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Abstract

The goal of this project is to be able to match unaligned images corresponding
to different viewpoints of the same object or location. An application of this
matching localizing a robot based on what it sees and compare it with previously
seen images of the world. We do this by improving upon standard PCA matching
algorithms. Instead of directly comparing images, we first extract sub-windows
using an interest operator, convert them to polar coordinates, and then compare
the amplitude spectrum of the Fourier transforms. This allows us to achieve
rotation invariance. Sub-windows are selected using the Harris corner detection
algorithm.
This work is based of work done by Deeptiman Jugessur and Gregory Dudek in
[3], [2], and [4].

1 Introduction

Being able to locate oneself based on vision is one of the fundamental tasks that hu-
mans are able to do. However, it is very difficult to design a robotic system that can
localize itself using vision. Many algorithms use a training set of images that are la-
beled by a human and seek to match query images with one of the previously identified
images. However, these algorithms are very sensitive to differences between the query
and training images. While humans are quite good at detecting these differences, vi-
sion algorithms are very sensitive to rotation, scaling, shift, occlusion, and background
clutter. We seek to design a vision system that is more robust to rotation, shift, and
occlusion.

2 Principal Component Analysis

The goal of an image recognition system is to be able to match a given image to a
training image of the same object successfully. One approach to doing this is to consider
the different intensity values at every single pixels and run a nearest neighbor algorithm
on the query image to determine which training image it most closely matches. For
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an N pixel * N pixel image, with a training set of size T, this requires a run time of
O(N2T ), which is computationally intractable.

In PCA, we project the N * N images onto a dimension of size much smaller than
the original image. This subspace ideally would strike a balance between retaining
as much of the original information as possible and reducing the dimension. That is,
after projecting onto this subspace, we would like to be able to reproduce the original
image as closely as possible. PCA does precisely this by computing the eigenvectors
of the covariance matrix1 of our training images. The eigenvectors corresponding to
the largest eigenvalues are the principal components of the trained images. Normally,
we choose at most |T | << N2 eigenvectors, where |T | is the number of images in the
training set. When presented with a query image, we can then run nearest neighbor
approaches on the projected space, which is now feasible.

This approach works fairly well, however it is very susceptible to small changes in
the query image such as partial object occlusion, image rotation, facial expressions,
translation, scaling, and different angles of lighting. Our algorithm addresses these
issues of partial occlusion, translation and rotation.

3 Occlusion and Shift Invariance using Local Match-

ing

Rather than run PCA on the entire image, we would like to break both our training
and test images into several sub-windows. Now we can apply PCA and run our nearest
neighbor algorithms on each of the sub-windows. For each sub-window of the query
image, we can find the closest matching training sub-windows. We then can combine
all of the sub-windows using a voting scheme.

3.1 Choosing Sub-windows

We need a suitable technique for choosing what sub-windows to look at. We could
naively divide our original images along a grid of suitable size, but this approach is
computationally intractable as we would end up increasing the dimension too sub-
stantially. We also could divide our images along a grid and simply deterministically
attempt to space out the windows, but this would be very susceptible to translations
as we would essentially be ignoring certain parts of the image in this event. So if the
query image was the same as the training image, except translated a few pixels, nothing
would match.

What we will do instead is run an interest operator on the entire image. The
interest operator will detect points of interest and we will base our windows around
these. Ideally the interest operator should be able to handle changes such as rotations,

1This is computed by first taking all of our N*N image, converting it to a row vector via row
stacking and then putting the row vectors into a vector. We then subtract the mean intensity of each
point to get a matrix X. The covariance matrix is then XXT
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Figure 1: Interest points chosen by Harris interest operator.

translations, and scaling well as then it would be able to detect the same point in both
the training phase and the query phase. We also would like to be able to space our
interest points out as much as possible. This is so that our algorithm can still work
when there is partial occlusion of the image. If we choose all of our windows too close
to each other, then a partial occlusion may block all or most of the windows that would
have been generated.

3.2 Harris Corner Detection

We chose the Harris corner detector as an interest operator. Harris is designed for
detecting corners in an image but suits our purposes very well for several reasons:
First of all, it is translation and (planar) rotation invariant as the corner detection is
insensitive to these. Secondly, the algorithm can be run quickly and is relatively easy
to implement. Additionally, Harris has performed well compared with other operators
such as symmetry operators in previous studies [5].It should be remembered that the
interest operator could be replaced by other operators such as Sift in the algorithm.
The only heuristic is that the operator should be as insensitive to noise (i.e. rotations,
translations, etc) as possible.

To compute the Harris measurement values first compute a matrix G at every point
defined as follows. Note that I(x, y) refers to the image intensity (in grey-scale) at
point (x,y)
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We then produce a matrix H with is G convolved with a Gaussian in order to smooth
G2. The idea behind the construction of H is that at a corner there is a sharp change in
intensity in both the x direction and the y direction. It turns out, that a good measure
of the size of the entries of a matrix is to compute the size of the eigenvalues of the
matrix. Rather than explicitly compute the eigenvalues at every step, we will use the
fact that for any square matrix, the sum of its eigenvalues is equal to the sum of its trace
and the product of its eigenvalues is equal to the determinant of the matrix. Using this
fact, we have a good heuristic for measuring the size of the eigenvalues, specifically:

h(M) = det(M) − αtr(M)

where α is a constant normally chosen less than .1. This defines a function that lets us
measure the ”cornerness” of a point.

See figure 1 for an example illustrating Harris.

3.3 Selecting the windows

After running the Harris operator on our image, we need to select the proper windows.
In order to avoid redundancy in the operator and to better space our windows, we select
the top N pixels as given by the Harris operator, but with the requirement that they
not intersect. After selecting these points, we then construct a circular window around
each of these points by cropping the image around these points in a circular fashion
with fixed radius. Note that we also require that our top N points to be towards the
interior of the image so that we do not run into image boundary issues. After applying
this procedure, we have extracted N sub-windows from the original image.

4 Rotation Invariance

We could immediately run PCA on our sub-windows and could hope for an improvement
due to the local nature of our new data set. However, we also wish to improve on
the sensitivity to planar rotations. Recall that a rotation of an image in Cartesian
coordinates corresponds to a shift in the image in Polar coordinates. See figure 2.
We also note that the amplitude spectrum of the Fourier transform is shift invariant.
That is, given two images that differ only by translation, the amplitude spectrum of the
Fourier transform is identical. Using these two ideas, we can achieve rotation invariance
by first converting our images to polar coordinates, and then comparing them in their
amplitude spectrum in the frequency domain via applying Fourier transform on each
one of them.

2We used Karl Rohr’s recommended method, which uses α = 0
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Figure 2: A sample image and its rotated version and their corresponding images in
polar coordinates. We see that rotation corresponds to shift in polar coordinates.[Images
taken from [3]]

5 Matching Images

We now have a set of sub-windows, each of which is ”owned” by an original image. For
the time being, we treat these sub-windows entirely independently. That is, we ignore
the fact that some of the sub-windows came from the same image and treat them as
entirely separate images. We then run PCA on all of these images and project to the
eigenspace generated by the training data. For every sub-window of a query image, we
are then able to compute the distance in the eigenspace to every other sub-window.

For each query sub-window, we now have the distance to the closest training sub-
windows. We now take the results of PCA for each of the sub-windows and combine
this into a voting scheme. Each original image gets a vote if it contains a sub-window
that matches one of the query sub-windows. We weight the votes according to an
exponential. That is, if x is the query sub-window and y is the closest training sub-
window, we give a vote of size wi where wi is

wi = e−d(x,y)2

Additionally, rather than taking simply the top match, we experiment with taking the
top N closest sub-windows and allowing a contributing vote. Since the votes are already
weighted according to their distance, this could allow better accuracy since this allows
for the case where the closest image has sub-windows that frequently appear as second
or third closest matches but rarely as the closest. This captures the idea that it may be
more important to count the number of times that each sub-window is a ”reasonable”
candidate rather than being the best candidate.

6 Overall Algorithm

Combining the ideas developed in sections 2, 3.2, and 4 above, we now sketch our full
training algorithm.

• For each training image:
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Figure 3: Pipeline for computing a low dimension representation for our input training
images.

– Use an interest operator (Harris) to compute Nw sub-windows of a given
size.

– Convert the sub-windows to polar coordinates.

– Compute their amplitude spectrum in the frequency domain by taking their
Fourier transforms

• Use PCA to compute a low dimensional eigenspace using all the sub-windows of
all the training images.

• Project each window onto this space to get a low dimensional vector representative
of the sub-window. This forms our training database.

The above is visually summarized in figure 3
We then in query phase, perform the same pipeline process and match the query

image to a training image using the voting scheme described in 5.
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Figure 4: Example of an original query image and after adding 20% occlusion.

7 Our Experiment

We tested the previous ideas on two data sets: an object data set, which was compiled
by Jugessur in [4] and a data set consisting of footage taken by the Aqua robot [1].
We experimented with different window sizes as well as occlusion in the test images.
We did this by adding a uniform circle to the middle of the test image (see figure 4).
We compared our algorithm to the baseline matching algorithm which does not use
sub-windows or Fourier transforms.

In order to do these comparisons, we did leave one out cross-validation. In the case
of the object set, we have three pictures of each object, and if the algorithm outputs
one of the two remaining pictures, we count it as correct. For the Aqua robot training
set, we extracted several frames from a video clip. They are numbered sequentially,
and we consider the distance between the test image number and the number of the
image it matches with. With this methodology, the best possible result is when it is
off by only one, but it has two ways to do this. We studied the median distance rather
than the mean distance because the mean distance is too susceptible to cases where the
algorithm makes large mistakes.

8 Results and Observations

The comparison of the modified algorithm with the regular PCA algorithm is summa-
rized in figure 5. On the object data set, the improved algorithm performs slightly worse
than the regular PCA algorithm. However, after adding occlusions to the data set, the
regular, global PCA algorithm witnesses a serious decrease in performance. However,
the modified algorithm does not suffer nearly as much. In the case of the Aqua data
set, our algorithm immediately performs better than the regular one as the algorithm
outputs a match that is much closer in reality to the frame that is being queried. The
median distance of the match from the query frame for the cases with occlusion 10%
or less was two. This is good since the lowest possible matching distance is one.

The differences in the two results is mostly due to the fact that the object data set
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Figure 5: Two graphs comparing the baseline algorithm (green) to our algorithm (red
dashes) when occlusion is added. Adding sub-window extraction greatly improves the
resiliency to occlusion. In the first graph, we compare percent accuracy in the object
data set. In the second we compare median distance in the Aqua data set.

is a much more fixed set up. The pictures are all taken centered around the object.
However, for the Aqua robot set, the images are already translated and rotated, even
before adding a manual occlusion. This means that for the object set, achieving shift
invariance is irrelevant since there is no shift. However, for the Aqua set, even before
adding occlusion manually, the global matching does not work due to the rotations and
shifting that occur from frame to frame. This indicates that the improved algorithm is
significantly better in practice, since it is less sensitive to translations and rotations.

It is important to note that while our algorithm managed to achieve similar success
to the baseline PCA algorithm, it was doing so on a much smaller amount of data. For
the experiments on the object set, we used the interest operator to select 20 30 pixel x 30
pixel windows. This means for each image, we are storing 20∗30∗30 = 18, 000 pixels of
information. The object set images were 640 ∗ 480 = 307, 200 pixels of information and
the Aqua set images were 720 ∗ 480 = 345, 600 pixels of information. This suggests we
could increase the window size or number of eigenvectors used and still have significantly
better running speed than ordinary PCA matching

We compared using a ”soft” voting scheme vs a ”hard” voting scheme on the object
data set. This refers to whether or not to count just the closest matching sub-window
or the top N matching sub-windows. We very quickly concluded that counting votes
from the top N matching sub-windows was the way to go. These results are summarized
in table 1. The results show that it doesn’t matter whether you include every single
sub-windows vote or simply a few, but that it is very important to count more than
just one. This is due to the fact that the sub-windows are small enough that the closest
matching sub-window will often come from the incorrect image due to noise. However,
the image that is actually closest in the training set will almost always have a sub-
window that is in the top five. However, we don’t need to make N the total number of
sub-windows as at a certain point the distance between the training sub-window and the
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Number of Votes Counted Accuracy (%)
1 41.67
5 52.78
10 50
100 58.333

Table 1: Matching accuracy on the object data set as we increase the number of votes
counted.

query sub-window is so small that the vote goes towards zero anyway. Based on these
preliminary results, we only used 100 votes counted for the rest of the experiments.

Another issue relates to the certainty of matching. In the majority of cases, the
strength of the matching (the total amount of weighted votes acquired by the top
image) was more than twice as high when the matching was correct than when it was
not. This suggests that we could design an algorithm to output ”not sure” in certain
cases. This would be useful as we could try other techniques to match images in this
case.

9 Summary

We presented an algorithm to match images in a way that is more robust to shift,
occlusion, and rotation. Compared with simple PCA matching, our algorithm performs
competitively in a controlled environment, but significantly better as the occlusion and
shifts in the scene are increased. Future improvements could include using a better
interest operator like SIFT or another scale-invariant operator and experimenting more
with parameters such as the number of windows per image, the number of eigenvectors,
and the size of the windows. Additionally, all of our Aqua data was extracted from one
video sequence, and it would be useful to experiment on multiple sequences.
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