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Fig. 1. Path tracing of an optically dense medium (30 minutes), showing both a complete ‘beauty’ render (S+V), and a render with only volumetric transport (V).
Building on an approximate adjoint solution of the incident and in-scattered radiance, our zero variance-based path construction forms near-optimal decisions

for guided collision distance sampling, directional sampling, Russian roulette and path splitting. As such, our sampling methodology leads to significantly

faster convergence compared to an unguided path tracer with standard transmittance-based collision and phase function sampling.

The efficiency of Monte Carlo methods, commonly used to render partici-

pating media, is directly linked to the manner in which random sampling

decisions are made during path construction. Notably, path construction is

influenced by scattering direction and distance sampling, Russian roulette,

and splitting strategies. We present a consistent suite of volumetric path

construction techniques where all these sampling decisions are guided by a

cached estimate of the adjoint transport solution. The proposed strategy is

based on the theory of zero-variance path sampling schemes, accounting

for the spatial and directional variation in volumetric transport. Our key

technical contribution, enabling the use of this approach in the context of

volume light transport, is a novel guiding strategy for sampling the particle

collision distance proportionally to the product of transmittance and the
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adjoint transport solution (e. g., in-scattered radiance). Furthermore, scatter-

ing directions are likewise sampled according to the product of the phase

function and the incident radiance estimate. Combined with guided Rus-

sian roulette and splitting strategies tailored to volumes, we demonstrate

about an order-of-magnitude error reduction compared to standard unidi-

rectional methods. Consequently, our approach can render scenes otherwise

intractable for such methods, while still retaining their simplicity (compared

to, e. g., bidirectional methods).
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1 INTRODUCTION

Recent industrial adoption of physically-based rendering method-

ologies has sparked renewed interest in Monte Carlo (MC) methods

for light transport simulation. This wider adoption has also exposed

many limitations inherent to MC methods, including their slow

convergence in scenes with participating media [Fong et al. 2017].
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This can be attributed to a historical focus in computer graphics

on optimizing MC methods for surface transport, and the added

complexities of volumetric transport [Christensen and Jarosz 2016;

Pharr et al. 2016].

Volumetric phenomena contribute significantly to realistic im-

ages. As such, recent work has focused on bridging the gap between

surface- and volume-transport simulation [Jarosz 2013], including

efficient importance sampling methods for unbiased [Georgiev et al.

2013; Kulla and Fajardo 2012; Kutz et al. 2017; Novák et al. 2014; Si-

mon et al. 2017; Szirmay-Kalos et al. 2017] and biased [Křivánek et al.

2014; Novák et al. 2012b] rendering. The theoretical overlap between

light and particle transport has also promoted knowledge transfer

between the graphics and neutron transport communities [Dwivedi

1982; Galtier et al. 2013; Hoogenboom 2008; McCormick and Kuscer

1973; Spanier and Gelbard 1969]. Ultimately, however, these meth-

ods focus on either optimally sampling a subset of the transport

equation terms, or they rely on restrictive assumptions about the

underlying medium, such as homogeneity or scattering isotropy –

that is, if they support volumetric media at all. Either way, impor-

tant lighting features are left untreated during stochastic sampling,

leading to estimators with high variance.

We leverage the key insight that, in order to improve convergence,

MC volumetric light transport must optimally account for every

stochastic decision: all spatial, directional and path-length sampling

decisions should be treated in a consistent manner. Our main con-

tribution is a unified methodology for close-to-optimal importance

sampling of volumetric transport paths. Zero-variance path sampling

theory [Hoogenboom 2008; Křivánek and d’Eon 2014; Meng et al.

2016] serves as the theoretical framework here, providing ground

rules for building a globally optimal, joint path-space sampling dis-

tribution using but a set of locally optimal sampling decisions used

during incremental path construction (Section 3.2). This process is

referred to as transport path guiding.

Our contributions lie in the volume-specific aspects of path guid-

ing, to complement the existing works with focus on surfaces (es-

pecially the ones compatible with the zero-variance sampling the-

ory [Herholz et al. 2016; Vorba et al. 2014; Vorba and Křivánek

2016]). Specifically, we propose unbiased methods to efficiently and

accurately conduct all the volumetric sampling decisions:

• Our key technical contribution is a novel technique for
the collision distance and scatter/no-scatter decisions per-
formed in proportion to the full product of both transmit-
tance and in-scattered radiance. This proposed formulation

avoids constructing the sampling distribution upfront and in-

stead operates incrementally along the particle flight path, yield-

ing an efficient solution, especially for optically thick media.

• We sample scattering directions according to the product
of the phase function and incident radiance, each of which

is represented using von Mises-Fisher (vMF) mixtures. Crucially,

these allow for efficient evaluation, product and convolution

operations. Previous path guiding work on surfaces is adapted

for this purpose [Herholz et al. 2016; Vorba et al. 2014].

• Finally, our path termination/splitting decisions locally ad-
just the density of traced paths according to their esti-
mated contributions, i. e., based on the expected throughput-

weighted radiance. Again, we extend previous work focused on

surface transport [Vorba and Křivánek 2016] to volumes.

Since a practical implementation requires knowledge of the adjoint

transport solution (e. g., the steady-state spatio-directional radiance

distribution), we cache approximate adjoints during a particle trac-

ing pre-pass. Using parametric vMF mixture models for our cached

representation enables closed-form evaluation of all required ad-

joint quantities. We then follow the framework of zero-variance

path sampling to unify our sampling procedures, transferring and

extending recent concepts on path guiding for surfaces [Dahm and

Keller 2017; Herholz et al. 2016; Müller et al. 2017; Vorba et al. 2014;

Vorba and Křivánek 2016] to full volumetric transport.

Compared to the state of the art, the proposed guided sampling

techniques (Section 6) have two critical advantages. First, they sam-

ple proportionally to the full integrand of the volume transport

equation, across respective local sub-domains (Section 3). Second,

all local sampling decisions are consistently guided by the same

underlying adjoint solution (Section 5). Consequently, our method

can efficiently simulate a number of volumetric phenomena deemed

difficult or costly for current rendering techniques, comprising both

low-order (e. g., light shafts, volumetric caustics) and high-order

(e. g., dense high-albedo media) transport effects (Section 7). In ad-

dition to our practical results, we include numerical analysis of our

sampling techniques (in isolation and joint combinations), validating

their variance-reduction ability across diverse scene configurations.

2 RELATED WORK

We focus on efficient sampling for Monte Carlo solutions to trans-

port problems. Interested readers can refer to broader surveys of

volumetric media rendering in research [Novák et al. 2018] and

production [Fong et al. 2017].

Local importance sampling. The efficiency of Monte Carlo meth-

ods depends largely on their ability to generate light transport paths

with a distribution resembling the underlying transport equation

as closely as possible. Since this is a difficult proposition, in prac-

tice the sampled paths are instead drawn from one or more of the

transport equation’s factors (Section 3.1). Specialized schemes have

thus been designed to importance-sample them: Rayleigh [Frisvad

2011] and Henyey-Greenstein [Witt 1977] phase functions can be

sampled analytically and adaptive sampling can be conducted ac-

cording to coarse visibility oracles [Belcour et al. 2014; Engelhardt

and Dachsbacher 2010]. In optically thin media dominated by low-

order transport effects, convergence can be significantly improved

by importance-sampling single scattering from point [Kulla and Fa-

jardo 2012] or environmental sources [von Radziewsky et al. 2017].

Extensions to bidirectional path connection schemes are useful

for generalizing these gains to scenes with refractive interfaces

[Koerner et al. 2016] or two- and three-bounce transport [Georgiev

et al. 2013]. While the latter work shares the same objective as our

method – that of joint importance sampling of transport paths – it is

limited to importance sampling of the geometry terms and the phase

function over (up to) three random events, ignoring transmittance.
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Our method, on the other hand, can build full paths by importance

sampling all terms of the transport equation.

A significant effort has also been devoted to sampling proportion-

ally to the transmittance and density of the medium. Here, tabulated

transmittance sampling [Amanatides and Woo 1987] introduces

bias, whereas its unbiased counterpart – delta tracking [Raab et al.

2006; Woodcock et al. 1965] – becomes inefficient for media with

significant optical density variation. One approach to alleviate this

issue is to bound regions with similar density [Szirmay-Kalos et al.

2011; Yue et al. 2010]. Independently, a weighted tracking scheme

instead of an analog one has likewise proven effective [Galtier et al.

2013; Morgan and Kotlyar 2015]. These techniques reduce the num-

ber of required density look-ups, and can be combined with control

variates to further reduce variance [Novák et al. 2014]. Several new

unbiased trackingmethods have then been developed based on these

formulations [Kutz et al. 2017; Szirmay-Kalos et al. 2017].

Regardless, all the methods above only address individual com-

ponents of the global transport sampling problem (Section 3.1).

This results in unpredictable residual variance in general scenes,

i. e., where transport characteristics are not known beforehand. Our

main goal is, therefore, a unified volumetric path sampling approach

that supersedes these more specific techniques.

Transport path guiding. Many efficient bidirectional rendering

algorithms leverage the reciprocity of light transport [Christensen

2003; Křivánek et al. 2014; Lafortune and Willems 1995; Veach 1997].

Similarly, dual (adjoint) transport solutions generated in a pre-pass

can be used to guide a unidirectional solver [Hey and Purgathofer

2002; Jensen 1995; Lafortune andWillems 1995]. In the latter context,

both continuous [Herholz et al. 2016; Vorba et al. 2014] and discrete

[Dahm and Keller 2017; Müller et al. 2017] representations of the

adjoint transport solution have recently been explored. Building

atop a unidirectional solution is desirable since a vast majority of

rendering in practice relies on such approaches.

We are motivated by the fact that the above methods exclusively

treat surface light transport, whereas path guiding in volumetric

media has remained largely unexplored. Nevertheless our approach

is strongly influenced by these works. Notable exceptions of volu-

metric guiding in graphics is the sequential MC method of Pego-

raro et al. [2008] or the significance cache-basedmethod by Bashford-

Rogers et al. [2012], who perform directional sampling according

to a histogram or cosine lobe representation of the approximated

adjoint transport solution. Although being a step forward, these

methods are limited to near-isotropic phase functions, while not

considering the effect of transmittance or path length on the ideal

sampling distribution. In contrast, our method performs sampling

according to the full volume rendering equation (Section 3.1), without

imposed restrictions on the form or properties of the medium.

Specialized methods. Volumetric analogues of caching methods

based on photon density estimation [Bitterli and Jarosz 2017; Jarosz

et al. 2011; Jensen and Christensen 1998; Novák et al. 2012a] or

virtual light sources [Engelhardt et al. 2012; Novák et al. 2012b]

often face similar sampling decisions as the purely path-based meth-

ods, and have consequently led to a suite of dedicated sampling

techniques. These methods can be combined to improve the conver-

gence of individual estimators [Křivánek et al. 2014]. Explicit cache

placement can also be guided by importance sampling according to

illumination gradients [Jarosz et al. 2008; Ren et al. 2008].

Yet again, similarly to the local methods, these typically consider

only the terms of the transport equation that can be readily sampled

within the respective caching scheme. In contrast, we designed our

caching to support all the necessary sampling decisions dictated by

the theoretical foundations of volumetric transport (Section 3.2).

Zero-variance path sampling theory. Ultimately, we seek to obtain

an optimal MC estimator in radiative transport. Such an estimator

would sample according to all factors of the transport equation,

since any ignored one results in variance increases. While that

is the established idea of importance sampling, we can make an

even stronger claim on the basis of the zero-variance random walk

theory [Hoogenboom 2008; Kalos andWhitlock 2008]: that a perfect

global MC sampling can be achieved if every local decision is made

optimally, that is, in exact proportion to the respective integrand of

the transport equation.

This proposition is, however, only hypothetical – infinite compu-

tation and memory is needed to perform this sampling, since the

adjoint solution itself is nested in the transport equation. Exceptions

comprise idealized scenarios with simplified closed-form adjoints,

such as homogeneous infinite half-space transport [Dwivedi 1982;

McCormick and Kuscer 1973]. Recent works in computer graphics

have nevertheless leveraged these results to improve the conver-

gence for sub-surface scattering simulation [Křivánek et al. 2014;

Meng et al. 2016].

The conclusion that can be drawn from these works is that even

an approximate adjoint solution can serve an MC approach that

follows the zero-variance principles [Vorba and Křivánek 2016]. We

build on this key observation and propose a unified sampling scheme

with state-of-the-art convergence rates (Sections 4–6). Crucially,

any residual variance of our method results only from imperfections

in our approximate adjoint solution (as examined in Section 7).

3 BACKGROUND

We first briefly revisit the integral form of the volume rendering

equation (VRE), which underlies the volumetric light transport prob-

lems. The MC estimator for the VRE is then described in Section 3.2,

focusing on defining the target probability density functions (PDFs)

for optimal (zero-variance) sampling.

3.1 Volume Rendering Equation

We rely on the standard parametrization for participating media

[Pharr et al. 2016] via spherical phase function f , absorption coeffi-

cient σa, scattering coefficient σs and extinction coefficient (optical

density) σt = σa + σs. All these quantities can be spatially varying.

To simplify the exposition we will however not consider emissive

media (see Simon et al. [2017] for a dedicated treatment of these).

Themethod presented

in this paper provides

a numerical solution to

the integral form of the
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Fig. 2. Top: An example path containing volume (blue) and surface (yellow) vertices. Note that, in the path tracing algorithm, the path carries visual importance,

and thus is generated in the opposite direction of the flow of light. Bottom: The four considered zero-variance sampling decisions, mirroring the Equations 7–10.

Optimal decisions are whether to scatter within or outside the medium, how far to travel until the next scattering event, how to choose the scattering direction

and when to terminate the path.

volume rendering equation (VRE), expressing the (scalar, mono-

chromatic) radiance L arriving at point x from directionω:

L(x,ω) = T (x, xs )Lo(xs ,ω)︸                ︷︷                ︸
Ls(x,ω)

+

∫ s

0

T (x, xd )σs(xd )Li(xd ,ω) dd︸                                    ︷︷                                    ︸
Lm(x,ω)

,

(1)

where xs = x−sω and xd = x−dω. In the presence of participating

media the evaluation is typically split into two parts: the attenuated

surface contribution Ls arriving from the closest surface intersection

at xs , and the volume contribution Lm, scattered along and intoω

within the medium. The outgoing surface radiance Lo is the sum

of the emitted radiance Le and the reflected radiance Lr [Kajiya

1986]. The transmittance function T defines the loss of energy due

to photon-medium collisions (i. e., volumetric absorption and out-

scattering, expressed by the optical thickness τ) along an optical

path between two points:

T (x1, x2) = e−τ(x1,x2), τ(x1, x2) =

∫ ∥ x1−x2 ∥

0

σt(xd ) dd . (2)

Finally, the medium radiance contribution Lm gathers the incoming

radiance Li across a sphere S :

Li(xd ,ω) =

∫
S

f (xd ,ω,ω
′)L(xd ,ω

′) dω′, (3)

which is weighted by σs in Equation 1 and attenuated by the trans-

mittance along the optical path to x.
The VRE (Equation 1) has a structure similar to the standard

rendering equation [Kajiya 1986]; in fact it reduces to it if σa =

σs = 0. It however bears additional significant complexity due to

the integration within the medium. In a stochastic MC solver such

as path tracing, this leads to additional linear, spherical, and discrete

sampling decisions covered in the following section.

3.2 Zero-variance Path Sampling Theory

We solve the VRE using MC estimation with optimized importance

sampling according to the theory of zero-variance path sampling.

Monte-Carlo estimator. Solving the VRE (Equation 1) using MC

estimation leads to a procedure where a set of N visual importance

particles are traced until being stochastically terminated. Along its

trajectory, each particle collects radiance at emitting positions, or

by doing next event estimation [Pharr et al. 2016], yielding one or

several light transport paths. Since Equation 1 assumes non-emissive

media, emission can only occur on a light source surface. To simplify

the exposition a step further, we focus on the so called ‘last-event’

estimator [Hoogenboom 2008]: the particle only collects radiance

at an emitting position and is then immediately terminated.

The contribution of each particle’s path ri is given by the cumu-

lative particle weight a and the emitted radiance Le at the end of

the path:

I = E

[
1

N

N∑
i
a(ri ) · Le(xi ,M ,ωi ,M−1)

]
. (4)

Along its path each of the N particles undergoesM − 1 scattering

events (on surface or in volume, see Figure 2). At each event and its

coupled propagation step the particle performs a state change, i. e.,

its position and orientation changes from (xj ,ωj ) to (xj+1,ωj+1).

The positions x0 and xM define the start and the end of the path.

The full particle weight is then the product of the weights for each

individual state change j:

a(r ) =
M−1∏
j=1

aj (r ). (5)

The individual state change weight is given by the throughput of the

path segment divided by the PDF of performing the corresponding

state change. If for the sake of brevity we only consider volumetric

interactions, the weight of a segment is defined as:

aj (r ) =
1

qj−1

T (xj−1, xj )σs(xj ) f (xj ,ωj−1,ωj )

p(xj ,ωj |xj−1,ωj−1)
, (6)

with q being the probability of surviving the termination at the

respective event and p being the PDF for generating the next path

segment, both defined below.

Zero-variance path sampling strategy. The zero-variance path sam-

pling theory [Hoogenboom 2008] provides a set of particle state

change rules, which can be used for guided sampling of incremen-

tally constructed paths. Applying these rules provably results in

all particles having the exact same contribution (cf. Equation 4),

resulting in an estimator with zero variance. A remarkable property
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of such schemes is that by following the prescribed set of local sam-

pling decisions, a globally optimal sampling strategy emerges. This

is enabled by the fact that each of these local decisions relies on (is

‘guided’ by) information about the global transport solution.

In contrast to surface-based transport – where the generation of

a next particle state only relies on directional sampling – the pres-

ence of participating media introduces a set of additional sampling

decisions (illustrated in Figure 2). At this point we define the PDFs

for these four decisions derived from Equation 1 according to the

zero-variance theory:

1. Given a particle state (xj ,ωj ), the first step of the state change

is to determine the new particle position xj+1. This involves two

sub-steps:

a. First, a discrete decision determines whether the path ex-

plores the contribution Ls from the nearest surface, or the

volumetric contribution Lm from the medium (see Equa-

tion 1). The optimal probability for sampling Lm between xj
and the next surface is

Pm(xj ,ωj ) =
Lm(xj ,ωj )

Ls(xj ,ωj ) + Lm(xj ,ωj )
. (7)

b. Next, assuming that the volume contribution was selected

in Step 1a, the collision distance dj+1 to the next scattering

position at xj+1 has to be sampled. The optimal PDF for

sampling dj+1 starting at (xj ,ωj ) is

p
d
(dj+1 | xj ,ωj ) =

T (xj , xj+1)σs(xj+1)Li(xj+1,ωj )

Lm(xj ,ωj )
. (8)

2. At the new scattering position xj+1 the random walk needs to

explore the integral of in-scattered radiance Li, i. e., scattered

into the direction ωj . Therefore, a new direction ωj+1 needs to

be sampled, with the optimal PDF

pω(ωj+1 | xj+1,ωj ) =
f (xj+1,ωj ,ωj+1)L(xj+1,ωj+1)

Li(xj+1,ωj )
. (9)

3. Obtaining Li itself involves an evaluation of the incoming radi-

ance L (Equation 3). Steps 1–2 are thus repeated, until we reach

a position xj which emits energy in the direction ωj−1 and the

decision is made to terminate the random walk and return its

weighted emission a(r ) ·Le. The optimal termination probability

at xj is

PRR(xj ,ωj−1) =
Le(xj ,ωj−1)

Le(xj ,ωj−1) + Lr(xj ,ωj−1)
=

Le(xj ,ωj−1)

Lo(xj ,ωj−1)
,

(10)

with the resulting survival probability of

qj = 1 − PRR(xj ,ωj−1). (11)

In the case there is no emission at xj the zero-variance probabil-
ity of continuing the walk is one.

Putting everything together, the resulting PDF for a state change

(Equation 6) is composed of the conditional PDFs for each of these

Fig. 3. Left: Visualization of the (kD) tree for the spatial cache component.

Right: A schematic and false-color depiction of the directional caches for the

incident and in-scattered radiance represented via vMF mixtures (orange).
The sample volume has a slightly forward-peaked phase function.

sampling decisions:

p(xj+1,ωj+1 | xj ,ωj ) = Pm(xj ,ωj )

· p
d
(dj+1 | xj ,ωj )

· pω(ωj+1 | xj+1,ωj ).

(12)

In the following sections, we present our core contribution: tech-

niques for efficiently performing the guided sampling decisions

outlined in Steps 1 through 3, on the basis of the zero-variance

framework. Sections 4–6 describe the algorithmic design, followed

by practical considerations and evaluation in Section 7.

4 METHODOLOGY

We build on the core principle that a globally optimal sampling of the

transport path space can be achieved by making the ideal sampling

decision for every individual integrand of the governing transport

equation (Section 3.1). Section 3.2 thus provides a consistent set of

optimal Monte Carlo path sampling strategies unified under the

zero-variance theoretical framework.

To that end, our method needs to rely on estimating the adjoint

transport solution that guides the stochastic path construction process,

since all the partial PDFs (Equations 7–10) require the knowledge of

the global energy distribution. As described in Section 5, we store

this estimate in a hybrid cache, using a kD-tree to represent the

spatial component of the adjoint solution, and von-Mises-Fisher

model mixtures to represent its directional component.

Building on the adjoint solution estimate we describe the indi-

vidual sampling procedures in Sections 6.1–6.3, reflecting the theo-

retical subdivision into partial PDFs from Steps 1–3 in Section 3.2.

Incrementally applying these sampling decisions leads to a guided

construction of a near-optimal transport path, subject to the repre-

sentation accuracy of the cached adjoint solution (Section 5). Note

that we only address the sampling of the volumetric light transport,

since sampling on surfaces has been addressed previously (see Sec-

tion 2). On the other hand, the distinct advantage of our approach

is its zero-variance-theoretical foundation, which makes it read-

ily compatible with other surface guiding approaches built on this

theoretical framework (see Section 8).
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5 ADJOINT SOLUTION ESTIMATE

As stated, zero-variance sampling requires prior knowledge of the

light transport solution. Given this cyclic dependency, our method

resorts to approximations, specifically of the incident radiance L
and in-scattered radiance Li (Equations 1 and 3). These quantities

are stored in a hybrid spatial and directional cache structure (see

Figure 3), similar to recent methods in surface path guiding [Bus and

Boubekeur 2017; Müller et al. 2017; Vorba et al. 2014]. We initialize

our prior estimates in a short pre-processing phase, where photons

are traced from the light sources and then clustered using a spatial

subdivision (kD) tree. Photons in each leaf node are used to build the

directional representation of the incoming radiance for the volume

contained within that node.

We represent directional distributions using a parametric mixture

model based on the von-Mises-Fisher distribution (vMF) widely used

in directional statistics. This has important advantages:

• similarly to the main quantities of the volumetric transport the

distributions are naturally defined on the sphere and therefore

no additional mapping is required, cf. [Herholz et al. 2016; Müller

et al. 2017; Vorba et al. 2014];

• the in-scattered radiance estimate is calculated through an effi-

cient closed-form convolution;

• the product distribution between the incident radiance and the

phase function for any directional configuration is also obtained

in a closed-form.

To fit the vMF distributionswe use aweightedmaximum a-posteriori

expectation maximization (MAP-EM) algorithm, which is similar

to the method presented by Vorba et al. [2014]. Since we use vMFs,

as opposed to their Gaussians, our maximum-likelihood parameter

estimation and the associated priors are different (as described in

Appendix A.1). For more details on MAP-EM for vMF mixtures

please refer to Bangert et al. [2010].

Incoming radiance estimate. To represent the incoming radiance

distributions at different locations x inside a medium, we use vMF

mixtures V described by the spatially-varying parameter set Θ(x).
Such a mixture represents a spherical distribution via a set of K
weighted vMF lobes v :

V (ω |Θ) =

K∑
i=1

πi · v(ω | µi ,κi ). (13)

The parameter set Θ contains the weights {π1, ...,πK }, the mean

directions {µ1, ...,µK } and precisions {κ1, ...,κK } for each compo-

nent (‘lobe’). Each vMF lobe is a normalized spherical distribution,

rotationally symmetric around its mean, with its spread being in-

versely proportional to κ. Appendix A provides additional details.

The incident radiance estimate L̃ is related to the normalized vMF

mixture through scaling by the scalar irradiance (i. e., fluence):

L̃(x,ω) = Φ(x) · V L(ω |ΘL(x)). (14)

Fluence is given by Φ(x) =
∫

S L(x,ω
′) dω′

. It is determined using a

standard photon map estimate, during the fitting process of the vMF

mixture for the incoming radiance, and stored along the mixture

parameter set in the spatial structure.

Fig. 4. Our adjoint solution estimates for the volumetric radiance quantities

L and Li for two positions below the surface of the Buddha statue. The center

column shows the ground-truth spherical function of L and Li evaluated

using path tracing with 100k samples per pixel. The right column shows

our estimates L̃ and L̃i fitted from 1k photons. Note that since Li is an

integrated quantity, its estimate is much more reliable than that of L.

In-scattered radiance estimate. Functionally, the in-scattered ra-

diance Li is given by spherically convolving the incident radiance

(represented by a vMFmixture) with the phase function (Equation 3):

L̃i(x,ω) = Φ(x) ·
∫

S
f (x,ω,ω′)V L(ω

′ |ΘL(x)) dω′. (15)

Since phase functions are typically rotationally invariant they can

be represented with one or more vMF lobes. The convolution of

two vMF lobes results in another vMF lobe, which can be calculated

analytically (Appendix A.2), providing a highly efficient means to

obtain the integrated in-scattered radiance estimate:

L̃i(x,ω) = Φ(x) · V Li
(ω|ΘLi

),

V Li
(ω) = (V f ∗V L)(ω).

(16)

This spatio-angular caching structure thus provides the estimates L̃
and L̃i in constant time, minimizing the overhead of our sampling

procedures. Examples of our estimates compared to the ground-

truth measurements are given in Figure 4.

6 SAMPLING PROCEDURES

We now proceed with details of the procedures for realizing the

zero-variance-based sampling decisions described in Section 3.2.

We begin with our core contribution: the volume-specific sampling

decision that concerns finding a scattering location along a particle’s

propagating direction, given its current position.

6.1 Guided Product Distance Sampling

To find the next scattering location, the tracing algorithm first needs

to decide if the path should explore the medium contribution Lm

or the surface contribution Ls (Figure 2, 1a). In the former case, the

distance to the next medium interaction (‘collision distance’) has to

be sampled (Figure 2, 1b).

These two decisions can bemerged into a single distance sampling

decision, where either the interval between the current particle

position x and the next surface interaction at xs , or the full distance
to xs is sampled. The zero-variance PDF for this joint distance
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sampling is the combination of Equation 7 and Equation 8:

p
d
(d | x,ω) =

T (x, xd ) · σs(xd ) · Li(xd ,ω)

L(x,ω)
. (17)

This merger changes the denominator of the zero-variance PDF

for the collision distance from Lm to Ls + Lm = L. Since existing
tracking methods (Section 2) do not have prior knowledge of the

incident and in-scattered radiance, they sample proportionally to

the local (‘medium’) terms only: p
d
(d |x,ω) ∝ σs(xd )T (x, xd ). Our

aim, in contrast, is to sample the full product PDF in Equation 17.

We first explain a naïve static solution to this problem, and follow

by presenting a significantly more efficient incremental proposal.

6.1.1 Naïve Solution. A straightforward way to use our volumet-

ric radiance estimates to sample according to the zero-variance PDF

is to explicitly build a tabulated discrete PDF and its corresponding

CDF [Fong et al. 2017; Kulla and Fajardo 2012] by a uniform sam-

pling of Equation 17. The downside of this method is that it requires

stepping along the entire length of the ray to evaluate all the bins

of the discrete PDF, and calculate its normalization factor – before

making any sampling decision (Figure 5, top).

To illustrate the inefficiency of the this approach, consider an

optically dense medium such as the one in Figure 1. Most of the light

transport in such objects takes place near the surface [Křivánek et al.

2014], at depths much smaller compared to the size of the object.

The overhead of the naïve approach is then proportional to the ratio

of the transport and object scales. Another example are large sparse

media (for example in Figure 11), where the important illumination

features (light shafts, caustics, etc.) might be too spaced-out to be

sufficiently captured by a uniform tracking.

Our key technical contribution is a novel guided distance sam-

pling method that overcomes this limitation by performing only the

necessary number of steps to reach the sampled collision distance.

6.1.2 Proposed Incremental Distance Sampling. Instead of con-

structing the complete discrete PDF along the ray upfront, the

tracking procedure implicitly estimates it on the fly while stepping

through the medium. This is done through a repeated stochastic

decision whether the collision event should be located somewhere

within the currently examined bin, or in the remainder of the ray

(Figure 5, bottom). In the latter case the stepping examines the suc-

cessive bin in the same fashion, leading to a procedure that can

be conceptualized as a tail recursion. In the following exposition

we then unfold this recursive process into an incremental tracking

procedure (Algorithm 1).

Note that such a procedure requires a normalization factor for

each individual step. Conveniently, we can approximate this factor

thanks to the cached quantities L̃ for the incoming radiance and L̃i

for the in-scattered radiance (Section 5).

To derive our incremental sampling method we first have a look

at the cumulative density function (CDF) of the combined zero-

variance PDF from Equation 17. Since the sampling proceeds along

the direction −ω starting at x, we will for the remainder of this

section operate within the 1D distance spacewith the origin at x. The
CDF defines the probability that a random variable D (representing

Fig. 5. Naïve (top) versus our incremental guided distance sampling (bot-
tom). The naïve solution generates a discrete PDF (and its corresponding

CDF) by first sampling along the entire ray to select a single collision lo-

cation (blue arrow). Our incremental technique (Algorithm 1) steps along

the ray, proposing candidate bins according to the current PDF estimate

and the estimated probability mass along the remainder of the ray without

explicitly sampling it. This approach is especially beneficial for optically

dense media, since on average fewer steps are taken due to the rapidly

decreasing transmittance function with regard to increasing d .

the scattering distance) is below or equal to the distance d :

P(D ≤ d) =

∫ d
0
T (0,d ′)σs(d

′)Li(d
′,ω) dd ′

L(0,ω)
. (18)

To rephrase, since the in-scattered radiance contribution of the ray

interval from x to xd is a subset of incoming radiance arriving at x,
the probability is the ratio between these two quantities.

Per-bin sampling. Consider first, that the stepping procedure has

already arrived (collision-free) to di (Figure 5, bottom). We now

propose the transition to the next point di+1, with the goal to de-

termine the probability of the collision being between di and di+1,

or alternatively, after di+1. If the former case occurs, the tracking

stops, whereas in the latter case, it restarts again from distance di+1.

Let us therefore take a look at an individual bin (ray interval)

between di and di+1. We will denote the conditional probability of

generating a collision within this bin as

Pi (D ≤ di+1) ≡ P(D ≤ di+1 | di < D). (19)

Since the bins are typically defined on the scale of the medium or

cache resolution, we can reasonably assume a constant Li and σs

for the current bin, allowing a closed-form integration of the local

transmittance. From Equation 18 we then get

Pi (D ≤ di+1) ≈
1 −T (di ,di+1)

σt(di )
·
σs(di ) · Li(di )

L(di ,ω)
, (20)

the first factor being the transmittance integral from di to di+1.

Now, the probability of reaching the point di collision-free (i. e.,
the condition in Equation 19) can be updated incrementally while
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stepping over the preceding bins:

P(di < D) =
i−1∏
j=0

1 − Pj (D ≤ dj+1). (21)

The final PDF for sampling d between di and di+1 is then:

p
d
(d | x,ω) = P(di < D) · Pi (D ≤ di+1) · p(d | di ,di+1,σt), (22)

where the last factor is the PDF for generating the collision distance

inside the bin. For details on sampling a distance inside one bin in a

homogeneous medium we refer the reader to the work of Kulla and

Fajardo [2012].

Replacing the radiance quantities from Equation 20 by our esti-

mates enables us to build an incremental tracking algorithm that

samples each bin according to Equation 17. Starting at the first bin

(i = 0), the algorithm sequentially decides with the probability of

Pi (D ≤ di+1) if a scattering event should be generated in the current

bin. If not, the algorithm updates the probability of not scattering

before di+1 (Equation 21) and continues to the next bin. In the case

an event is generated in the current bin a distance d between di and
di+1 is sampled, assuming a constant bin-specific σt. The pseudo-

code of this algorithm is presented in Algorithm 1 and an example

of the resulting PDF in Figure 6.

Algorithm 1 Algortihm for incremental guided distance sampling.

1: procedure guidedDistanceSampling(x,ω, dMax )
2: // x . . . starting position inside or at the beginning of the medium

3: //ω . . . direction in which the walk continues

4: // dMax . . . distance to the next surface intersection

5: di := 0

6: pdf := 1

7: scatter := False
8: while not scatter and di < dMax do
9: xi := x − diω
10: [L̃, L̃i] := lookUpEstimates(xi ,ω) ▷ Sec. 5

11: [σt, σs] := getMediumCoefficients(xi )
12: di+1 := getDistanceToNextBin(xi ,ω)

13: P := calcBinProbability(L̃, L̃i, σs, σt, di , di+1) ▷ Eq. 20

14: ξ := getRandomValue( )

15: if ξ ≤ P then ▷ current bin selected

16: pdf ∗= P
17: [d , pdfBin] := sampleDistanceInBin(di , di+1, σt)

18: pdf ∗= pdfBin
19: scatter := True
20: else ▷ continue tracking

21: pdf ∗= (1 − P ) ▷ Eq. 21

22: di := di+1

23: end if
24: end while
25: return [scatter , d , pdf ]
26: end procedure

Sampling stability: local versus global estimates. A key feature of

our incremental distance sampling is that it only relies on local esti-

mates of the volumetric radiance quantities L̃(di ,ω) and L̃i(di ,ω).

Especially, using the latter quantity as local normalization factor

instead of a single global one (i. e., L̃(0,ω) evaluated at the start of

the tracking) has multiple advantages:

• Inaccuracies of the local estimates almost solely affect the local

scattering decision at the current bin.

• As both estimates derive from the same representation (Sec-

tion 5), any repeated per-bin misestimation is only manifested

in the fluence term which cancels out in Equation 20. In other

words, the quality of the per-bin sampling only depends on the

representation accuracy of two estimates’ ratio.

A demonstration of the PDF resulting from our incremental dis-

tance sampling compared to the standard transmittance-based sam-

pling is given in Figure 6. Since our sampling procedure is directly

derived from the optimal PDF (Equation 17), it will converge to it

when the adjoint estimates are accurate and the step size decreases

so that the assumption of a per-bin constant σt and Li holds. Given

that the naïve method samples the same PDF, these two procedures

will also lead to similar sampling patterns – again, granted that the

radiance estimates are accurate enough.

On the other hand, in the sporadic cases when the local adjoint

estimates are corrupted (due to insufficient cache data or misfit

records), our strategy can suffer from inaccurate estimates for the

incident and in-scattered radiance, influencing the sampling quality.

Although such inaccuracies do not affect the consistency between

the generated samples and the calculated PDF used for normaliza-

tion, sampling bias might still be introduced in scenarios where

the generated samples distribution would not cover the entire inte-

grand. Such bias results from ‘early exits’ caused in particular by

underestimation of the incident radiance L̃(di ,ω). Similarly to other

guiding methods [Dahm and Keller 2017; Müller et al. 2017; Vorba

et al. 2014], we use MIS (balance heuristic with β = 0.5) with the

traditional sampling method (i. e., transmittance-based sampling) to

circumvent this problem. In addition, we also heuristically bound

the probability of scattering inside a bin (Equation 20) to be ≤ 0.9.

Sampling stability: incoming radiance filter. Figure 4 shows that

we usually can expect the L̃i(di ,ω) estimate to be more accurate

than L̃(di ,ω). To improve the incident radiance estimate during

the tracking, we can reuse the already evaluated estimates from

previous bins to refine our approximation within the current bin

at di . We use a prediction of the incident radiance in combination

with the exponential moving average filter for the refinement:

L̃I (di ,ω) = (1 −A) · L̃I I (di ,ω) +A · L̃(di ,ω)

L̃I I (di ,ω) =
L̃I (di−1,ω) − (1 −T (di−1,di )) · α(di−1) · L̃i(di−1,ω)

T (di−1,di )
(23)

The extrapolated prediction L̃I I at di is obtained from the previous

estimate L̃I at di−1, by subtracting the contribution of in-scattered

radiance along the bin from di−1 to di and inverting the attenuation
from di−1 to di . The factor α(di−1) = σs(di−1)/σt(di−1) is the scat-

tering albedo of the medium at di . To avoid an occasional negative

radiance estimate, L̃I I is bounded to be ≥ 0. The parameterA = 0.75

defines how much the refined estimate L̃I should rely on the cached

estimate L̃.

ACM Transactions on Graphics, Vol. 0, No. 0, Article 0. Publication date: 2018.



Volume Path Guiding Based on Zero-Variance Random Walk Theory • 0:9

Fig. 6. Comparison of different distance sampling strategies for a didactic

scene with a heterogeneous medium (3D grid with alternating density).

The ray starts from the camera and goes straight through the medium (red
point). Since the standard transmittance-based sampling (blue) ignores the
illumination component, it overestimates the importance of the first dense

cube of the grid structure. Our incremental guided sampling (green) on the

other hand is close to the simulated ground-truth PDF (orange).

6.2 Guided Product Directional Sampling

To explore the in-scattered radiance at a location in the volume, the

third sampling decision in the random walk generation chooses in

which direction the walk should continue. Traditionally, this decision

is only based on the phase function and therefore only covers a part

of the integrand in Equation 3.

Our approach is based on the zero-variance PDF in Equation 9:

it follows the idea of guiding based on the product of the phase

function and the incoming radiance, and as such can be viewed

as a direct extension of directional product guiding from surfaces

[Herholz et al. 2016] to volumes. The main difference: in contrast to

the Gaussian mixtures used by Herholz et al. we exploit the vMF

model which better represents the involved spherical (rather than

hemi-spherical) distributions.

The product mixture V ⊗ is calculated based on the mixture V L
of the incoming radiance and the mixture V f of the phase function:

V f (ω)V L(ω) = (V f ⊗ V L)(ω) = V ⊗(ω). (24)

The new scattering directionω is obtained by importance-sampling

this product mixture following the stable procedure presented by

Jakob [2012]. We use the same vMF approximation of the phase

function as when calculating in-scattered radiance (Section 5). To

account for inaccuracies in the estimates of incoming radiance we

use multiple importance sampling (MIS) between our product mix-

ture and the actual phase function. Formulas for calculating the

product mixture, including our derivation of numerically stable ap-

proximation of the integral of the product of the vMF models, are

given in Appendix A.2. Figure 7 shows a comparison of different

directional sampling methods for a dense anisotropic medium.

6.3 Guided Russian Roulette and Splitting

Stochastic path termination via Russian roulette (RR) is a fundamen-

tal part of algorithms based on random walks: it ensures correct

termination without having to impose hard limits on path lengths,

and prevents wasteful evaluation of long paths with disproportion-

ately low or even null contributions. Using the correct guided RR

probability (cf. Equation 10) is especially important in the context

of zero-variance-theoretical sampling, since an overly aggressive

Fig. 7. Comparison of phase function-based sampling, MIS-based sam-

pling between the incoming radiance and the phase function (akin to

Vorba et al. [2014]) and our guided product directional sampling using

MIS. For the MIS-based methods the same conservative probability of 0.5 is

used. The phase function of the medium is anisotropic with a mean cosine

of д = 0.6. The bottom row shows the PDFs of each methods (without MIS)

at the (orange) sample location below the surface.

path termination can dramatically increase variance [Vorba and

Křivánek 2016].

An intuitive way to reason about guided Russian roulette is

through an analogy with rejection sampling: the distance and direc-

tional sampling procedures (Sections 6.1 and 6.2) can be thought of

as processes that jointly yield path proposals. These proposals are

accepted or rejected using RR such that the accepted paths’ distribu-

tion more closely matches the desired, zero-variance distribution.

We therefore seek an acceptance (survival) probability to arrive

at this path distribution. For an estimator to have zero variance, it

follows that the contribution of every path to a given pixel should be

equal. This suggests an ideal path survival probability proportional

to the path’s expected contribution: low-contribution paths are more

likely to be terminated (rejected), so that surviving paths all con-

tribute equally (that is, after normalizing by the survival probability).

This notion then naturally extends to path splitting: if a path’s con-

tribution is higher than the corresponding pixel expectancy, we split

the path to explore the path space more evenly.

The intuition above has been formalized for surface transport by

Vorba and Křivánek [2016] in their adjoint-driven Russian roulette

and splitting approach. As they point out, RR and splitting are related

to the go with the winners method [Grassberger 2002]. Instead of

heuristically determining the RR and splitting factor [Szirmay-Kalos

2005], they use an adjoint estimate of the actual light transport.

We build atop their formalism and extend it to volumetric media,

referring to it as guided Russian roulette and splitting (GRR&S) to

be consistent with the remaining strategies presented here. For

simplicity, we discuss the case of paths traced from the camera,

for which the adjoint solution is given by the equilibrium radiance

(incident L and in-scattered Li). A generalization to light paths is

straightforward [Vorba and Křivánek 2016].

Volumetric guided RR and splitting. GRR&S computes the Russian

roulette and splitting factor q ∈ [0,∞) (Equations 6 and 11) for a

partially-generated path as the ratio between the path’s expected
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contribution E[r ], and pixel’s true value I , i. e.,q = E[r ]/I . Whenever

q ≤ 1, we apply RR to terminate the path with the probability of

1 − q. On the other hand, if q > 1, the path’s expected contribution

is higher than the actual pixel value, and we split it into n = ⌊q⌋ + 1

sub-paths (the extra sub-path with the probability q − ⌊q⌋).
What sets volumetric transport apart from surface transport is

that generating a new path vertex now involves two steps: distance

and direction sampling. Unlike on surfaces, Russian roulette and

splitting can be applied before either of these two steps, yielding

distance RR&S and directional RR&S processes.

Distance GRR&S. Consider a partially constructed path reaching

a position xj . Suppose we have already sampled the direction ωj
and that the current particle weight is ar . For distance GRR&S, we
compute the expected path contribution as the product of ar and
the appropriate adjoint (here, the incident radiance) [Hoogenboom

2008] as:

E[r ]
dist

≈ ar · L̃(xj ,ωj ). (25)

If we RR-terminate the path, we stop right at xj ; splitting, on the

other hand, leads to several independent distance samples distributed

along the ray (xj ,−ωj ), as illustrated in Figure 8a,b.

Directional GRR&S. Suppose the path has reached the next posi-

tion xj+1 from directionωj with the weight:

a′r = ar
T (xj , xj+1)σs(xj+1)

p
d
(d | xj ,ωj )

, (26)

Fig. 8. Volumetric guided RR and splitting. A volume split (marked green)

can generate both new sampled distances (left) and directions (right).

Fig. 9. Guided RR&S (green) compensating for inaccurate adjoint estimates

used in our incremental distance sampling (blue), in the configuration from

Figure 6. By using guided RR&S the resulting samples distribution matches

the optimal one (orange) more closely.

which encapsulates the weight ar for reaching the state (xj , ωj )

with the addition of all factors encompassing the sampling of the

distance d = ∥xj+1 − xj ∥. The appropriate adjoint for this case is
the in-scattered radiance Li and we have

E[r ]
dir

≈ a′r · L̃i(xj+1,ωj ). (27)

Splitting generates several independent scattering directions ωj+1

(and, consequently, multiple new sub-paths – see Figure 8c,d).

Figure 9 shows an example of the directional GRR&S compen-

sating for the inaccuracy in the adjoint estimate for L̃ used in our

incremental collision sampling. Section 7.3 presents additional re-

sults for both the distance and directional GRR&S.

Fig. 10. Comparison of the pixel estimates Ĩ (generated by accumulating

the in-scattered radiance from our adjoint) to the ground-truth solution.

Through the use of a weight window [Vorba and Křivánek 2016] even this

rough estimate is sufficient to guide our guided RR&S.

Practical considerations. To calculate the termination/splitting

factor q, we require an estimate Ĩ of the true pixel value I . As with
Vorba and Křivánek [2016], we pre-compute these estimates from

our cached adjoint (radiance) solution: we trace several camera rays

per pixel and, for each, gather the in-scattered radiance by marching

through the volume. Figure 10 illustrates these solution estimates.

An alternative way to estimate I would be to use a denoised version
of the rendered image after a small initial batch of samples, which

then could be refined over time after each sampling iteration.

In practice, we do not enforce the q-based termination and split-

ting rules strictly, in the form discussed above: instead, we use q to

center a weight window [Vorba and Křivánek 2016] to accommodate

for imprecisions in our cached adjoint estimates.

Finally, note that since GRR&S works as an ex-post compensation

for any deviations from the desired zero-variance scheme, it is de-

sirable to apply it as often as possible along a path. This happens in

an alternating fashion: the directional GRR&S follows the distance

sampling (Section 6.1), and vice versa, the distance GRR&S is applied

after the directional sampling step (Section 6.2).

GRR&S and zero-variance sampling. An important distinction

between the zero-variance path termination (as presented in Sec-

tion 3.2) and our volumetric GRR&S lies in the fact that we can

ever only operate with an approximation of the adjoint solution.

Because the distance and directional sampling decisions have no

notion of path history, any sub-optimal sampling decisions (due to

adjoint representation inaccuracy or MIS with traditional unguided

sampling methods) can accumulate and result in deviations from

the true zero-variance solution. Conducting guided RR and splitting
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Pre-process times (sec) Cache stats

Scene PT Fit Ĩ Total Dep #Ent Mem

InfiniteScan Head 22 66 <1 45 22 149k 104MB

Natural History 32 25 <1 57 18 67k 48MB

Volume Caustic 84 29 1.2 104 22 75k 52MB

Table 1. Left: pre-processing times for the main result scenes from Figure 11,

broken down to individual stages – photon tracing (‘PT’), EM-fitting of the

directional mixtures (‘Fit’), pixel expectancy estimate (‘Ĩ ’). Right: adjoint
cache statistics – kD-tree depth (‘Dep’), number of cache entries (‘#Ent’) and

memory occupancy (‘Mem’). Notably, while the cost of the photon-tracing

stage is strongly scene-dependent, the remaining steps have approximately

linear dependence w. r. t. the configured accuracy of the cache.

based on the expected path contribution compensates for any such de-

viations, since the expected contributions incorporate both a notion

of path history (in the path weight) as well as its expected future

contribution (in the cached adjoint solution).

As such, RR and splitting are a key balancing mechanism to

any approximate zero-variance solution – for that reason we ap-

ply GRR&S after each sampling decision, rather than just on light

sources as implied in Equation 11. Note that, in the hypothetical

case of ideal distance and directional sampling this would not be

necessary, and in fact splitting itself could be omitted entirely.

7 RESULTS AND EVALUATION

7.1 Implementation

We implemented our guided volume path tracer in the Mitsuba ren-

derer [Jakob 2010]. Although we explain our method in the context

of the last-event estimator (Equation 4), we in fact utilize next event

estimation for direct illumination and single scattering. Its inclusion

is analogous with surface guiding, we therefore refer the reader

to Vorba et al. [2014; 2016]. To account for remaining inaccuracies

in our radiance estimates we use multiple importance sampling

(MIS) between our guided sampling methods and traditional phase

function and transmittance-based sampling. For both methods we

use the balance heuristic with a conservative weight of β = 0.5.

Unless specified otherwise, we limit the maximum path length to 40.

Whenever the guided Russian roulette (RR) is not used, we disable

RR altogether; this way we avoid additional variance caused by

standard throughput-based RR.

Stepping through heterogeneous media uses the DDA algorithm

on top of the OpenVDB library. All tests were performed on a PC

with two Intel Xeon Gold 5115 CPUs (20 physical / 40 logical cores)

and 512 GB of RAM.Wemake use of SSE instructions for accelerated

vMF fitting and evaluation [Vorba et al. 2014]. Since we only rely on

one training pass and are not updating the mixtures on-the-fly, we

use a batch MAP-EM algorithm. For all tests our vMF mixtures use 8

components and 50M–100M photons to fit the cache. The minimum

and maximum number of photons per leaf node are set to 50 and

1000. Table 1 lists the statistics on the pre-processing step.

7.2 Scenes

We evaluate our method in several scenes representing different

configurations (especially with regard to the effective optical thick-

ness of the media, to gauge different proportions of low- and high-

order scattering) and challenging transport features. Equal-time

renderings are the primary form of benchmark, comparing our ap-

proach with a standard unidirectional path tracer which importance-

samples directions according to the phase function and collision

distances based on transmittance. We show that our guided path

tracer produces superior results to this industry-standard solution.

The primary application of our guided sampling is indeed unidi-

rectional path tracing due to its numerous advantages in produc-

tion [Fascione et al. 2017]. Our sampling techniques can, however, be

equally well employed in light tracing, photon tracing, bidirectional

path tracing, and combinations thereof [Křivánek et al. 2014].

Since our scenes contain both high-intensity areas (e. g., light

shafts or caustics) and low-intensity areas, we use the mean relative

squared error metric (relMSE) [Rousselle et al. 2011] with a 0.5-

percentile outlier removal for regularization. This metric treats both

types of regions equally compared to the standard mean squared

error (MSE), which is far more sensitive to variance in high-intensity

regions. A definition of the metric is given in Appendix B.

InfiniteScan Head. The head (Figure 1 and Figure 11) consists of

an optically dense medium, so subsurface scattering will occur near

to the surface. For the volume parameters we used the measured

data from Jensen et al. [2001]: д = 0, σt = (1.103, 1.66, 1.935) and

α = (0.988, 0.957, 0.925). The size of the head corresponds on aver-

age to 64 mean free path (MFP) lengths. As suggested by Donner

and Jensen [2006], we use a rough dielectric boundary interface.

The refractive nature of this interface prevents the use of next event

estimation to estimate the volumetric transport in this case. Since

the volumetric properties have strong color-dependence, each RGB

channel is rendered separately for 10 minutes and the results are

merged afterward. Both our guided incremental collision distance

sampling and directional sampling improve the efficiency of the path

generation. In addition, GRR&S avoids expensive generation of long

but weakly contributing paths deep inside the dense medium. In par-

ticular, splitting reduces the variance caused by either sub-optimal

guiding decisions or MIS with standard sampling techniques.

Natural History. In the museum (Figure 11) light shafts in the

homogeneous medium lead to dramatically varying in-scattering.

The museum is filled with an anisotropically scattering medium

(д = 0.4, σt = 0.05 and α = 0.75), which has the size of 2 MFP

lengths. Our method explores the cached in-scattered radiance for

the distance sampling and therefore will more often predict a scatter-

ing event inside a shaft. Directional guiding will then predominantly

choose a sampling direction pointing towards the light source. Since

the light shafts contribute the most to the volumetric transport in

the scene, the directional guiding will steer the sampling decisions

towards these light shafts.

Volume Caustic. Caustic light paths in a heterogeneous medium

(Figure 11) are a serious challenge for unguided path tracing. Our

approach considers the heterogeneity during the distance sampling,

and explores the cached radiance during the guided product distance

and product directional sampling to resolve the volumetric caustic

properly. The isotropically scattering heterogeneous medium has an

albedo of α = 0.75 and varying optical density of σt ∈ [0.001, 0.04]

resulting in an average size of 1/3 MFP lengths (i. e., dominated by

single scattering). Even after four days the reflections of the caustics
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Average contributing path length (CPL)

Scene Reference No guiding Dist.+Dir. +RR

InfiniteScan Head 6.2 12.3 10.5 5.3

Natural History 7.8 29.0 27.7 9.8

Volume Caustic 3.7 3.2 3.8 3.7

Table 2. Statistics about the contributing path lengths for the main result

scenes (Figure 11). With the help of our guided sampling strategies the path

lengths become significantly closer to the target reference values.

are not fully converged in the reference image, which was generated

using bidirectional path tracing.

7.3 Contribution of Individual Decisions

Guided product distance and directional sampling. As visible in

Figure 11, independently applying the guided collision distance sam-

pling or the scattering direction sampling can sometimes provide

only a minor decrease of solution variance (e. g., in the Natural

History scene). Due to the additional overhead it might even be

counter-productive at times (see distance sampling in the InfiniteS-

can Head scene). That is because, the effort to sample a suitable

scattering location might be wasted if the following directional sam-

pling is just following the phase function, and vice versa. However,

combining both sampling decisions always improves the results.

This is in line with the observations made by Dwivedi [1982] in

the context of deep penetration transport problems, that ‘synergis-

tic’ directional and distance sampling is necessary to leverage the

full potential of the zero variance-based sampling schemes (cf. also

[Křivánek and d’Eon 2014; Meng et al. 2016]).

Incremental distance sampling. Despite being asymptotically com-

parable, the advantage of our distance sampling approach over the

naïve method is that it allows us to avoid the complete traversal

along the ray before making a sampling decision. Especially in dense

media, most of the light transport happens close to the surface, and

generally we expect the next collision to be close to the current

one due to the exponentially decreasing transmittance function.

Building the complete discrete PDF therefore creates an unneces-

sary overhead, which depends on the transport characteristics in

each individual scene. While the naïve sampling always has to ac-

cess all the caches intersected by the sampled ray, our incremental

method stops on average after a third of the full ray distance in our

tested scenes, or specifically, after 38 % in Natural History, 16 %

in InfiniteScan Head, 45 % in Volume Caustic and 30% in the

Bumpy Sphere scene (see below in Section 7.5). In the equal-time

comparison in Figure 12 our method is therefore able to make sam-

pling decisions shortly after entering the medium, resulting in more

evaluated samples and consequently smoother images.

Guided RR. An informed Russian roulette strategy guided by the

adjoint further improves on top of the other sampling decisions

(Figure 11). Especially in dense or bounded media such as in the

InfiniteScan Head or the Natural History scenes, the generated

paths can experience several scattering events before leaving the

scene or the medium. In these cases guided RR identifies and termi-

nates long paths with low potential contribution, leading to more

samples evaluated at an equal time.

In Table 2 we compare the average per-pixel contributing path

length (tracked while generating the reference solution), in each

scene with the actual generated average path length produced by

different configurations of our estimator. In a truly zero-variance

estimator, the relative number of paths of a certain length should

be exactly proportional to the total image contribution due to paths

with the corresponding length. Since the average contributing path

lengths are strongly scene-dependent, manually setting an optimal

RR starting depth would be prohibitively complicated, and in any

case requiring some prior knowledge of the transport solution. By

using the adjoint solution to estimate the future contribution of a

path, the guided RR automatically leads to a termination strategy

close to the zero-variance optimum.

Table 3, left lists the relative ratios of paths terminated by the two

guided RR methods. Notably, the ratio between paths terminated by

directional RR versus distance RR depends strongly on the particular

scene-dependent transport characteristics. For instance, the high

optical density in InfiniteScan Head causes a strong in-scattered

radiance gradient underneath the surface boundary. It is therefore

more likely for the directional RR to terminate paths which would

progress deeper inside the volume. In Volume Caustic then, the

distance RR tends to terminate those samples inside the volumetric

caustics which are pointing away from the source.

Guided splitting. Complementing the RR, splitting helps in high-

variance regions: here our sampling strategies might still leave some

residual variance, due to sub-optimal sampling decisions caused

by inaccurate local radiance estimates or by the MIS with tradi-

tional sampling methods (e. g., in the Volume Caustic scene). Ta-

ble 3, middle, lists the ratios of paths split by the different methods –

in contrast to guided RR, the splitting ratios tend to be similar. Note

that by splitting a path the effective number of samples grows for

the corresponding pixel (Table 3, right).

Guided RR Guided splitting SPP

Scene Dir. Dist. Dir. Dist. Orig. Effect.

InfiniteScan Head 0.27 0.06 0.22 0.17 1312 1829

Natural History 0.48 0.29 0.29 0.28 1340 2104

Volume Caustic 0.05 0.16 0.23 0.25 3796 5685

Table 3. Termination and splitting ratios (i. e., the relative proportions of

paths terminated or split by each respective strategy) of the different guided

RR&S methods employed in our test scenes. Splitting generates additional

paths, on average leading to higher amounts of effective samples per pixel.

7.4 Adjoint Solution Accuracy

As discussed in Section 5, the accuracy of the approximate adjoint

representation directly impacts the guided estimator variance. Here

we investigate how different configurations of our cache system

influence the resulting solution quality, using the Natural History

scene as a testing ground.

In Figure 13, top we analyze the relationship between the number

of mixture components and the variance of our guided estimator. A

small number of components (e. g., 4) is not sufficient to represent

the complexity of the transport, while with 32 the EM algorithm

tends to overfit. In our experiments 8 or 16 components have there-

fore proven to provide the best tradeoff; we use 8 components to
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Fig. 11. Contribution of the individual guided sampling decisions to the final image. Note how the image quality gradually improves by considering the

adjoint-guided distance sampling, directional sampling, RR and splitting. The images show equal-time comparisons (InfiniteScan Head: 3×10 min, Natural

History: 45 min, Volume Caustic: 60 min) and compare to the reference results of a bidirectional path tracer running for 3×12 hrs for the InfiniteScan Head

scene, 12 hrs for the Natural History and 96 hrs for the Volume Caustic.

generate our results, since the faster evaluation of the model makes

up for the slightly higher variance of the estimator.

In Figure 13, bottom we then analyze the dependency of our

adjoint estimate on the spatial cache resolution. To test this we train

our estimates with a large number (400M) of photons, but limit the

kD-tree depth. While denser adjoints produce lower variance, we

can see that evenwith a rather inexpensive pre-processing phase and

rough adjoint, our solution clearly surpasses the quality of unguided

path tracing. In addition, since in our current implementation the

cache density is mainly a consequence of the photon distribution,

a higher spatial resolution is generated closer to the light sources.

This influences the efficiency of our incremental distance sampling,
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Fig. 12. Our incremental distance sampling explores the volume only up

to the collision location. Significantly more samples can thus be generated

in dense media (compared to the naïve sampling which first generates the

full PDF along the ray), leading to better results in (after 10 minutes of

rendering). Here, the naïve sampling needs to perform 18 cache look-ups to

produce a collision event, while our approach only needs 4, on average.

causing unnecessarily small stepping near sources. To avoid this

bottleneck we limit our spatial tree depth between 18 and 22 as a

simple but effective heuristic.

A general problem our estimates share with other related guiding

approaches [Dahm and Keller 2017; Müller et al. 2017; Vorba et al.

2014] is that, due to the averaging of the directional information

over the volume of each cache record (node), high angular frequen-

cies in L may not be reproduced well. An example is provided in

Figure 14, bottom. While this has only minor effects when it comes

to directional guiding, we sometimes observed negative impact on

our incremental distance sampling. In particular, overestimation of

L around the small high-frequency areas leads to the expectancy

of a higher contribution from behind the volume, and therefore

potentially prevents scattering inside the volume. In such cases our

method has to rely on MIS with the standard transmittance-based

SPP

SPP

Depth: 12

Depth: 18

Depth: 24

No guiding

Fig. 13. Evaluating the influence of the directional (top) and spatial (bottom)

resolution of the adjoint estimates on the variance of our guided unidirec-

tional path tracer used in the Natural History scene. The log-log plots

show the convergence behavior as a function of the number of samples per

pixel (up to 2k SPP).

Our+MIS

ReferenceTransmittanceStandard

Our

Ground truth Averaged Our estimate

Fig. 14. The effects of averaging the directional data over the volume of a

cache. Bottom: The averaging blurs high-frequency signals (left) over a larger
angular footprint (center), which is also represented in our directional vMF

caches (right). Top: This spread causes an overestimation of the incident

radiance around sharp regions, which might lead to sub-optimal distance

sampling decisions.

sampling to generate collisions at the right position, leading to

sub-optimal convergence as demonstrated in Figure 14.

One way to overcome this problem in the future could be to

extend the lobes of the vMF mixtures to include a weighted-average

distance to the source of the incident radiance. The mixture fitting

would then incorporate the parallax with respect to the source,

which would then function as an on-the-fly adjustment of the lobes’s

directions when evaluating the mixture.

7.5 Varying Scattering Anisotropy

In order to evaluate our guiding for different angular frequencies of

the transport, we simulate the Bumpy Sphere scene (Figure 15) with

varying degrees scattering anisotropy, ranging from near-isotropic

(д = 0.3) to highly anisotropic (д = 0.9) values. The Bumpy Sphere

is filled with a homogeneous medium with α = [0.95, 0.67, 0.45]

and the sphere has a diameter of approximately 6 MFP lengths. To

be able to render the scene using a unidirectional path tracer we

replaced the point light source by a small spherical area light. Its

main difficulty is the specular dielectric interface, which disallows

the possibility of direct light connections.

This is most apparent in the single-scattering scenario (Figure 15,

top), as in this case all illumination inside the medium consists of re-

fractive caustics, leading to very poor performance of the unguided

path tracer. Our sampling (guided by the single-scattering adjoint)

is able to localize the caustics, and then lead the tracer towards the

source. Even though for the higher scattering anisotropy values the

quality of our cached radiance estimates is somewhat decreased

(due to spiky energy distributions), our solution remains robust in

contrast to the unguided tracer.

For the multi-scattered case (Figure 15, bottom), the diffusion

of the caustics makes it easier for the unguided tracer to sample

the transport. Still though, the guided solution yields significantly

smoother results with at least an order-of-magnitude lower error.
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7.6 Alternative Distance Sampling Strategies

Since the incremental guided distance sampling (Section 6.1) is the

key novel component of our method, an evaluation against other

illumination-aware sampling strategies is warranted. Out of the

volume-specific sampling approaches reviewed in Section 2, we

compare to the equiangular sampling by Kulla and Fajardo [2012].

Other related methods [Georgiev et al. 2013; Kutz et al. 2017] have

the potential to incorporate the knowledge of the adjoint, but this

has not been proposed to date.

The equiangular strategy [Kulla and Fajardo 2012] places samples

according to the direct incident illumination footprint of a point

light source along the ray, neglecting both the phase function and

the attenuation by the medium. As plotted in Figure 16, left for

the Checkerboard Cube scene (cf. Figure 6), this method has the

desired ability to place samples in the high-contribution region

of the spotlight. The PDF (green) is however far from the optimal

one (orange), due to the neglected terms and the fact that it only

accounts for direct (single-scattered) illumination. MIS with the

standard transmittance-based sampling is therefore necessary, and

this procedure still leads to a PDF (purple) which is far from optimal.

Figure 16, right then demonstrates the method in the Natural

History scene. Here the equiangular sampling achieves good re-

sults in directly illuminated regions (i. e., light shafts), but leads to

excessive variance in areas dominated by multiple scattering. This

is further exacerbated by the light-selection problem – the strategy

has no prior information about the relative contribution of the indi-

vidual sources. Our sampling, in contrast, does not use a separate

strategy for sampling direct illumination, but instead relies on the

adjoint to guide paths towards light sources.

8 DISCUSSION AND LIMITATIONS

Utility and applicability. Our work shows the importance of re-

garding the individual sampling decisions in volume rendering as
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Fig. 15. Bumpy Sphere scene simulated with 2k SPP at different scattering

anisotropies, comparing our guided sampling (below diagonal) against the
unguided one (above diagonal). The unguided tracer struggles to sample high-

contribution paths, which is especially visible when limiting the transport

to a single volumetric bounce (top row).
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Fig. 16. Left: Comparing equiangular distance sampling [Kulla and Fajardo

2012] without (green) and withMIS (purple) against the optimal (orange) and
our (blue) incremental distance sampling, for the configuration in Figure 6.

Right: Comparing our guided sampling against equiangular and standard

distance sampling in the Natural History scene.

parts of a holistic sampling strategy. We demonstrated that doing so

substantially improves the baseline industry-standard approach in

the context of volume rendering, i. e., unguided path tracing based on

local sampling decisions. In agreement with the zero-variance sam-

pling theory, we provide apt evidence (Section 7) that phenomena

inherently difficult for a unidirectional solver (such as volumetric

caustics or light shafts) can be handled efficiently when aided by

globally informed, guided sampling.

Furthermore, any method based on incremental path generation

will benefit from our results. For instance, guided light tracing would

have the ability to distribute photons to visually important locations.

Because all sampling decisions in our framework rely on the zero-

variance theory, the estimator variance is directly linked with the

residual error of our adjoint solution’s representation and the used

MIS weights between our guided methods and traditional unguided

sampling. Therefore, any optimization directed at the adjoint’s ac-

curacy (fitting quality, spatial distributions, measurement estimates,

etc.) in turn improves the accuracy of the estimator itself.

Adjoint estimate accuracy. Despite proving adequate in all our

experiments, the presented single-pass photon-based training is

arguably not the optimal way to obtain a robust adjoint estimate.

Multi-pass methods, such as the bidirectional online learning of

Vorba et al. [2014] or Q-learning by Dahm and Keller [2017], could

prove to be a better approach. Alternatively, an adaptation of for-

ward learning (akin to Müller et al. [2017]) should be considered,

especially since it matches the directionality of our solver.

Spatial cache distribution. In contrast to Müller et al. [2017], the

spatial subdivision of our kD-tree caching structure depends on the

photon energy distribution from the light sources, rather than their

importance to the estimated quantity (that is, the rendered image).

The caches’ distribution is therefore skewed towards the sources,

causing a performance penalty as unnecessarily small stepping is

used during the guided distance sampling in the sources’ vicinity.

A more sophisticated caching scheme refined via illumination gra-

dients [Jarosz et al. 2008], or other well chosen heuristics, could

therefore positively impact our method’s performance.

MIS weights. Given that the knowledge of the perfect adjoint

solution is merely a hypothetical limit case, we must, to an extent,
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rely on a combined sampling with the standard ‘local’ methods.

Similarly as other related approaches [Dahm and Keller 2017; Müller

et al. 2017; Vorba et al. 2014] we employ MIS for this purpose, using

a rather conservative weight of 0.5. Lowering this weight to favor

the guided sampling strategies can lead to better estimates (as in

Herholz et al. [2016]), but can also increase the occurrence of high-

intensity outliers (‘fireflies’) in the cases when an occasional badly-

fitted adjoint is encountered. An adaptive way to obtain the MIS

weights, most likely based on an independently estimated confidence

of the adjoint fit, would therefore be of great benefit to our and other

existing guiding methods.

Additional sampling strategies. The efficiency of each sampling

decision could also be individually improved in combination with

existing approaches. One example is the work of Kutz et al. [2017]

whose tracking approach formulates probabilities for scattering,

absorption, and ‘null’ events. Biasing these probabilities according

to the adjoint solution could generate samples following the desired

product distribution, further increasing the efficiency of our cur-

rent differential stepping. Another interesting direction would be

using the Li approximation as a control variate. This is similar to

Pegoraro et al. [2008], but using our adjoint estimate for Li would

overcome their restrictions on the scattering anisotropy.

Even though our strategies are robust enough for sampling low-

order effects (e. g., in the scenes from Figures 11 and 15), they still

predominantly focus on indirect illumination. Specialized learning-

based methods tackling the light-selection problem [Donikian et al.

2006; Vévoda et al. 2018] could therefore be another useful addition

in guided transport solvers, especially to handle large production

scenes with many sources and optically thin media.

Surface guiding. Finally, as mentioned before, our sampling tech-

niques only cover the volumetric portion of light transport. To

obtain a full estimator, the complementary surface-oriented sam-

pling decisions could be performed on the basis of the existing

works of Vorba et al. [2014; 2016] and Herholz et al. [2016]. These

works likewise rely on the zero-variance-theoretical framework,

and store the adjoint solution in similar structures, which hints at a

straightforward combination with our work.

Local versus global guiding. We can distinguish between local and

global path generation strategies in path guiding. The recent global

approaches [Guo et al. 2018; Müller et al. 2018; Zheng and Zwicker

2018], which are based on learning the guiding distributions in the

primary sample space (PSS), consider sampling of the complete path

as a whole. The benefit of the global guiding in PSS is the lack

of need for an explicit spatial or directional representation of the

radiance distribution, and that additional features such as product

sampling with the scattering functions are implicitly encoded in the

random number domain (i. e., the PSS). However, the dimension of

the PSS grows with the length of the path and – due to the curse

of dimensionality – eventually it becomes virtually impossible to

gather sufficient training data for longer path lengths. The global

guiding approach by Simon et al. [2018] identifies and guides only

the – usually small – subset of paths that are hard to sample with

traditional techniques, making the global approach feasible.

The local path sampling strategies, as defined by Veach [1997],

rely solely on local low-dimensional information (e. g., spatial posi-

tion and incident direction at a path vertex) to perform individual

sampling decisions along a path. As such, they do not suffer from

the curse of dimensionality and gracefully handle paths of arbitrary

lengths. On the other hand, they often make suboptimal sampling

decision because of the limited information available to them.

While our method seemingly belongs among the local guiding

strategies, it is important to realize that the adjoint information

it accesses at the path vertices is the partial solution of the global

transport problem. In fact, the main result of the zero variance

random walk theory [Hoogenboom 2008] is that globally optimal

path importance sampling can be achieved through a set of carefully

selected local sampling decision. Our method relies on this result.

Relation to Metropolis light transport. While the described adjoint-

guided RR and splitting strategies represent a path length control

mechanism, there is a complementary view of them: that of an

indirect path density regulation mechanism. As such they share

similarities with Metropolis light transport (MLT) methods, which

explore the path space by mutating important paths.

While both methods strive to generate paths from the same target

distribution – that proportional to their image contribution – the key

difference is in the underlying sampling mechanism, each coming

with their own potential issues. Markov chains generated by MLT

may suffer from correlation and insufficient global exploration [Šik

and Křivánek 2018]. Splitting, on the other hand, may underperfom

due to its ex post nature: a splitting decision is taken only once the

path weight has become large, and this can occasionally be too late

to prevent an outlier sample from appearing in the image [Vorba

and Křivánek 2016]. Still though, exploring the relationship of the

two approaches could benefit both classes of methods.

9 CONCLUSION

We present a volume rendering framework in which every sampling

decision is derived from the theory of zero-variance path sampling,

i. e., is based on optimal importance sampling given the correct

adjoint transport solution. Approximating the true adjoint by as-

sembling a guiding structure using vMF mixtures, efficient sampling

decision algorithms are proposed for guided distance and directional

sampling as well as for path termination and splitting. Compared to

previous approaches which only consider partial information dur-

ing sampling, our decisions based on local estimates of the adjoint

solution consider the full volume rendering equation and therefore

yield significantly better convergence, while only adding a moderate

overhead for maintaining and evaluating the guiding structure.
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A VON MISES-FISHER DISTRIBUTION

We use parametric mixtures of von Mises-Fisher (vMF) distributions

to represent directional volumetric radiance estimates. The vMF

distribution v is a probability distribution on a d − 1 dimensional

sphere in Rd and describes the distribution of random, unit-length

vectors ω. We use vMF distributions in three dimensions in the

numerically robust form due to Jakob [2012]:

v(ω|µ,κ) =
κ

2π(1 − e−2κ )
eκ(µ

Tω−1). (28)

The distribution is parametrized by its mean direction µ and preci-

sion, a.k.a. concentration, κ. It is rotationally invariant around µ.

A.1 Parameter Estimation

To fit the mixture distributions for the radiance estimates described

in Section 5 a weighted batch MAP-EM algorithm (similar to the one

described by Vorba et al. [2014]) is used. Given an observed dataset

(e. g., photons in a cache cell), MAP-EM estimates the component

parameters based on a combination of their maximum likelihood es-

timates and priors associated with those proposed parameters. Since

this work uses vMF mixtures instead of Gaussian mixtures [Vorba

et al. 2014], we describe in the following the maximum likelihood

estimates for the vMF parameters, including their weighted version,

and the used κ parameter prior.

Maximum likelihood. We can estimate the vMF parameters by

maximizing the likelihood of an observed data vector {ω1, ...,ωN }

as follows. The mean direction is given by normalizing the average

of the observed directions, µ =
∑
ωi

∥
∑
ωi ∥
. The precision κ cannot be

estimated in a closed form but Banerjee et al. [2005] showed that it

can be approximated from the average cosine r̄ of the data around
the mean direction:

κ ≈
r̄ (d − r̄2)

1 − r̄
, where r̄ =

∥
∑
ωi ∥

N
. (29)

Weighted ML estimation. We can estimate the ML parameters of

a vMF model also for a weighted dataset, where each data point ωi
is associated with a weightwi describing its contribution. To do so,

the data pointsωi are replaced by their weighted versionω′
i ,

ω′
i = N

wi∑
j w j

ωi ; (30)

we then use the same ML estimation formulas as for the unweighted

case. The multiplication by N is a matter of convenience: It has no

bearing on the weighted ML estimation, but allows us to treat the

maximum a-posteriori estimation for the unweighted and weighted

cases in the same way (see Equation 32 below).

Maximum a-posteriori. To avoid overfitting, one can approach

parameter estimation as a maximum a-posteriori (MAP) problem,

imposing priors on µ and κ. Since there is no prior indication that

the volumetric light transport is biased towards a specific direction,

no directional prior is used for the mean directions of the vMF

components. We use a (conjugate) prior only for κ; it is given by

λ(κ |α,β) ∝

(
κ

2π(eκ − e−κ )

)α
eκ(αβ). (31)

The parameter α is the strength of the prior and can be interpreted

as the number of observations drawn from the prior distribution

with an average cosine of β. To integrate this prior in the parameter

estimation of κ, we replace the calculation of the average cosine

from Equation 29 with

r̄λ =
αβ + ∥

∑
ωi ∥

α + N
. (32)

An overview of additional priors and (unweighted) MAP-EM for

vMF mixtures is given by Bagchi and Guttman [1988] and Bangert

et al. [2010].

A.2 Convolution and Product

Closed-form solutions for convolving and calculating the product

distribution of two vMF models are respectively used to efficiently

obtain the in-scattered radiance estimate (Section 5) and to sample

the scattering direction according to the product of the incident

radiance and the phase function (Section 6.2).

Single lobes. The convolution v i ∗ v j of two vMF lobes v i and v j
can be approximated with another vMF lobe vk . Chatelain and Le Bi-
han [2013] show that the average cosine of vk is well approximated

by the product of the average cosines of v i and v j , i.e., r̄k = r̄i r̄ j .
The precision κk can then be calculated using Equation 29. If the
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average cosine of a vMF lobe is unknown, it can be approximated

by r̄ ≈ 1

tanh(κ) −
1

κ . When estimating the in-scattered radiance

via convolution of the incoming radiance vMF mixture, we use a

vMF representation of the phase function as convolution kernel (cf.

Equation 3). The mean directions of the mixture components stay

unchanged in the case of a forward-scattering phase function and

get inverted otherwise.

The product of two vMF lobes v i and v j forms another vMF lobe

vk multiplied by a scaling factor sk , i. e., v i v j = sk vk , with

κk = ∥κiµi + κjµj ∥ µk =
κiµi + κjµj

κk
. (33)

The scaling factor sk in fact represents the integral of the product.

Following Murray and Morgenstern [2010] and combining it with

the numerically stable evaluation of vMF by Jakob [2012] (Equa-

tion 28), we present a numerically stable formula for sk :

sk =
κiκj (1 − e−2κk )

2πκk (1 − e−2κi )(1 − e−2κj )
eκi (µ

T
i µk−1)+κj (µT

j µk−1)
. (34)

Mixtures of vMF lobes. The product of two vMF mixtures V 0

and V 1 with K0 and K1 components results in a mixture V 2 with

K2 = K0 ·K1 components. The vMF lobes of this newmixture are the

products of the combinations between the individual components

of each mixture (v
2,k = v0,i · v1, j ). For these lobes the weights

are derived by the individual component weights and the product

scaling factor:

π
2,k =

s
2,kπ0,iπ1, j∑

n=1

∑
m=1

s
2,lπ0,nπ1,m

. (35)

The scaling factor s
2,k stands for the integral of the product of the

i-th and j-th components of the mixtures V 0 and V 1 and s
2,l for

the product of the n-th andm-th components.

B RELATIVE MEAN SQUARED ERROR METRIC

In Section 7 the relative mean squared error metric is used to com-

pare the result images (Ia ), produced by of our zero variance-based

framework or alternatives, against ground-truth images (Ib ) gener-
ated by a bidirectional path tracer. The metric calculates the average

relative squared error over all image pixels (indexed by n):

relMSE(Ia, Ib ) =
1

N

∑(
Ia (n) − Ib (n)

Ib (n) + ϵ

)
2

. (36)

The avoid numerical instabilities wherever Ib (n) is close to zero, a

small bias of ϵ = 1e−3
is added in the denominator.
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