Practical Shading of Height Fields and Meshes using Spherical Harmonics Exponentiation

Aude Giraud
Derek Nowrouzezahrai
Université M n de Montréal

Goals \& Motivation

[SN08]

[RWS*06;SGNS07]

Goals \& Motivation

[RWS*06;SGNS07]

Our results

Contributions

- unifying SH exponentiation on HFs and meshes
- dynamic geometry and HF visibility (no precomputation)
- diffuse and glossy BRDFs in log SH

Contributions

- unifying SH exponentiation on HFs and meshes
- dynamic geometry and HF visibility (no precomputation)
- diffuse and glossy BRDFs in log SH

Contributions

- unifying SH exponentiation on HFs and meshes
- dynamic geometry and HF visibility (no precomputation)
- diffuse and glossy BRDFs in $\log \mathrm{SH}$

- real-time performance and simple implementation
- limitation: only soft direct illumination
- applications:
- landscape rendering (flight simulators, mapping/navigation)
- interactive gaming

Accumulating Log-SH Visibility

Given spherical log-SH visibility for

Accumulating Log-SH Visibility

Given spherical log-SH visibility for

dynamic blocker "meshes"

$$
\left\{\mathbf{v}_{\log }^{0}, \mathbf{v}_{\log }^{1}, \cdots, \mathbf{v}_{\log }^{\mathrm{B}-1}\right\}
$$

Accumulating Log-SH Visibility

Given spherical log-SH visibility for

dynamic blocker "meshes"

$$
\left\{\mathbf{v}_{\log }^{0}, \mathbf{v}_{\mathrm{log}}^{1}, \cdots, \mathbf{v}_{\mathrm{log}}^{\mathrm{B}-1}\right\}
$$

dynamic height field geometry

$$
\mathbf{V}_{\mathrm{log}}^{\mathrm{HF}}
$$

Accumulating Log-SH Visibility

Given spherical log-SH visibility for

dynamic blocker "meshes"

$$
\left\{\mathbf{v}_{\log }^{0}, \mathbf{v}_{\log }^{1}, \cdots, \mathbf{v}_{\log }^{\mathrm{B}-1}\right\}
$$

dynamic height field geometry

$$
\mathbf{V}_{\mathrm{log}}^{\mathrm{HF}}
$$

- the total log-SH visibility vector is $\mathbf{V}_{\log }=\mathbf{v}_{\mathrm{log}}^{\mathrm{HF}}+\sum_{b=0}^{B-1} \mathbf{v}_{\log }^{\mathrm{b}}$

SH Exponentiation [RWS*06]

SH Exponentiation [RWS*06]

- Given any log-SH coefficient vector $f_{l o g}$, we use SH exponentiation to compute the (primal-domain) SH coefficients \mathbf{f}

SH Exponentiation [RWS*06]

- Given any log-SH coefficient vector $f_{\text {log }}$, we use SH exponentiation to compute the (primal-domain) SH coefficients \mathbf{f}
- We use the HYBrid SH exponentiation method [RWS*06]
- A series expansion of the exponential, projected into SH

SH Exponentiation [RWS*06]

- Given any log-SH coefficient vector $f_{\text {log }}$, we use SH exponentiation to compute the (primal-domain) SH coefficients f
- We use the HYBrid SH exponentiation method [RWS*06]
- A series expansion of the exponential, projected into SH
- Improved numerical stability with:
- DC isolation
- optimal linear-order approximation
- SH scaling \& squaring product accumulation

$$
\mathbf{f}=\exp \left(\mathbf{f}_{\mathrm{log}}\right) \approx \mathbf{1}+\mathbf{f}_{\mathrm{log}}+\frac{\mathbf{f}_{\mathrm{log}}^{2}}{2}+\frac{\mathbf{f}_{\mathrm{log}}^{3}}{3!}+\cdots
$$

Summary of Main Ideas

1. compute HF self-visibility (in log-SH space)

- create multi-resolution height pyramids
- sample from pyramid levels
- pre-filter data
- compose visibility analytically in log-space

2. compute HF cast-visibility (onto meshes)
3. compute mesh cast-visibility (onto HF) and self-visibility
4. accumulate total spherical visibility
5. compute log-SH BRDF and perform final shading

HF Definitions and Notation [SN08]

Need to find maximum blocking angle $\omega_{\max }$ along direction φ.

Calculating the Max Blocking Angle

[SN08]

Brute Force Sampling [SN08]

Problem: aliasing - need many samples in t.

Brute Force Sampling [SN08]

Problem: aliasing - need many samples in t. Solution: prefilter data, apply multi-scale sampling.

Multi-Resolution Height Sampling [SN08]

f_{i}
$\tau_{i}=2^{f(i)}$
height pyramid level i
sampling distance for level i

Multi-Resolution Height Sampling [SN08]

f_{i}

$$
\tau_{i}=2^{f(i)}
$$

height pyramid level i
sampling distance for level i

Multi-Resolution Height Sampling [SN08]

f_{i}

$$
\tau_{i}=2^{f(i)}
$$

sampling distance for level i

Sample coarser levels further from x.

Elevation Visibility

- starting with binary visibility for an elevation slice:

Elevation Visibility

- starting with binary visibility for an elevation slice:

- we can express the log-visibility for the slice as

$$
v_{\log }(\omega ; \sigma)= \begin{cases}\log \epsilon, & \text { if } \omega \leq \sigma \\ 0, & \text { otherwise }\end{cases}
$$

$$
v_{\log }(\omega ; \sigma)= \begin{cases}\log \epsilon, & \text { if } \omega \leq \sigma \\ 0, & \text { otherwise }\end{cases}
$$

and represent it analytically in the Normalized Legendre Polynomial (NLP) basis:

$$
\mathbf{v}_{\log }(\sigma)=\int_{\pi / 2-\sigma}^{\pi}(\log \epsilon) \hat{\mathbf{P}}(\cos \theta) \sin \theta \mathrm{d} \theta
$$

$$
v_{\log }(\omega ; \sigma)= \begin{cases}\log \epsilon, & \text { if } \omega \leq \sigma \\ 0, & \text { otherwise }\end{cases}
$$

and represent it analytically in the Normalized Legendre Polynomial (NLP) basis:

$$
\begin{aligned}
\mathbf{v}_{\log }(\sigma)= & \int_{\pi / 2-\sigma}^{\pi}(\log \epsilon) \hat{\mathbf{P}}(\cos \theta) \sin \theta \mathrm{d} \theta \\
=\log \epsilon \times & {\left[\frac{\sin \sigma+1}{\sqrt{2}}, \frac{-3 \cos ^{2} \sigma}{2 \sqrt{6}}, \frac{-5 \sin \sigma \cos ^{2} \sigma}{2 \sqrt{10}}\right.} \\
& \left.\frac{7 \cos ^{2} \sigma\left(-4+5 \cos ^{2} \sigma\right)}{8 \sqrt{14}}\right]
\end{aligned}
$$

Accumulating HF Visibility

- in the primal domain: can sum SH visibility for each slice

Accumulating HF Visibility

- in the primal domain: can sum SH visibility for each slice
- initialize the total visibility to 0 (fully occluded)
- add in visible portions per slice

Accumulating HF Visibility

- in the primal domain: can sum SH visibility for each slice
- initialize the total visibility to 0 (fully occluded)
- add in visible portions per slice

- but, in the log domain: sums correspond to products
- how do we accumulate products of visibility?

- but, in the log domain: sums correspond to products
- how do we accumulate products of visibility?
- begin by initializing total log-visibility to 1 (full visibility)
- multiply in the occluded portions
- do this by summing the log-visibility

- but, in the log domain: sums correspond to products
- how do we accumulate products of visibility?
- begin by initializing total log-visibility to 1 (full visibility)
- multiply in the occluded portions
- do this by summing the log-visibility

\square
$\square \log (\varepsilon)$

Visibility Slice Interpolation [NS09]

- already computed log-ZH azimuthal visibility, per-direction

Visibility Slice Interpolation [NS09]

- already computed log-ZH azimuthal visibility, per-direction
- can combine and interpolate azimuthal log-SH elevation coefficients together to form full log-SH spherical visibility

Visibility Slice Interpolation [NS09]

- already computed log-ZH azimuthal visibility, per-direction
- can combine and interpolate azimuthal log-SH elevation coefficients together to form full log-SH spherical visibility

Visibility Slice Interpolation [NS09]

- already computed log-ZH azimuthal visibility, per-direction
- can combine and interpolate azimuthal log-SH elevation coefficients together to form full log-SH spherical visibility

\boxed{L}
- requires 1 precomputed interpolation + projection matrix

- rotate and sum across each wedge's $\mathbf{V}_{\text {log }}^{\text {wedge }}$ to form final log-SH vector $\mathbf{V}_{\mathrm{log}}^{\mathrm{HF}}$

Summary of Main Ideas

1. compute HF self-visibility (in log-SH space)
2. compute HF cast-visibility (onto meshes)

- repeat multi-resolution marching
- offset the height field queries

3. compute mesh cast-visibility (onto HF) and self-visibility
4. accumulate total spherical visibility
5. compute log-SH BRDF and perform final shading

Height Field Cast Visibility onto Meshes

Need to find $\omega_{\max }$ on mesh shading point along each direction φ

Height Field Cast Visibility onto Meshes

Need to find $\omega_{\max }$ on mesh shading point along each direction φ

- Assume an infinite plane for the HF base elevation
- minimum blocking angle can't go negative

Calculating the Max Blocking Angle

Summary of Main Ideas

1. compute HF self-visibility (in log-SH space)
2. compute HF cast-visibility (onto meshes)
3. compute mesh cast-visibility (onto HF) and self-visibility

- extend traditional SH exponentiation approach [RWS*06;SGNS07]
- decompose dynamic mesh blockers into spheres
- compute \& accumulate log-SH visibility for spherical blockers
- on the mesh shading points
- repeat over the HF shading points
- intelligently cull the sphere set during accumulation
- reduces numerical accumulation error

4. accumulate total spherical visibility
5. compute log-SH BRDF and perform final shading

Spherical Blockers [RWS*06]

- approximate dynamic meshes with a set of spheres
- precomputed once
- skinned dynamically during animation/deformation

Spherical Blockers [RWS*06]

- approximate dynamic meshes with a set of spheres
- precomputed once
- skinned dynamically during animation/deformation

Spherical Blocker Log SH Visibility

- can compute log-visibility SH coefficients analytically
- begin with a canonical alignment:

$$
\theta_{b}=\arcsin (r / d)
$$

Spherical Blocker Log SH Visibility

- can compute log-visibility SH coefficients analytically
- begin with a canonical alignment:

$$
\theta_{b}=\arcsin (r / d)
$$

$\int_{\theta=0}^{\theta_{b}} \int_{\phi=0}^{2 \pi}(\log \epsilon) y_{l}^{0}(\theta, \phi) \sin \theta \mathrm{d} \theta \mathrm{d} \phi$

Spherical Blocker Log SH Visibility

- can compute log-visibility SH coefficients analytically
- begin with a canonical alignment:

$$
\theta_{b}=\arcsin (r / d)
$$

$\int_{\theta=0}^{\theta_{b}} \int_{\phi=0}^{2 \pi}(\log \epsilon) y_{l}^{0}(\theta, \phi) \sin \theta \mathrm{d} \theta \mathrm{d} \phi$

- solve analytically (we use order-4 SH, so 4 ZH coefficients)

$$
\begin{aligned}
\mathbf{v}_{l}^{\log }=\log \epsilon \times & {\left[-\sqrt{\pi}\left(-1+\cos \theta_{b}\right), \frac{\sqrt{3 \pi}}{2} \sin ^{2} \theta_{b},\right.} \\
& \left.\frac{\sqrt{5 \pi}}{2} \cos \theta_{b} \sin ^{2} \theta_{b}, \frac{\sqrt{7 \pi}}{16}\left(3+5 \cos \left(2 \theta_{b}\right)\right) \sin ^{2} \theta_{b}\right]
\end{aligned}
$$

$\int_{\theta=0} \int_{\phi=0}$

- solve analytically (we use order-4 SH, so 4 ZH coefficients)

$$
\begin{aligned}
\mathbf{v}_{l}^{\log }=\log \epsilon \times & {\left[-\sqrt{\pi}\left(-1+\cos \theta_{b}\right), \frac{\sqrt{3 \pi}}{2} \sin ^{2} \theta_{b},\right.} \\
& \left.\frac{\sqrt{5 \pi}}{2} \cos \theta_{b} \sin ^{2} \theta_{b}, \frac{\sqrt{7 \pi}}{16}\left(3+5 \cos \left(2 \theta_{b}\right)\right) \sin ^{2} \theta_{b}\right]
\end{aligned}
$$

- align to shading frame with ZH rotation [SLS05]

$$
\mathbf{v}_{l, m}^{\log }=\sqrt{\frac{4 \pi}{2 l+1}} \mathbf{v}_{l}^{\log } y_{l}^{m}\left(\overrightarrow{\omega_{d}}\right)
$$

Spherical Blocker Self- \& Cast- Shadows

Spherical Blocker Self- \& Cast- Shadows

- accumulate spherical blocker occlusion for both:

Spherical Blocker Self- \& Cast- Shadows

- accumulate spherical blocker occlusion for both:
- dynamic object self-occlusion

Spherical Blocker Self- \& Cast- Shadows

- accumulate spherical blocker occlusion for both:
- dynamic object self-occlusion

- and dynamic object cast-occlusion onto the HF

Ratio Attenuation

Ratio Attenuation

- SH exponentiation suffers from accumulation error when there are many overlapping blocker spheres

Ratio Attenuation

- SH exponentiation suffers from accumulation error when there are many overlapping blocker spheres
- we reduce accumulation error by:
- weighting log-SH visibility by blocker solid angle, and
- only accumulating blockers in upper shading hemisphere

Summary of Main Ideas

1. compute HF self-visibility (in log-SH space)
2. compute HF cast-visibility (onto meshes)
3. compute mesh cast-visibility (onto HF) and self-visibility
4. accumulate total spherical visibility

- combine per-slice HF (log) visibility to form full spherical visibility [NS09]
- accumulate dynamic mesh blocker log-visibility and HF log-visibility
- perform SH exponentiation

5. compute log-SH BRDF and perform final shading

Accumulate Log-SH Visibility

Given spherical log-SH visibility for

dynamic blocker "meshes"

$$
\left\{\mathbf{v}_{\log }^{0}, \mathbf{v}_{\log }^{1}, \cdots, \mathbf{v}_{\log }^{\mathrm{B}-1}\right\}
$$

dynamic height field geometry

$$
\mathbf{V}_{\mathrm{log}}^{\mathrm{HF}}
$$

- the total log-SH visibility vector is $\mathbf{V}_{\log }=\mathbf{v}_{\mathrm{log}}^{\mathrm{HF}}+\sum_{b=0}^{B-1} \mathbf{v}_{\log }^{\mathrm{b}}$

dynamic blocker "meshes"

$$
\left\{\mathbf{v}_{\log }^{0}, \mathbf{v}_{\log }^{1}, \cdots, \mathbf{v}_{\log }^{\mathrm{B}-1}\right\}
$$

dynamic height field geometry

$$
\mathbf{V}_{\mathrm{log}}^{\mathrm{HF}}
$$

- the total $\log -\mathrm{SH}$ visibility vector is $\mathbf{V}_{\log }=\mathbf{v}_{\log }^{\mathrm{HF}}+\sum_{b=0}^{B-1} \mathbf{v}_{\log }^{\mathrm{b}}$

$$
\mathbf{V}=\exp \left(\mathbf{V}_{\log }\right) \approx \mathbf{1}+\mathbf{V}_{\mathrm{log}}+\frac{\mathbf{V}_{\mathrm{log}}{ }^{2}}{2}+\frac{\mathbf{V}_{\mathrm{log}}{ }^{3}}{3!}+\cdots
$$

Summary of Main Ideas

1. compute HF self-visibility (in log-SH space)
2. compute HF cast-visibility (onto meshes)
3. compute mesh cast-visibility (onto HF) and self-visibility
4. accumulate total spherical visibility
5. compute log-SH BRDF and perform final shading

- simplify triple-product shading to double-product shading
- formulate view-evaluated BRDF in log-SH space
- accumulate BRDF with multi-product visibility

Traditional Triple Product SH Shading

$\mathbf{V}=\exp \left(\mathbf{V}_{\text {log }}\right)$
spherical SH visibility

Traditional Triple Product SH Shading

$\mathbf{V}=\exp \left(\mathbf{V}_{\text {log }}\right)$
spherical SH visibility

Traditional Triple Product SH Shading

$\mathbf{V}=\exp \left(\mathbf{V}_{\text {log }}\right)$
spherical SH visibility
view-evaluated BRDF
\mathbf{L}_{e}
lighting environment
$\mathbf{f}_{r}\left(\omega_{o}\right)$

- final shading traditionally ([RWS*06;SGNS07]) computed with triple-product SH integration:

$$
L_{o}\left(\omega_{o}\right)=\sum_{i j k}\left[\mathbf{L}_{e}\right]_{i}[\mathbf{V}]_{j}\left[\mathbf{f}_{r}\left(\omega_{o}\right)\right]_{k} \Gamma_{i j k}
$$

where

$$
\Gamma_{i j k}=\int_{S^{2}} y_{i}(\omega) y_{j}(\omega) y_{k}(\omega) \mathrm{d} \omega
$$

are the SH tripling coefficients, a sparse order-3 tensor.

- Triple product shading computation is still costly!

Log-BRDF Shading

- We already use log-space to perform a multi-product

$$
\mathbf{V}=\exp \left(\mathbf{V}_{\mathrm{log}}\right) \approx \prod_{b=0}^{B-1} \mathbf{V}_{b}
$$

Log-BRDF Shading

- We already use log-space to perform a multi-product

$$
\mathbf{V}=\exp \left(\mathbf{V}_{\mathrm{log}}\right) \approx \prod_{b=0}^{B-1} \mathbf{V}_{b}
$$

- Triple-product shading composes the BRDF-weighted visibility (transfer) in the primal domain with a product

$$
\mathbf{T}=\mathbf{f}_{r}\left(\omega_{o}\right) \times \prod_{b=0}^{B-1} \mathbf{V}_{b}
$$

Log-BRDF Shading

- We already use log-space to perform a multi-product

$$
\mathbf{V}=\exp \left(\mathbf{V}_{\mathrm{log}}\right) \approx \prod_{b=0}^{B-1} \mathbf{V}_{b}
$$

- Triple-product shading composes the BRDF-weighted visibility (transfer) in the primal domain with a product

$$
\mathbf{T}=\mathbf{f}_{r}\left(\omega_{o}\right) \times \prod_{b=0}^{B-1} \mathbf{V}_{b}
$$

- Idea: use log-space to compose transfer with a sum
- Idea: use log-space to compose transfer with a sum

$$
\mathbf{T}=\exp \left(\left[\mathbf{f}_{r}\left(\omega_{o}\right)\right]_{\mathrm{log}}+\mathbf{V}_{\mathrm{log}}\right) \approx \mathbf{f}_{r}\left(\omega_{o}\right) \times \prod_{b=0}^{B-1} \mathbf{V}_{b}
$$

- Idea: use log-space to compose transfer with a sum

$$
B-1
$$

$$
\mathbf{T}=\exp \left(\left[\mathbf{f}_{r}\left(\omega_{o}\right)\right]_{\mathrm{log}}+\mathbf{V}_{\mathrm{log}}\right) \approx \mathbf{f}_{r}\left(\omega_{o}\right) \times \prod_{b=0} \mathbf{V}_{b}
$$

SH transfer

- Idea: use log-space to compose transfer with a sum

$$
B-1
$$

$$
\mathbf{T}=\exp \left(\left[\mathbf{f}_{r}\left(\omega_{o}\right)\right]_{\mathrm{log}}+\mathbf{V}_{\mathrm{log}}\right) \approx \mathbf{f}_{r}\left(\omega_{o}\right) \times \prod_{b=0} \mathbf{V}_{b}
$$

SH transfer
\mathbf{L}_{e}
lighting environment

- Idea: use log-space to compose transfer with a sum

$$
\mathbf{T}=\exp \left(\left[\mathbf{f}_{r}\left(\omega_{o}\right)\right]_{\mathrm{log}}+\mathbf{V}_{\mathrm{log}}\right) \approx \mathbf{f}_{r}\left(\omega_{o}\right) \times \prod_{b=0}^{B-1} \mathbf{V}_{b}
$$

SH transfer
\mathbf{L}_{e}
lighting environment

- Now shading requires a cheap double-product SH integral!
- but how do we compute the log-BRDF SH coefficients?

Log-BRDF SH Coefficients

- We compute the log-ZH BRDF coefficients numerically for:
- diffuse BRDFs,
- and Phong BRDFs

$$
f_{r}(\theta)=\frac{\alpha+1}{2 \pi} \max \left(\cos ^{\alpha} \theta, 0\right)
$$

Log-BRDF SH Coefficients

- We compute the log-ZH BRDF coefficients numerically for:
- diffuse BRDFs,
- and Phong BRDFs

Log-BRDF SH Coefficients

- We compute the log-ZH BRDF coefficients numerically for:
- diffuse BRDFs,
- and Phong BRDFs

$f_{r}(\theta)=\frac{\alpha+1}{2 \pi} \max \left(\cos ^{\alpha} \theta, 0\right)$
- Need to treat hemispherical clamping carefully!

$$
f_{r}(\theta)=\frac{\alpha+1}{2 \pi} \max \left(\cos ^{\alpha} \theta, 0\right)
$$

- Need to treat hemispherical clamping carefully!
- Canonical-frame ZH log-BRDF coefficients are then:

$$
\begin{aligned}
f_{l, 0}^{\log =} & \int_{H^{2+}} \log \left(\frac{\alpha+1}{2 \pi} \max \left(\cos ^{\alpha} \omega_{\theta}, \epsilon\right)\right) y_{l}^{0}(\omega) \mathrm{d} \omega+ \\
& \int_{H^{2-}}(\log \epsilon) y_{l}^{0}(\omega) \mathrm{d} \omega
\end{aligned}
$$

$$
f_{r}(\theta)=\frac{\alpha+1}{2 \pi} \max \left(\cos ^{\alpha} \theta, 0\right)
$$

- Need to treat hemispherical clamping carefully!
- Canonical-frame ZH log-BRDF coefficients are then:

$$
\begin{aligned}
f_{l, 0}^{\mathrm{log}=} & \int_{H^{2+}} \log \left(\frac{\alpha+1}{2 \pi} \max \left(\cos ^{\alpha} \omega_{\theta}, \epsilon\right)\right) y_{l}^{0}(\omega) \mathrm{d} \omega+ \\
& \int_{H^{2-}}(\log \epsilon) y_{l}^{0}(\omega) \mathrm{d} \omega
\end{aligned}
$$

- We compute \& tabulate order-4 ZH coefficients numerically

Log-BRDF Error

- In a worse case lighting scenario, log-SH BRDF shading still maintains a cosine-like fall-off profile

SH

$$
\log -\mathrm{SH}
$$

α

Log-BRDF Error

- In a worse case lighting scenario, log-SH BRDF shading still maintains a cosine-like fall-off profile

α
1

Log-BRDF Error

- In a worse case lighting scenario, log-SH BRDF shading still maintains a cosine-like fall-off profile

Results

Results

- Hybrid image/object-space renderer
- spherical blockers splatted onto screen [SGNS07]
- multi-resolution HF ray-marching in HF object-space
- rendered at 960×540 with (avg.) pixel coverage of 83%.

Results

- Hybrid image/object-space renderer
- spherical blockers splatted onto screen [SGNS07]
- multi-resolution HF ray-marching in HF object-space
- rendered at 960×540 with (avg.) pixel coverage of 83%.

Wrecking Ball	Whale in Ocean	Cone Man
402 blockers +HF	50 blockers +HF	25 blockers +HF
$\mathbf{1 5 \mathrm { Hz } (\mathrm { GTX } 4 8 0)}$	$10 \mathrm{~Hz}(\mathrm{GTX} 480)$	$68 \mathrm{~Hz}(\mathrm{GTX} 480)$

Results

- Hybrid image/object-space renderer
- spherical blockers splatted onto screen [SGNS07]
- multi-resolution HF ray-marching in HF object-space
- rendered at 960×540 with (avg.) pixel coverage of 83%.

Wrecking Ball	Whale in Ocean	Cone Man
402 blockers + HF	50 blockers + HF	25 blockers +HF
$15 \mathrm{~Hz}(\mathrm{GTX} 480)$	$10 \mathrm{~Hz}($ GTX 480)	$68 \mathrm{~Hz}(\mathrm{GTX} 480)$

Results

- Hybrid image/object-space renderer
- spherical blockers splatted onto screen [SGNS07]
- multi-resolution HF ray-marching in HF object-space
- rendered at 960×540 with (avg.) pixel coverage of 83%.

Conclusions

Conclusions

- Combine soft shadowing from environment lighting for scenes with dynamic blockers and dynamic HFs

Conclusions

- Combine soft shadowing from environment lighting for scenes with dynamic blockers and dynamic HFs
- Extend multi-resolution marching to non-HF objects
- offset marching and infinite plane assumption

Conclusions

- Combine soft shadowing from environment lighting for scenes with dynamic blockers and dynamic HFs
- Extend multi-resolution marching to non-HF objects
- offset marching and infinite plane assumption
- Novel log-SH visibility composition for HF slices
- analytic Legendre polynomial coefficients for log-visibility elevation functions

Conclusions

- Combine soft shadowing from environment lighting for scenes with dynamic blockers and dynamic HFs
- Extend multi-resolution marching to non-HF objects
- offset marching and infinite plane assumption
- Novel log-SH visibility composition for HF slices
- analytic Legendre polynomial coefficients for log-visibility elevation functions
- Propose Log-SH BRDF formulation to reduce triple-product shading to double-product shading

Future Work

Future Work

- infinite plane assumption when marching non-HF elements
- leverage negative blocking angle formulation of [NS09]

Future Work

- infinite plane assumption when marching non-HF elements
- leverage negative blocking angle formulation of [NS09]
- analytic log-BRDF formulation with better hemi-clamping

Future Work

- infinite plane assumption when marching non-HF elements
- leverage negative blocking angle formulation of [NS09]
- analytic log-BRDF formulation with better hemi-clamping
- indirect lighting accumulation in log-SH space

Future Work

- infinite plane assumption when marching non-HF elements
- leverage negative blocking angle formulation of [NS09]
- analytic log-BRDF formulation with better hemi-clamping
- indirect lighting accumulation in log-SH space
- generalize geometry
- local height field displacements
- tiled height field representations
- non-spherical blockers

We acknowledge the helpful suggestions of the anonymous reviewers.

Thanks! Any questions?

