
Eurographics Symposium on Rendering - Experimental Ideas & Implementations (2015)
J. Lehtinen and D. Nowrouzezahrai (Editors)

High Performance Non-linear Motion Blur
J.-P. Guertin & D. Nowrouzezahrai

Université de Montréal

Figure 1: Smooth motion blur on a variety of complex, potentially non-linear motions, computed in 3.5 to 6.5ms at 1920×1080.

Abstract
Motion blur is becoming more common in interactive applications such as games and previsualization tools. Here,
a common strategy is to approximate motion blur with an image-space post-process, and many recent approaches
demonstrate very efficient and high-quality results [Sou13,GMN14]. Unfortunately, all such approaches assume
underlying linear motion, and so they cannot approximate non-linear motion blur effects without significant visual
artifacts. We present a new motion blur post-process that correctly treats the case of non-linear motion (in addition
to linear motion) using an efficient curve-sampling scatter approach. We simulate plausible non-linear motion
blur in 4ms at 1920×1080 and our approach has many desirable properties: its cost is independent of geometric
complexity, it robustly estimates blurring extents to avoid typical over- and under-blurring artifacts, it supports
unlimited motion magnitudes, and it is less noisy than existing techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Motion blur effects give important visual cues about the
dynamics of a scene, and as such they have played an al-
most essential role in realistic image synthesis for visual ef-
fects. More recently, the development of high-performance
post-processing techniques for approximating motion blur
have led to their almost ubiquitous integration in interactive
graphics applications, such as video games.

Despite these recent advances in more efficient and real-
istic motion blur simulation, almost every existing motion
blur solution (including the majority of offline, high-fidelity
solutions) assume that the underlying motion of an object

is strictly linear. This assumption dramatically reduces the
complexity of simulating motion blur effects, and is partic-
ularly important for high-performance approximations that
rely on image-space post-processing.

While, in practice, this limitation can sometimes be dis-
guised by either cleverly crafting an animation sequence, or
limiting the virtual exposure to short bursts, it can still lead
to very distracting visual artifacts. Avoiding these visual ar-
tifacts becomes even harder with the state of the art in in-
teractive motion blur approximations that rely primarily on
image-space post-processing. Here, camera and object mo-
tion can both very easily combine to cause very jarring visual
artifacts, even in scenes with simple motions (e.g., Figure 1).

c© The Eurographics Association 2015.



J.-P. Guertin & D. Nowrouzezahrai / High Performance Non-linear Motion Blur

Scatter Gather

Figure 2: Visualizing scatter and gather operations. In a
scatter-based algorithms, each data point (i.e., pixel) de-
posits data onto neighboring points; for gather-based algo-
rithms, each point queries its neighbors to compute its final
value. Scatter-as-gather emulates the former using the latter.

We present a high-performance motion blur approxima-
tion that gracefully handles linear and non-linear motion,
supports long exposure times, does not introduce temporal
artifacts under camera motion, and maintains the same ad-
vantages of existing techniques: it scales independently with
the underlying scene/motion complexity, and it uses a simple
post-process that integrates easily into existing engines.

2. Previous Work

We present recent work most related to our approach below,
and we forward readers to the comprehensive survey on mo-
tion blur [NSG11] for a more complete view of the area.

Offline Sampling. Traditionally, motion blur (and other
distribution effects) can be estimated via numerical inte-
gration, as presented by Cook in his seminal work on the
topic [Coo86]. Recent work on these offline solutions de-
sign more elaborate sampling and filtering schemes capa-
ble of leveraging the structure of object motion, including
multi-dimensional sampling schemes [HJW∗08], or adap-
tive sampling schemes based on wavelet-space [ODR09]
or frequency-based [ETH∗09] formulations of the motion
blur problem. Adaptive sampling can also be combined with
anisotropic spatial-temporal filtering [LAC∗11].

We are motivated by Reeves’ [Ree83] approach, where
motion points are advected according to a (world-space) par-
ticle system to form motion segments, and a world-space
blur is applied to the segments in order to approximate mo-
tion blur effects. We instead sample points on a screen-
aligned grid and analytically fit motion curves, leveraging
the entire programmable rasterization pipeline to efficiently
implement a true motion blurring scatter operation.

We target interactive applications, where object-space
sampling is not an option and motion blur effects must be
computed on the order of milliseconds, not seconds/minutes.

Interactive Approximations. Apart from heuristic object-
or texture-space extrusion and sorting approaches [ML85,

TBI03, RMM10], many interactive solutions aim to approx-
imate motion blur. Our work falls in this category, and
we are most related to image-space post-processing tech-
niques: such approaches are sample, manipulate (e.g., di-
lated), and blur frame-buffer colors according to screen-
space color and velocity information [Sou11,KS11]. Recent
tile-based variants segment image-space to more accurately
determine blurring directions and neighborhoods, approxi-
mating the motion blur scattering operation as a localized
gather. Blurring along a single, “dominant” velocity direc-
tion [Len10,MHBO12,ZG12,Sou13] is most efficient, how-
ever we base our comparisons on the most recent “multi-
direction” tile-based post-process approach of Guertin et
al. [GMN14], which is capable of resolving many of the
tile- and image-space artifacts of previous “single-direction”
techniques, but still maintains a very high-performance pro-
file.

We will show that even the most robust high-performance
post-process motion blur technique can fail in common sce-
narios, specifically when non-linear motion exists and/or
large motion magnitudes (and/or large exposure times) are
used. We are able to generate more accurate and more spa-
tially/temporally coherent motion blur in these scenarios,
with only a modest performance overhead: instead of requir-
ing on the order of 1 to 3ms (as in [GMN14]), our (unopti-
mized) approach requires 3.5 to 6.5ms.

Alternative Rendering Architectures. Recent work on
GPU micropolygon rendering [AMMH07] and stochastic
rasterization techniques [AMMH07, MESL10] provide a
middle-ground between accuracy and performance: object
visibility and shading are decoupled, which allows a more
accurate motion blur effect compared to interactive post-
processes, however at increased cost.

3. Method

Modern interactive motion blur approaches rely heavily on
the principle of scatter-as-gather, since algorithms design
in this manner can readily benefit from accelerated process-
ing on massively parallel modern GPU architectures. Specif-
ically, a scatter operation (such as motion blur), where each
pixel px,y influences the value at one or more pixels px′,y′ ,
is implemented as a gather operation, where each pixel px,y
queries pixels in its neighborhood px′,y′ to determine their
potential contributions (see Figure 2). In the general case, the
gather solution would require a neighborhood size equal to
the image resolution in order to perfectly simulate the scat-
ter, but a common acceleration strategy reduces this neigh-
borhood size heuristically in exchange for introducing some
approximation error. In the motion blur setting, this restric-
tion constrains both the form (i.e., linear vs. non-linear) and
the length of motion blur features.

Our method instead directly implements the scatter solu-
tion to motion blur, but in a manner that completely avoids

c© The Eurographics Association 2015.



J.-P. Guertin & D. Nowrouzezahrai / High Performance Non-linear Motion Blur

Pixel-level Vertex Grid Bézier Curve Discretization and Rasterization
(input) (vertex shader) (geometry/pixel shaders)

Figure 3: Grid scatter pass: we fit Bézier curves to a grid of pixel-aligned vertices with a vertex shader, querying an object’s
previous and next positions. We discretize the curves into line segments in a geometry shader and then rasterize the segments.
We compute the spatially-varying line color based on the originating pixel’s color and distance-based weight in a pixel shader.

its principal disadvantage: scattering on a GPU is inherently
inefficient since it reduces thread coherence by perform-
ing unordered buffer writes. Moreover, unordered buffer
writing operations are typically unoptimized at the driver-
and hardware-levels since they break the SIMD processing
model of GPUs, further increasing their cost in practice.
In contrast, primitive rasterization is perhaps the most op-
timized set of routines on a GPU; we exploit the fact that
primitive rasterization reduces to a series of unordered buffer
writes, and build our optimized GPU solution atop it.

We discuss our rendering approach below. It is divided
into three stages: a motion pre-pass, a grid scatter pass, and
a normalization pass.

3.1. Motion Pre-Pass

Similarly to most post-processed interactive motion blur al-
gorithms, we first use a set of pre-passes to output the neces-
sary motion data. Specifically, we store two buffers with the
location of each pixel’s geometry in screen space at two dif-
ferent time steps. Each pixel has an associated 3D position
and 1D time coordinate, p(t) = [xt ,yt ,zt , t], with the current
frame’s pixel p(0) at t = 0, and the “previous” and “next”
buffers storing p(−1) at t =−1 and p(1) at t = 1. At render-
time, given the current pixel’s screen coordinates (x,y), we
can retrieve its full screen space position at these three dif-
ferent points in time.

3.2. Grid Scatter

Given the motion data, the first pass of our algorithm re-
quires a set of pixel-aligned vertices, at the same M×N res-
olution of the final image, with positions px,y where 1≤ x≤
M,1 ≤ y ≤ N. We generate (and render) this data as a pre-
generated point list on the GPU.

Bézier Curve Computation. We first fit a Bézier curve
B(s) at each pixel from the three positions we have at times
t = {−1,0,1}. To do so, we perform vertex position texture
fetches in the vertex shader and set the necessary fitting con-
straints for a Bézier curve B as

B(0) = p(−1) B(1/2) = p(0) B(1) = p(1)

to solve for the curve control points

B0 = p(−1) B2 = p(1) B1 = p(0)− p(−1)− p(1)
2

.

We then output these three points, as well as the vertex’s
(u,v) coordinates, which will be used later on. We chose s =
{0,1/2,1} since we uniformly sampled the time steps, but
different sample locations points could also be used.

Discretization and Generation. We leverage a geometry
shader during the second step of our algorithm. Using the
three points outputted from the vertex shader above, we gen-
erate geometry to represent the Bézier curve as faithfully as
possible. Given our performance targets, we have found that
discretizing the curves into line lists balances accuracy and
performance, especially since lines are efficient to compute
and rasterize across a limited number of pixels (scaling with
O(N), versus O(N2) for a polygonal approximation, for N
curves). The geometry shader generates a list of fixed length
∆ lines as follows:{

(1− s2)B0 +2(1− s)sB1 + s2B2

∣∣∣s ∈ S
}

(1)

with S defined as

S =
1

∆−1
{0,1,2, . . . ,∆−2,∆−1}. (2)

We discard motionless pixels prior to segment generation.

Rasterization. The final step in our first pass rasterizes the
line segments into an accumulation buffer. Given many line
segments, the potential for significant overdraw is high and
so our shading routine must remain as simple as possible.
To do so, we can simply use the (u,v) coordinates stored in
the first step to query the color of the original pixel and out-
put this constant color for the line, effectively implementing
the scattering operation. While this works, we can improve
the visual quality of the blur by additionally weighting the
sampled color according the pixel’s interpolated s coordi-
nate value. We use a simple 1D Gaussian blur kernel with
(µ= 1/2,σ), and we also output this weight to the alpha chan-
nel.

We render every pixel with fully additive alpha blending

c© The Eurographics Association 2015.



J.-P. Guertin & D. Nowrouzezahrai / High Performance Non-linear Motion Blur

so that the final buffer stores the sum of all scatter operations.
We additionally enable depth tests but disable depth writes:
this means that each line also in rendered using proper z-
order tests with the other objects in the scene, correctly
accounting for objects moving behind other objects, even
through heavily non-linear motion. This strategy also has the
benefit of reducing the number of processed pixels processed
with early depth testing. Due to the high variability of the
values written in the accumulation buffer, we recommend
using a 32-bit floating-point buffer.

3.3. Normalization

The second pass of our algorithm is a “traditional” fullscreen
post-processing pass, with the rendered scene and accumu-
lation buffer as input. For each pixel, we wish to compute
the weighted average of every line rasterized onto the pixel.
Concretely, we wish to compute the color c′x,y of the pixel at
(x,y) according to the contribution of all of the other pixels
on the screen:

c′x,y =
∑

M
a=1 ∑

N
b=1 wa,b,x,y ca,b +wb cx,y

∑
M
a=1 ∑

N
b=1 wa,b,x,y +wb

(3)

where cx,y is the original color of the pixel at (x,y) before any
blurring, wa,b,x,y is the weight of the contribution of pixel
(a,b) to pixel (x,y), and wb is the (constant) background
weight.

The accumulated values in buffer A, generated during the
previous pass, effectively stores the first term of the numera-
tor in Equation 3 and its alpha channel α stores the first term
of the denominator and so we can trivial compute Equation 3
in a pixel shader as

c′x,y = (Ax,y +wb cx,y)
/
(αx,y +wb) . (4)

We additionally output αx,y in the alpha channel to support
transparency. Note that the explicit background contribution
is required, since we discard pixels without motion: without
it, all motionless pixels would render as black.

4. Results

All results were computed on a Core i7-3770K with 16GB
of RAM and a GTX780. Unless noted otherwise, we render
at 1920× 1080 and with {wb,∆,σ} = {5,11,2}. We com-
pare against an optimized implementation of Guertin et al.’s
efficient tile-based motion blur post-process [GMN14] us-
ing the parameters listed in the paper, as well as comparing
against ground truth computed using brute-force accumula-
tion (with temporal samples distributed according to a Hal-
ton sequence, to avoid banding). We adjusted motion mag-
nitudes in each scene in order to produce similar blurring
effects for each of the three algorithms, and we chose a lin-
ear blur sample count N for each scene that reduces noise,
and eliminates it where possible. We do not apply any an-
tialiasing.

Helicopter Scene. The first scene is the simplest, but high-
lights an important feature of non-linear blur: the ability
to correctly motion blur spinning objects. While linear al-
gorithms can approximate very low velocity rotations, they
quickly fall apart as soon as faster motions (and/or longer
exposures) are used. The helicopter’s spinning blades are
a simple representative example. As illustrated in Figure 4,
linear algorithms are unable to represent the arcing motion
of the blades and tail rotor, and instead approximate it as
patches of discrete linear velocity blurs (in wildly different
directions). For thin objects such as the blades, the effect is
incorrect but relatively acceptable. For round objects such as
rotor, a distracting “pinwheel artifact” is glaringly obvious.
Compared to the reference image, we note that apart from
the additional presence of the unblurred image, the shape
and appearance of the blur surrounding the blade is very ac-
curate (see Section 5), closely matching ground truth.

Teapot and Cubes Scene. The teapot scene represents a
more chaotic animation, with many objects moving along
different (often curved) trajectories. This scene highlights
the stability of our approach, which more accurately follows
all motion vectors for every object; approximating blurs per-
tile, on the other hand, can lead to directionless blurs and
blur effects that are difficult to visually parse. Specifically,
previous approaches have a tendency to over-blur the top of
the teapot, where chaotic motion is highest and thus where
it is extremely likely for a few highly mobile pixels to cause
an entire tile neighborhood’s blur estimate to deviate. These
approaches also have difficulty rendering the motion blur of
the movement at the bottom, where motion is largely linear
and parallel, but of a higher magnitude due to gravity. Our
non-linear algorithm manages to accurately represent both
scenarios, once again achieving a result that is very close to
the reference, aside from the overlaid presence of the un-
blurred objects (see once again Section 5).

Jumping Jack Scene. The last scene illustrates the algo-
rithm’s behavior with rigged characters. Character anima-
tions are an excellent example of non-linear motion, since
limbs generally perform rotational movements rather than
purely rectilinear ones. As with previous scenes, the blur’s
magnitude is more accurate with our approach, and it varies
smoothly depending on the actual velocity of the limb at
any given point. Details are better preserved and shading is
closer to the reference, ground truth accumulated image.

4.1. Performance

Due to our algorithm’s design, computation time tends to be
higher on average versus linear techniques, but not signifi-
cantly so (see Table 1). The pre-pass cost is easy to quan-
tify: it is roughly double the cost of the linear algorithm’s
pre-pass, as it requires two buffers instead of one. The post-
process cost is more complex, since it depends on the scene,
including the area of the screen which is blurred as well as

c© The Eurographics Association 2015.



J.-P. Guertin & D. Nowrouzezahrai / High Performance Non-linear Motion Blur

a) Linear

Linear Non-linear

b) Non-linear

Linear Non-linear

c) Accumulation

Accumulation Non-linear

Figure 4: The helicopter scene has significant rotational motion, a common failure case for linear motion blur: linear algo-
rithms fail to properly convey the scale of motion, they cause over- and under-blurring, and they either give the impression of
pure linear motion (as seen on the blades) or cause a pinwheel artifact (as seen on the tail rotor). This is due to clamping to
dominant linear velocity directions at different angles, across tiles.

the magnitude of the blur. Even so, it appears that a good
experimental estimate is roughly double the cost of the lin-
ear algorithm’s post-process. As such, it is fair to say that
our non-linear approach is roughly twice as expensive as the
state of the art linear motion blur post-process. This may
seem significant, but in practice many modifications could
be applied to limit the impact of our post-process (see Sec-
tion 5.1); even then, it is important to note that we generate
higher quality results in only 4 to 6.5ms of compute time.

5. Discussion and Limitations

While our approach generates good results in only a handful
of milliseconds, especially in scenes where the state of the
art fails, it still has some drawbacks which we discuss below
and will address in future work (see Section 5.1).

Performance. Due to our very straightforward blurring ap-
proach treatment, we also impose some additional con-
straints on our input. These two properties lead to variance
in the rendering cost: a scene with little to no blur can eas-
ily be cheaper than existing, linear algorithms, since our
shader code is comparatively simpler; however, a scene with
large amounts of blur can cause significant overdraw and
reduce performance. On average our approach has modest
performance characteristics requiring between 4 and 6.5ms
of compute time, but this is still 50 to 100% slower than the
state of the art. More complex scenes are penalized more by
the requirement of our second motion pre-pass.

Magnitude Constraints. Unlike existing techniques, our
algorithm does not impose any constraint on the magnitude
of the motion (or the exposure time), however extremely
large and high-frequency motions are unlikely to be cap-
tured accurately: any lack of motion information between

our sampled time steps, as well as the the inherent limitations
of simple quadratic Bézier curve fits, allows our approach to
handle motions roughly a few times the magnitude of cur-
rent algorithms, which is still a significant improvement but
is not completely general.

Masked Information. The post-processing nature of our
approach adopts the same limitations as existing techniques:
due to the limited scene information available per-pixel,
moving objects occluded by other objects (whether station-
ary or not) will not produce any motion blur, which can
cause vanishing motion trails when objects move in of out
of view.

Depth ordering. Our algorithm processes all pixels simul-
taneously and without any constraint as to depth ordering.
Since we use purely additive blending, this does not affect
the final result, but a more accurate blending would require
proper depth ordering. It is possible that improvements such
as rasterizer ordered views [?] may allow fast and accurate
sorting, therefore presenting more opportunities for accurate
blending.

Linear Non-linear
Pre-pass Post-process Samples Pre-pass Post-process

Heli. 0.45 1.4 35 0.88 3.1
Teapot 0.25 5.2 61 0.51 5.8
J. Jack 0.076 2.0 35 0.15 3.8

Table 1: Performance comparisons (in milliseconds) at
1920× 1080 for the scenes in Figures 4, 5, and 7. Sample
counts are provided for the linear algorithm. As expected,
our pre-pass is almost exactly twice as costly since it re-
quires two motion vector passes. Our approach is clearly
slower, however the difference is not overwhelming and we
have not yet made any optimization attempts.

c© The Eurographics Association 2015.



J.-P. Guertin & D. Nowrouzezahrai / High Performance Non-linear Motion Blur

a) Linear

Linear Non-linear

b) Non-linear

Linear Non-linear

c) Accumulation

Accumulation Non-linear

Figure 5: This teapot scene showcases chaotic movement with many superimposed velocities on each pixel of the screen. We
note that most pixel motion is slightly curved, which is more faithfully represented with our non-linear approach. Moreover,
there is a high variability in the motion vectors, which can is only partially captured by linear tile-based algorithms, while our
algorithm properly accounts for all directions and all magnitudes of motion.

5.1. Extensions

We will outline the avenues of future work we will pursue in
order to address some of the limitations listed above.

Cubic Bézier Curves and Circular Arcs. We can allevi-
ate some of the limitations caused by the use of quadratic
Bézier curves by moving to higher-order Bézier curves: a
cubic curve would require a third motion pre-pass (i.e., at ei-
ther t = −2 or t = −1/2; see Section 3), but would produce
a much more accurate blur, especially for larger movements.
Neither quadratic nor cubic curves would support conic mo-
tions however, and so a third option would be to instead fit
circular arcs to the motions. Transitioning between these dif-
ferent representations is an interesting idea we are exploring
as well. This is of particular interest in scenes with fast spin-
ning objects.

Multi-pass Rendering. In order to address artifacts that re-
sult from a lack of background information (which is a limi-
tation inherent to post-process approaches), we require some
important changes to the rendering pipeline. One possible
trade-off would be to segment and render the scene twice,
storing two color and depth buffers: one for objects in mo-
tion, and one for static objects. In this case, camera motion
would have to be handled separately. Now, we can apply
our approach to the moving objects, whereby they exclu-
sively access information from “moving” color/depth buffers
except when computing the background color contribution,
where they use the “static” buffer’s colors. This significantly
improves the appearance of the blur with only a moderate ad-
ditional overhead cost, effectively removing the most preva-
lent visual artifact of our approach (see Figure 6). An open
problem in this extension is how to correctly handle very low

a) Single-pass rendering

b) Two-pass rendering

Figure 6: Comparison between non-linear blur using the
basic, single-pass algorithm (a) and using our modified two-
pass rendering (b). Segmenting static objects allows us ac-
cess the background color behind the blurred objects, result-
ing in a more accurate relative weighting between the fore-
ground and background, completely eliminating the most
distracting visual artifact of our current approach.

velocities, where the background weight must tend toward
zero.

c© The Eurographics Association 2015.



J.-P. Guertin & D. Nowrouzezahrai / High Performance Non-linear Motion Blur

a) Linear b) Non-linear c) Accumulation

Figure 7: The jumping jack scene illustrates the algo-
rithms’ behavior with animated characters. our approach
better conserves the blur on the character’s knee, whereas
linear algorithms can almost completely miss this effect.

Optimizations. Our current algorithm is designed with
clarity in mind, however several avenues for optimization
are available: firstly, it should be possible to determine the
magnitude of the movement and clamp generated curves’
lengths according to the maximum; secondly, small motions
can be handled using a cheaper approximation, with our ap-
proach toggled on a per-pixel basis to handle complex mo-
tion; lastly, rendering our blur at a reduced resolution and
using e.g., a bilateral upsampling technique [SGNS07] is an
obvious direction to explore.

6. Conclusion

We propose a new approximate motion blur post-processing
approach capable of more accurately capturing blur effects
caused by non-linear motion. Our approach reduces spatial
and temporal noise (see the supplemental videos) and is de-
signed to leverage the shader pipeline in order to implement
a true scatter operation. As such, we are able to handle longer
motion trails, our algorithm is simple to implement atop ex-
isting rendering engines, it scales independently of the un-
derlying geometric complexity, and it generates spatially-
and temporally-smooth results in scenes where the state of
the art fails. We discuss the limitations imposed by our ap-
proach, and propose several avenues for future work. We
have begun exploring these directions, and a preliminary re-
sult (Figure 6) shows significant promise, eliminating the
most significant visual artifact of our approach.

References
[AMMH07] AKENINE-MÖLLER T., MUNKBERG J., HASSEL-

GREN J.: Stochastic rasterization using time-continuous trian-
gles. In Graphics Hardware (2007), Eurographics, pp. 7–16. 2

[Coo86] COOK R. L.: Stochastic sampling in computer graphics.
ACM Trans. Graph. 5, 1 (1986), 51–72. 2

[ETH∗09] EGAN K., TSENG Y.-T., HOLZSCHUCH N., DURAND
F., RAMAMOORTHI R.: Frequency analysis and sheared recon-
struction for rendering motion blur. ACM Trans. Graph. 28, 3
(2009). 2

[GMN14] GUERTIN J.-P., MCGUIRE M., NOWROUZEZAHRAI
D.: A fast and stable feature-aware motion blur filter. In High
Performance Graphics (June 2014), ACM/Eurographics. 2, 4

[HJW∗08] HACHISUKA T., JAROSZ W., WEISTROFFER R. P.,
DALE K., HUMPHREYS G., ZWICKER M., JENSEN H. W.:
Multidimensional adaptive sampling and reconstruction for ray
tracing. ACM Trans. Graph. 27, 3 (2008). 2

[KS11] KASYAN N., SCHULZ N.: Secrets of cryengine 3 graph-
ics technology. In SIGGRAPH Talks. ACM, 2011. 2

[LAC∗11] LEHTINEN J., AILA T., CHEN J., LAINE S., DU-
RAND F.: Temporal light field reconstruction for rendering dis-
tribution effects. ACM Trans. Graph. 30, 4 (2011), 55. 2

[Len10] LENGYEL E.: Motion blur and the velocity-depth-
gradient buffer. In Game Engine Gems, Lengyel E., (Ed.). Jones
& Bartlett Publishers, March 2010. 2

[McM] MCMULLEN M.: Direct3D New Rendering Features. 5

[MESL10] MCGUIRE M., ENDERTON E., SHIRLEY P., LUEBKE
D. P.: Real-time stochastic rasterization on conventional GPU
architectures. In High Performance Graphics (2010). 2

[MHBO12] MCGUIRE M., HENNESSY P., BUKOWSKI M., OS-
MAN B.: A reconstruction filter for plausible motion blur. In I3D
(2012), pp. 135–142. 2

[ML85] MAX N. L., LERNER D. M.: A two-and-a-half-d
motion-blur algorithm. In Proc. of SIGGRAPH (NY, 1985),
ACM, pp. 85–93. 2

[NSG11] NAVARRO F., SERÓN F. J., GUTIERREZ D.: Motion
blur rendering: State of the art. Computer Graphics Forum 30, 1
(2011), 3–26. 2

[ODR09] OVERBECK R. S., DONNER C., RAMAMOORTHI R.:
Adaptive wavelet rendering. ACM Trans. Graph. 28, 5 (2009). 2

[Ree83] REEVES W. T.: Particle systems – a technique for mod-
eling a class of fuzzy objects. ACM Trans. Graph. 2, 2 (Apr.
1983), 91–108. 2

[RMM10] RITCHIE M., MODERN G., MITCHELL K.: Split sec-
ond motion blur. In SIGGRAPH Talks (NY, 2010), ACM. 2

[SGNS07] SLOAN P.-P., GOVINDARAJU N. K.,
NOWROUZEZAHRAI D., SNYDER J.: Image-based proxy
accumulation for real-time soft global illumination. In Pro-
ceedings of Pacific Graphics (USA, 2007), IEEE, pp. 97–105.
7

[Sou11] SOUSA T.: Cryengine 3 rendering techniques. In Mi-
crosoft Game Technology Conference. August 2011. 2

[Sou13] SOUSA T.: Graphics gems from cryengine 3. In ACM
SIGGRAPH Course Notes (2013). 2

[TBI03] TATARCHUK N., BRENNAN C., ISIDORO J. R.: Motion
blur using geometry and shading distortion. In ShaderX2: Shader
Prog. Tips & Tricks with DirectX 9.0, Engel W., (Ed.). 2003. 2

[ZG12] ZIOMA R., GREEN S.: Mastering DirectX 11 with Unity,
March 2012. Presentation at GDC 2012. 2

c© The Eurographics Association 2015.


