
(before definitions of functions that may need these variables).

7: Storage Classes and Lifetime

• Static storage class for local variables (declared inside a
block or function) - the lifetime of the entire program:

• void login() {
• static int counter = 0;
• counter++;
• ..
• }
• A static variable retains its value
between excutions of the block it's in!

• register variables:
• register int i;

advisory only.

17

7: Initialization of Variables

• at compile time:
• const int a = 3 * 44;

• at run time:
• double x = sqrt(2.66);

• The value of a local variable that is declared, but not
initialized, is undefined.

• Global variables are initialized to a "zero" value.

 client implementation interface
(header file)

hash.chash.h

7: Modules; Interface and
Implementation

Module consists of an interface and an implementation

7: Sharing Functions and Variables: extern

• Separate compilation: one or more source files may be
compiled, creating object codes

• A function may be defined in one file and called in another
file, as long as the call is preceded by the function declaration.

• File: a.c
• void foo(); /* extern void foo(); */
• extern int myErrorNo;
• File: b.c
• int myErrorNo;
• void foo(){ … }

Programs and Files
• A program typically consists of one or more files:

• a) each file should not exceed 500 lines and its listing
should begin on a new page.

• b) in each source file, the first page should contain the
name of the author, date, version number, etc.

• c) avoid splitting a function header, a comment or a
type/structure definition across a page break.

7: Linkage and the
static Keyword (1)

• There are three types of linkage: internal, external and
"no linkage".

• There are various default rules to specify the type of
linkage, and two keywords that can be used to change
the default rules: extern and static.

• The three default rules are:
• - entities declared at the outermost level have external

linkage
• - entities declared inside a function have no linkage
• - const identifiers and struct, union and enum

types have internal linkage.

7: Linkage and the
static Keyword (2)

• The static keyword applied to global entities changes the linkage of
entities to internal.

• The extern keyword changes the linkage of entities to external.
• The linker uses various types of linkage as follows:
• - identifier with external linkage: may be shared by various files, and

all occurrences of this identifier refer to the same entity
• - identifier with no linkage: refers to distinct entities
• - an identifier with internal linkage: all occurrences in a single file

refer to the same entity. If a second file has an internally-defined identifier
with the same name, all of those occurrences will be tied to a second entity
defined for that identifier; there is no sharing of internally defined entities
between modules.

18

7: Linkage and the
static Keyword (3)

• use static global to specify private entities
• in rare cases when you need to share a global variable, use
extern

• be careful to avoid conflicting definitions in multiple files,
e.g.:

• File a.c:
• int f() { … }

• File b.c:
• double f() { … }

7: Header Files

• The header file corresponds to a Java interface.
• The client gets:

- the header file
- the object code of the implementation file.

• The header file is included in the application code, and this
code is linked with the implementation file.

• The header file must contain any documentation that is
necessary for the client to understand the semantics of all the
functions that are declared in it. This documentation should be
designed based on a "need to know" principle, and should not
include any implementation details.

Function Names
• Use function names that are relevant to the module

in which they appear:
• FunctionName_moduleName

Static Identifiers
 Any functions and variable definitions that are private to a file

should be qualified as static

Header and Implementation
The implementation file always includes its corresponding
header file.

Idioms Interface and Implementation

• Header files should only include function
declarations, macros, and definitions of constants.

• Avoid compiler dependent features, if you have to
use any such features, use conditional compilation.

• A header file should provide all the documentation
necessary to understand the semantics of this file.

(Uh, well, maybe)

Interface and Implementation

• The documentation for the client is placed in the header file.

• The documentation for the implementor is placed in the
implementation file.

• The documentation for the client and for the implementor may be
different.

