
Context Dependent Movie Recommendations

Using a Hierarchical Bayesian Model

Daniel Pomerantz and Gregory Dudek

School of Computer Science
McGill University

Montreal, Quebec {dpomeran,dudek}@cim.mcgill.ca

Abstract. We use a hierarchical Bayesian approach to model user pref-
erences in different contexts or settings. Unlike many previous recom-
menders, our approach is content-based. We assume that for each con-
text, a user has a different set of preference weights which are linked by
a common, “generic context” set of weights. The approach uses Expec-
tation Maximization (EM) to estimate both the generic context weights
and the context specific weights. This improves upon many current rec-
ommender systems that do not incorporate context into the recommen-
dations they provide. In this paper, we show that by considering contex-
tual information, we can improve our recommendations, demonstrating
that it is useful to consider context in giving ratings. Because the ap-
proach does not rely on connecting users via collaborative filtering, users
are able to interpret contexts in different ways and invent their own
contexts.

Key words: recommender system, Expectation Maximization, hierar-
chical Bayesian model, context, content-based

1 Introduction

Recommender systems are becoming more and more widespread with many web-
sites such as Amazon.comTMable to provide personalized recommendations as
to what products a customer will like. If the customer likes the product that has
been recommended, then she is more likely to both buy the specific product and
continue shopping there in the future.

One problem with many current recommender systems is they fail to take
into account any contextual information. That is, they do not deal with impor-
tant questions such as when, where, and with whom you will use the item. For
example, a couple looking to see a movie on a date is recommended movies such
as Finding Nemo and Shrek because they previously watched similar movies
with their kids and enjoyed them. Those systems that do incorporate contextual
information do so in a way that does not allow users to define their own contexts.

Traditional recommender systems can only answer the question, “What item
should I use?” In this paper, we focus on the movie domain, but the ideas can
be generalized to other domains such as books or online blogs. We will demon-
strate the usefulness of storing contextual information and adapt the hierarchical



2 Daniel Pomerantz, Gregory Dudek

Bayesian model described in [13] and [11] in order to answer two questions: “In
setting X, what movie should I watch?” and “Given that I gave movie M a score
of S in context C, what would I think about it in a different context?” Through-
out the rest of this paper, we will refer to these two problems as “Standard
Context Recommendation” and “Different Context Evaluation.”

One way to model a user in different contexts is to create separate movie
accounts for each context. This is not ideal, however, as it very often happens that
some of the user’s tastes are still the same in different contexts. Without sharing
information between contexts, users would be forced to rate lots of movies in
each context in order to get a good prediction. However, if we can share the
similarities between contexts, we will not require users to rate as many movies.
The hierarchical Bayesian model is ideal for our purposes as it allows us to share
information between contexts, but at the same time, it allows the preferences in
different contexts to be entirely different. In this way, we avoid forcing each user
to rate an excessive number of movies. These techniques can then be extended
to other domains in addition to movies such as books or online blogs.

2 Background Information and Related Work

To make a recommendation, we need some way to predict a rating rp or useful-
ness of a given product or movie m for a given user u. We can then select the
products that have the highest usefulness to the user. This paper will discuss
ways to improve the predicted rating of a product, since once we calculate this,
we can easily make a recommendation by sorting.

The two most common techniques to predict the usefulness of a movie are
collaborative-filtering algorithms and content-based models. In each case, we nor-
mally represent each movie as a vector with each entry in the vector representing
the amount of one particular feature (e.g.humor, Brad Pitt, bad acting, etc).
Collaborative-filtering based techniques determine a set of similar users. Once
the system has determined similar neighbors, it can make a recommendation
based on assuming that similar users will like similar movies.

Content-based approaches model a user by determining the important fea-
tures to each user based on previous ratings that the same user has made. Using
the model, they will recommend items that are similar to other items that the
user has rated highly. This paper will focus on the content-based technique.
There are several ways to model a user. One model is based on a linear ap-
proach. Alspector [2] suggests that the recommender system should store a set
of weight vectors corresponding with the user’s preference of each feature. An-
other commonly used approach is to predict the same rating as the nearest item
or the average of the k nearest items (nearest neighbor) [10]. Here we briefly
summarize these approaches.

2.1 Representing Users

One approach to modeling users is a linear model which proposes that every user
can be modelled as a vector of real numbers. This vector relates to the movie



Context Dependent Movie Recommendations 3

vector in that each element represents how much the user likes the presence of
the corresponding feature. Once we learn these weights, denoted by wu, we can
make a prediction rp as to whether a user u will like a movie m based on:

rp(u, m) = −→wu
−→m . (1)

We can use machine learning algorithms to learn the weights given a set of
training data. One method is to compute a least squares linear regression [12].
This corresponds with assuming that every actual rating ra differs from the
predicted rating by adding Gaussian noise. For space considerations, we refer
the reader to [12] for more details of this method as well as other approaches to
learning the weights such as Support Vector Machines and Naive Bayes models.

Another content-based approach that has been used is the nearest neighbor
approach or nearest k-neighbors approach. In this non-linear method, we calcu-
late the similarity of a previously rated item to the item in question and then
take a weighted (by the similarity) average of the ratings in the training data.
One measure used to find similarity is the cosine similarity measure [7]. An-
other possibility is to use the inverse Euclidean distance to calculate similarity.
Once this is calculated for all rated movies, we select the k-most similar previ-
ously rated movies and calculate a weighted average of the k movies to make a
prediction.

2.2 Dimensionality Reduction

One common problem with recommender systems is that the dimensionality of
the feature space is very large. This often causes the problem to be ill-posed. The
dimensionality can often be lowered because many features are redundant and
others are useless. For example, there is a large correlation between the features
Keanu Reaves and bad acting, meaning these features redundant. Other features
appear in only a few movies, and can be dropped without much information loss.
There are several ways to reduce the dimensionality of the space. Goldberg et
al. [4] suggest using a gauge set of movies. The idea here is to find an ideal set of
movies which all users should be asked about. Similarly, one could create a gauge
set of features. Some other possibilities are to reduce the dimensionality based
on approaches using information gain or mutual information or Independent
Component Analysis (ICA). We use Principal Component Analysis (PCA), a
technique that is geared towards storing only the most useful data. For a further
comparison on dimensionality results, see [9].

2.3 Connecting Users

One of the downsides of looking at users separately is a user has to rate several
movies before being able to be given a useful prediction on a new movie. This is
referred to as the “new user” problem. Zhang and Koren propose a hierarchical
Bayesian model to solve this by relating each user’s preference weights to each
other. The model assumes that, as in Section 2.1, for any given user, there



4 Daniel Pomerantz, Gregory Dudek

4

µ,Σ

WW u

R R R Ru u u

331u

1

2u

u2

Wu

3

W
4

Fig. 1. Hierarchical model: First a mu and sigma are “chosen” for the entire “popu-
lation.” Then based on this, each user’s weight vector is a Gaussian random vector.
Finally, given the user’s preference weights, the rating given to each movie can be
determined, but it is not entirely deterministic due to noise. Note that Ri is observed.

is a linear relationship between the movie vector and the rating. The model
relates each user’s weights to each other. See Figure 1. It assumes that there is
a mean vector µ and covariance matrix Σ2 that exist for all users as the mean
and covariance respectively of all user preferences. Each user’s weight vector is
then a Gaussian random vector with mean and covariance matrix µ and Σ2

respectively. In other words, each user is merely a random sampling from the
normal distribution. After determining the weight vector −→wu for each user u,
the rating for a movie with features −→m is a normal random variable with mean
−→wu

−→m and variance σu where σu is a noise factor that is calculated for each user.
They use Expectation Maximization to estimate the unknown weights wu. This
solution is good for dealing with the new user problem because a new user is
initially given a set of weights (that of the average user) and the model gradually
adjusts these weights to fit the user. Since each user’s weights are generated from
a normal distribution, any particular set of weights is allowed so that after rating
enough movies, the user’s weights under this algorithm will converge with the
weights from a standard linear regression.

2.4 Context-Based Recommendations

Adomavicius and Sankaranarayanan [1] explore using context to find similar
users and similar items. They start with standard collaborative filtering algo-
rithms, which use a similarity measure between two items, and extend the mea-
sure to include additional context dimensions. Ono et. al. [6] design a Bayesian
network. Contexts, users, and items all combine together to form “impressions”
(e.g. funny, depressing, etc. ) of the movie, which in turn leads to ratings. They
estimate the probability of a rating given the user, context, and item.



Context Dependent Movie Recommendations 5

The downside of these approaches is they require sharing information about
contexts between users. We would like to build a model for every user that is
not dependent on other users. This allows each user to have his own definition of
a context. For example, while the majority of users may like watching romantic
movies on a date, there may be some users that prefer not. While it is theoreti-
cally possible to design an algorithm that determines which users treat contexts
in one way, these are difficult parameters to estimate. Additionally, by designing
a content-based model, we can easily allow users to add their own contexts.

3 Content-Based Context-Dependent Recommendations

Naively, one might think that modeling a user’s preferences in different situ-
ations could be handled simply by considering each user as several different
people. That is, for each user we maintain a different profile for every different
possible context that they have rated movies in. However, the user’s preferences
in different contexts are possibly correlated even if they are not exactly the
same. Since gathering enough data to accurately model every context separately
is quite difficult, it is beneficial to use the ratings from one context to learn
ratings in another. Otherwise every time a new context is added for a specific
user, there would be no information about the ratings in that context. Thus you
would suffer from a “new context problem.”

The Hierarchical Bayes model is well suited for our situation because it can
give a prediction for a context without requiring as many movies to be rated.
In order to give a context-dependent recommendation, we adapt the model pro-
posed by Zhang and Koren in [13]. Rather than each branch of the tree corre-
sponding to a user, we design one tree for every user and let each branch cor-
respond to a specific context. By incorporating an average weight and variance
into our model, we help avoid the problem of over-fitting or ill-posed problems
that otherwise would occur frequently in context ratings. Often while there are
more movies rated than the number of dimensions of the feature space, there
are not more movies rated in a specific context than the number of dimensions.

3.1 Estimating the Weights

We need to estimate the weights for each context. If we know the generative
µ and Σ2, then we can estimate the weights Wc of each branch using a linear
regression with a prior. If we know the weights Wc of each branch, then we can
estimate µ and Σ2 using maximum likelihood. These situations are typically
solved by expectation maximization. After making an initial guess for µ and Σ2,
we estimate the weights. Then using these new weights, we adjust our guess of
µ and Σ2. We repeat this until the variables all stabilize. For spatial reasons,
we do not present the derivation of the formulas here but merely present the
resulting algorithm. See [13] and [11] for further information.

1. Make an initial guess for µ and Σ2



6 Daniel Pomerantz, Gregory Dudek

2. E step: For each context c, estimate P (wc|R, µ, Σ2) where R is the set of
ratings given by the user.

3. M step: Reestimate µ and Σ2 using the new user weights.

4. Repeat steps 2 and 3 until all variables stabilize.

In step 2, in order to estimate P (wu|R, µ, Σ2), for each context we keep track
of the variance of the weights, denoted by Σc as well. By keeping track of the
variance or certainty of our approximation to each weight vector, we can better
estimate the covariance Σ2 of the entire setup. The formulas for estimating
P (wc|R, µ, Σ2) are:

wc =

(

(

Σ2
)

−1

+
Sxx,c

σ2
ǫ

)

−1 (

Sxy,c

σ2
ǫ

+ (Σ2)−1µ

)

. (2)

Σ2

c =

(

(Σ2)−1 +
Sxx,c

σ2
ǫ

)

−1

. (3)

where σ2

ǫ is the variance of the noise once the weights are determined (assumed
to be known), Sxx,c is the sample covariance for the specific user (i.e. Take the
matrix composed of all the different feature vectors of movies that the user rated
and multiply it by its transpose.) and Sxy,c is the matrix created by taking the
vector of movies rated and multiplying it by the actual ratings given.

In step 3, the mean and covariance matrices are estimated by:

µ =
1

C

∑

c

wc , Σ2 =
1

C
Σ2

c + (wc − µ)(wc − µ)T . (4)

where C is the number of contexts for the user.

Looking at equation 2, we see that as the number of movies rated in a given
context goes to infinite, the weights converge to the standard linear model be-
cause the overall mean and sigma become very small compared to the other
terms.

3.2 Estimating the noise per user: σǫ

In [13], it is assumed that σǫ is given. In [11], they propose solving for σǫ during
the EM process as well during the M step by measuring the error on the training
data. However, since we are assuming that the number of ratings in a given
context is often less than the number of dimensions of the feature space, this
spread is often quite low and is not a useful measurement. Since σǫ represents
the amount of noise added to the linear model, we estimate σǫ heuristically by
setting it equal to the variance of the error on the training data using non-

context linear weights, which is the noise in the non-context linear model. This
is done using the least-squares linear regression outlined in [12]. We then leave
it constant throughout the EM algorithm.



Context Dependent Movie Recommendations 7

3.3 Reducing the Dimensionality

By allowing users to have different weight vectors for each context we increase
the dimensionality of the solution. If we normally had d weights to solve for,
we now have to solve for cd weights where c is the number of contexts for the
user. If a movie is represented as a vector of size n where n is the number of
features, then we will now have a dimensionality of cn, which is in general much
larger than the size of the training set. Thus it is often necessary to reduce the
dimensionality of the space.

We chose to solve this problem using Principal Component Analysis (PCA)
for two reasons. The first is that it is a relatively efficient model. We can pre-
compute the eigenvalues and eigenvectors over the entire movie database thus
allowing us to quickly give a rating at run time. The other benefit of the algorithm
is we can judge the amount of precision lost by the reduction and adjust the
number of eigenvalues used accordingly.

4 Experiments

We gathered data using the online website Recommendz. This site is accessible
at http://www.recommendz.com and has been used in previous papers [3]. The
site has over 3000 users and has been running for several years. Unfortunately,
most of the ratings previously given are in context-independent settings and are
not useful to these experiments. However, we did gather context-dependent data
from fifteen users who rated on average about thirty movies. This is a small num-
ber of movies compared with other algorithms, but is useful for demonstrating
the effectiveness of the algorithm on a small sample.

When a user rates a movie on the Recommendz system, they are required
to give a numerical rating (on a scale of 1-10) along with a feature that they
thought was important in the movie and the amount of it (on a scale of 1-10).
These are used to estimate the movie feature vector. There are approximately
1500 movie features in the database. To reduce the dimensionality, we ran PCA
on the movie features.

We compared our Hierarchical Bayesian algorithm to four different algo-
rithms under the context ratings, each of which were tested on all fifteen users.
The first algorithm ignores context dependency and predicts user ratings using
the weight vector computed by a least squares regression on non-context depen-
dent ratings as described in Section 2.1. This is what would happen if you do
not consider contexts at all and share all the information between contexts.

The second algorithm we used involved separating the data completely from
one context to another and then performing a linear regression. This would be
the same as a user creating a different account for each different context. We
expect that this approach will not work well in practice because given the small
number of ratings given in each context, the model does not have enough data to
learn the parameters. The third algorithm is the k-nearest neighbor algorithm
described in Section 2.1. Finally, we ran a “hybrid” algorithm which simply
averages the k-nearest neighbor algorithm and the new EM algorithm.



8 Daniel Pomerantz, Gregory Dudek

For each of these algorithms, we ran the data twice. In the first run, while
performing cross-validation, we left out all the ratings from the movie we were
leaving out, and not just the one from that context. That is, if a user rated the
same movie several times but in different contexts, we left out each rating. This
tests whether we can solve the “Standard Context Recommendation” problem. In
the second run, we left out only that specific rating, potentially keeping ratings
of the same movie in a different context. This tests the algorithm’s ability to
solve the “Different Context Evaluation” problem.

1 2 3 4 5
0

10

20
Median Error Q1

N
um

be
r 

of
 U

se
rs

Rank
1 2 3 4 5

0

10

20
Median Error Q2

N
um

be
r 

of
 U

se
rs

Rank
1 2 3 4 5

0

5

10
F Score

N
um

be
r 

of
 U

se
rs

Rank

 

 

Baseline

Nearest Neighbors

Separate Users

Hierarchical Bayesian Model

Hybrid

0 20 40
0

5

10

Number of Eigenvalues

A
bs

ol
ut

e 
M

ea
n 

E
rr

or

Mean Error

Fig. 2. From left to right: A graph showing the amount of error of the various algo-
rithms as a function of how many eigenvalues were used. Note that each algorithm
except for “separate users” (the top line) performs best with approximately eleven
eigenvalues, which has very high error regardless. Next, the relative performance of the
various algorithms under mean, median, and F-Score. The Hierarchical Bayesian and
hybrid models perform best on the most users

5 Experimental Results

We performed leave one out cross-validation on all data in the set. We first
determined the ideal number of eigenvalues to use. The mean absolute error is
presented in Figure 2. Based on the cross-validation results, we determined the
optimal number of eigenvalues to use was eleven because all of the graphs other
than the “separate users” graphs have smallest error with approximately eleven
eigenvalues. When we use too few eigenvalues, too much data is lost. When we
use too many eigenvalues, over-fitting occurs because the training set is small.

We evaluated the mean absolute error (MAE), the median absolute error, and
the F-Score of each algorithm. While MAE is an intuitive error measure, F-Score,
which depends on both the precision and recall of the algorithm, is considered
a more accurate measure of error in recommender systems because the most
important criterion for a recommender system is that it recommends the top



Context Dependent Movie Recommendations 9

movies [5]. In evaluating the F-Score, we divided our rankings into percentiles.
We compared how successful each algorithm was at putting movies in various
quantiles. For the numerical performance of the various algorithms, see Table 1.

Table 1. The results of the recommender when using cross validation. The first set of
results are in solving the “Standard Context Recommendation” (SCR) problem. The
second set of results are in the “Different Context Evaluation” problem (DCE). For
F-Score M, F-Score Q, and F-Score O, we calculate the success of the algorithms in
selecting the top 50%, 25%, and 12.5% respectively. Bold items mean optimal rela-
tive performance. Note that both the Bayesian model and Hybrid model are original
contributions of this paper.

Algorithm (SCR) Mean Error Median F-Score M F-Score Q F-Score O

Linear Regression 2.9378 2.4045 .676 .449 .263
Separate Users 6.5767 4.9286 .545 .406 .259
Bayesian Model 2.8411 2.000 .668 .469 .296
Item Similarity 2.3444 2.1772 .383 .117 .018

Hybrid (Item + Bayes) 2.2508 1.7958 .591 .389 .182

Algorithm (DCE) Mean Error Median F-Score M F-Score Q F-Score O

Linear Regression 2.0565 1.655 .696 .554 .418
Separate Users 6.5767 4.9286 .545 .406 .259
Bayesian Model 1.9109 1.1569 .681 .557 .351
Item Similarity 2.0847 1.8709 .643 .479 .447

Hybrid (Item + Bayes) 1.8188 1.4633 .708 .389 .408

When all contexts are left out of the training set for a specific movie, the
hybrid algorithm, combining item similarity and the Bayesian model, has the
smallest mean and median error. The Bayesian model performs better under
this measure than the linear regression and separate users approach, but worse
than the item similarity on its own. In measuring the F-Score, the linear regres-
sion model is best at determining which elements belong in the top half with
the Bayesian model a close second. When considering the algorithms success at
putting movies into the top quarter, the results are flipped, with the Bayesian
model slightly outperforming the linear regression model. In the top eighth, the
Bayesian model maintains the highest score again, this time with a larger gap.

When we leave only the one rating out, but leave all the others from different
contexts in, as expected, the predicted ratings are closer to the actual ratings.
This shows that ratings in one context are indeed correlated with ratings in
another context. We aim to show that while they are correlated, they are not
determinative. In this case the hybrid algorithm has the best results in mean
error, and the Bayesian model has smallest error for median error. The hybrid
algorithm has the strongest F-score for the median, but the Bayesian algorithm
is strongest for the quarter F-score. Interestingly, the item similarity, which has



10 Daniel Pomerantz, Gregory Dudek

a very low score in giving context ratings in the first run, has the highest score
in the F-score when considering a successful match of the top 8th.

We wanted to consider the percentage of users the Bayesian algorithm worked
best on. To do this, we broke our results down by user to rank the various
algorithms. The data is shown in Figure 2. Along the x-axis is the relative rank
of the algorithm (i.e. 1st, 2nd, 3rd, 4th, and 5th). On the y-axis is the number
of users for which each algorithm has that rank. The hybrid and hierarchical
Bayesian algorithm each have the largest number of users for which they rank
first or second. An example of some of the movie recommendations given by the
algorithm in different contexts is given in Table 2.

Table 2. Examples of predictions given by the hierarchical Bayesian network in dif-
ferent contexts. Some of the movies are the same, but the list varies.

Generic Guys Night Out Romantic Evening

The Net Ace Ventura A Simple Twist of Fate
The Transporter Die Hard Mona Lisa Smile

Star Trek Highlander The Terminal
Fantastic Four Mortal Kombat The Net

The Mask Billy Madison Mean Girls

6 Discussion

An important factor in contrasting our results with others is that in our data
set, the average user rated approximately 30 movies. Other studies have shown
smaller errors using larger training sets (75-100 ratings per user) [13], but that
was not the main goal of this work. Unfortunately, it is difficult to collect data
as standard data sets such as the NetflixTMset do not keep track of context in-
formation and are thus not applicable to our work. Additionally, we wanted to
demonstrate the effectiveness of the Hierarchical Bayesian algorithm on a small
sample size points. Given enough ratings, it would even be reasonable to treat
each context as a different user. However, our algorithm does not require a user
to rate dozens of movies in each context. The algorithm gives a good approxi-
mation for each separate context even when only four or five movies have been
rated in that context, thus dealing with the “new context” problem. With a
smaller mean and median error than baseline linear algorithms, the Hierarchical
Bayesian model accomplishes what we want: it shares information between con-
texts without requiring that all information be shared. Even on users for which
the Bayesian model does not work best (i.e. those who the nearest neighbor
model works well for), we can still improve the nearest neighbor recommenda-
tion by averaging it with the Bayesian prediction.

In answering the “Standard Context Recommendation” question, the mean
and median error are lowest on the hybrid algorithm. Since the baseline linear



Context Dependent Movie Recommendations 11

algorithm works as well as the Bayesian model at selecting the top 50 % of the
movies, but not as well at selecting the top 12 % of the movies, we conclude that
the baseline algorithm is good at giving a coarse guess of “good or bad” for a
movie in a context, but the Hierarchical Bayesian model is best at distinguishing
movies in a finer manner. This makes sense, since it is very often the case that in
a different context, a user would still have the same general feeling for a movie
(e.g. good vs. bad), but would have variations within this category (e.g. excellent
vs. good). In this situation, the F-Score is more appropriate to use as a measure
of error than mean or median because this question resembles more closely the
traditional question of “What movie should I watch?”

The Bayesian model has the lowest median error in answering the “Different
Context Evaluation” problem, showing that it is best able to use ratings from
different contexts without automatically assigning the same value. While the
results in the F-score are unclear, we consider the mean and median error a more
appropriate measure to answering the second question. In the first question, it
did not matter how poor movies are ranked as they are not presented to the
user anyway. In this case, however, it does matter. The user will ask about a
specific movie in a specific context, and we want to give as accurate an answer as
possible. Additionally, looking at only the top movies can be very misleading. If a
user rates a few movies very highly in all contexts, a very reasonable assumption
since many users enjoy their favorite movie in almost every setting, then the
item similarity algorithm is almost guaranteed to give the correct answer since
the closest item to a movie is always itself. Since we only look at the top 12.5% of
movies, many movies fit into this category, causing the item similarity algorithm
to have an exceptionally strong score. The other algorithms do not have this
benefit because they are parametric. In summary, the very top movies are often
the same in various contexts, but after that there is diversity.

In answering both questions, the mean and median error were smallest in the
Hierarchical Bayesian model or the hybrid algorithm. The hybrid model performs
better than the item similarity algorithm, showing that even if we do not assume
a linear model, the Hierarchical Bayesian model can be useful. The Hierarchi-
cal Bayesian model performs much better than other linear models. While the
raw error is relatively high, the size of the training set is quite small and the
results show that the Hierarchical Bayesian model (or in some cases a hybrid
form of it) is better than baseline algorithms in making context-dependent rec-
ommendations. The Hierarchical Bayesian model is strongest at recommending
the top movies when they are previously unrated. The Bayesian model is best at
predicting a score of a movie when given a previous rating in a different context.

7 Conclusions

We designed a Hierarchical Bayesian model [13] to learn different weights in
different contexts. This algorithm answers two questions: “What movie should I
watch in context X?” and “Given that I gave a rating to movie M in context X,
what would I think of movie M in context Y?” We compared our algorithm to



12 Daniel Pomerantz, Gregory Dudek

several other techniques, some of which share all information between contexts
and some of which share none of the information between contexts. We found
that our algorithm or a hybrid algorithm performed at least as well in most
forms of measurement. Because the approach is content-based, the algorithm
does not assume that the preferences of every user change in the same way
depending on the context. This allows users to have personal interpretations of
contexts or even to add their own new contexts. This work demonstrates that it
is useful to store contextual information. Naive approaches do not incorporate
contexts as effectively as the Hierarchical Bayesian model. A potential area to
explore is creating a hybrid of the content-based approach discussed here with
a context-dependent collaborative filtering approach.

References

1. Adomavicius, G., Sankaranarayanan, R., Sen, S., and Tuzhilin, A. 2005. Incorpo-
rating contextual information in recommender systems using a multidimensional
approach. ACM Trans. Inf. Syst. 23, 1 (Jan. 2005), 103-145.

2. Alspector, J., Kolcz, A. and Karunanithi, N.: Comparing Feature-based and Clique-
based User Models for Movie Selection. In Proc. of the 3rd ACM Conf. on Digital
Libraries, Pittsburgh, PA, pp. 11-18 (1998).

3. Garden, M. and Dudek, G. 2005. Semantic Feedback for Hybrid Recommendations
in Recommendz. In Proc. of the 2005 IEEE International Conf. on E-Technology,
E-Commerce and E-Service (Eee’05). Hong Kong, China (2005).

4. Goldberg, K., Roeder, T., Gupta, D., and Perkins, C.: Eigentaste: A Constant Time
Collaborative Filtering Algorithm. In Information Retrieval Journal 4 (2001)(2),
pp. 131-151 (2001).

5. Herlocker, J., Konstan, J., Terveen, L., and Riedl, J: Evaluating Collaborative
Filtering Recommender Systems. In ACM Transactions on Information Systems
v. 22, pp. 5-53 (2004).

6. Ono, C., Kurokawa, M., Motomura, Y., and Asoh, H.: A Context-Aware Movie
Preference Model Using a Bayesian Network for Recommendation and Promotion.
In User Modelling, pp 247-257 (2007).

7. Salton, G. :Automatic Text Processing, Addison-Wesley, (1989).
8. Sarwar, B.M., Karypis, G., Konstan, J.A., and Riedl, J :Item-base Collaborative

Filtering Recommendation Algorithms. In Proc. of the 10th International World
Wide Web Conf. (WWW10)(2001).

9. Vinay, V., Cox, I., Wood, K., and Milic-Frayling, N. : A Comparison of Dimen-
sionality Reduction Techniques for Text Retrieval. In ICMLA, pp 293-298 (2005).

10. Yang, Y.: An Evaluation of Statistical Approaches to Text Categorization. Infor-
mation Retrieval 1(1) 67-88 (1999)

11. Yu, K., Tresp, V., and Schwaighofer, A: Learning Gaussian Processes from Multiple
Tasks. In ICML ’05:Proc. of the 22nd international Conf. on Machine Learning,
pp. 1012-1019, New York, NY, USA, (2005).

12. Zhang, T., Iyengar, V.S., and Kaelbling, P : Recommender Systems Using Linear
Classifiers. In Journal of Machine Learning Research. v. 2. pp. 313-334 (2002).

13. Zhang, Y. and Koren, J. : Efficient Bayesian Hiearchical User Modeling for Recom-
mendation Systems. In Proc. of the 30th Annual International ACM SIGIR Conf.
on Research and Development in Information Retrieval (SIGIR ’07), New York,
NY, USA, (2007).


