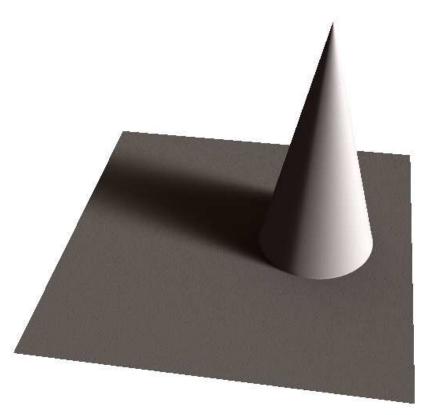
Practical Shading of Height Fields and Meshes using Spherical Harmonics Exponentiation

Aude Giraud

Derek Nowrouzezahrai Université de Montréal

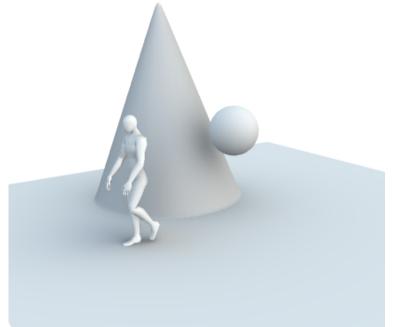
[SN08]

[RWS*06;SGNS07]

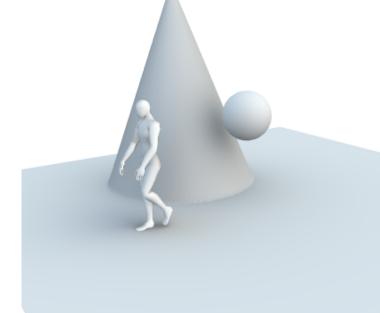


Goals & Motivation

Goals & Motivation



Our results



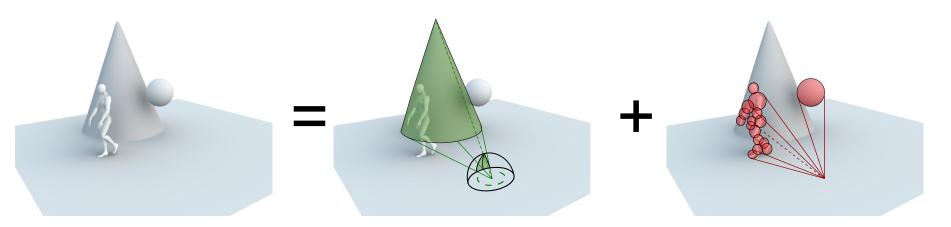
[RWS*06;SGNS07]

Contributions

- unifying SH exponentiation on HFs and meshes
 - dynamic geometry and HF visibility (no precomputation)
 - diffuse and glossy BRDFs in log SH

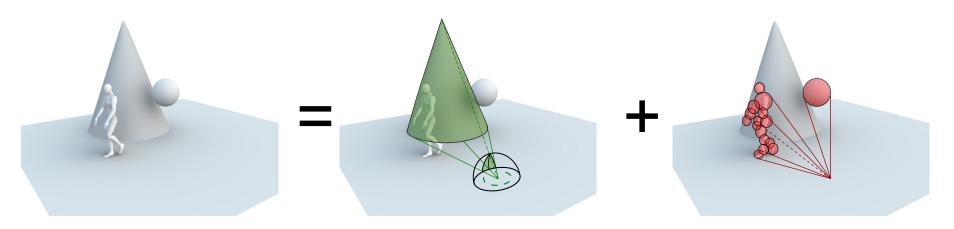
Contributions

- unifying SH exponentiation on HFs and meshes
 - dynamic geometry and HF visibility (no precomputation)
 - diffuse and glossy BRDFs in log SH



Contributions

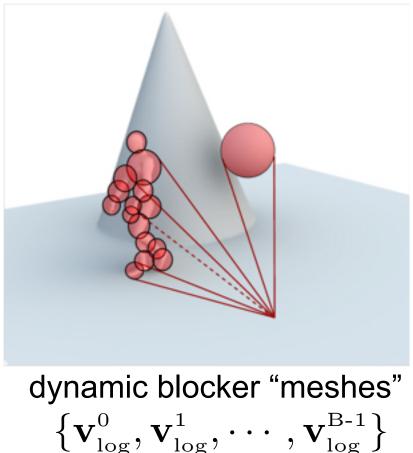
- unifying SH exponentiation on HFs and meshes
 - dynamic geometry and HF visibility (no precomputation)
 - diffuse and glossy BRDFs in log SH



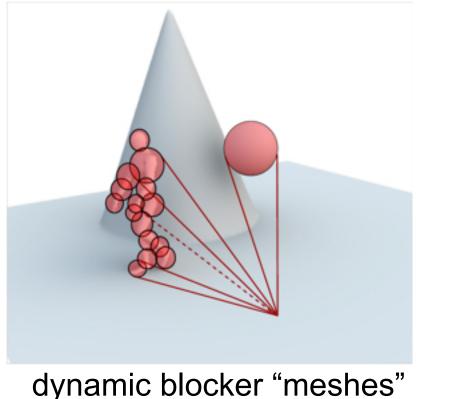
- real-time performance and simple implementation
- limitation: only *soft direct illumination*
- applications:
 - landscape rendering (flight simulators, mapping/navigation)
 - interactive gaming

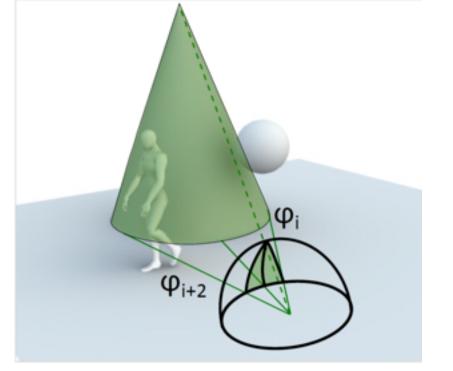
Given spherical log-SH visibility for

Given spherical log-SH visibility for



Given spherical log-SH visibility for

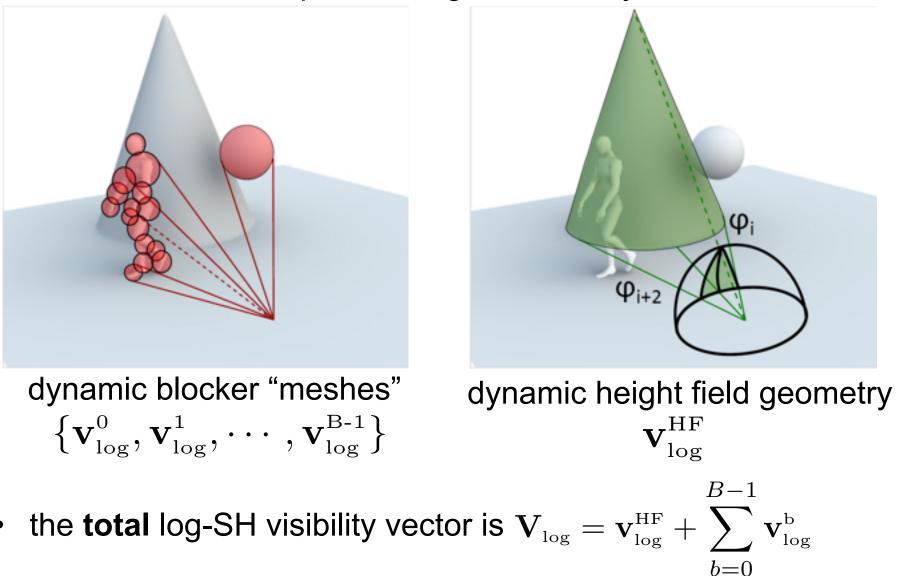




dynamic blocker "meshes" $\{\mathbf{v}_{\log}^0, \mathbf{v}_{\log}^1, \cdots, \mathbf{v}_{\log}^{B-1}\}$

dynamic height field geometry $v_{\rm log}^{\rm HF}$

Given spherical log-SH visibility for



- Given any log-SH coefficient vector $f_{\rm log}$, we use SH exponentiation to compute the (primal-domain) SH coefficients f

- Given any log-SH coefficient vector $f_{\rm log}$, we use SH exponentiation to compute the (primal-domain) SH coefficients f
- We use the **HYBrid** SH exponentiation method [RWS*06]
- A series expansion of the exponential, projected into SH

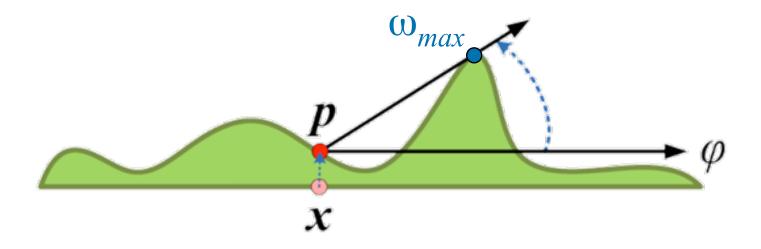
- Given any log-SH coefficient vector $f_{\rm log}$, we use SH exponentiation to compute the (primal-domain) SH coefficients f
- We use the HYBrid SH exponentiation method [RWS*06]
- A series expansion of the exponential, projected into SH
- Improved numerical stability with:
 - DC isolation
 - optimal linear-order approximation
 - SH scaling & squaring product accumulation

$$\mathbf{f} = \exp\left(\mathbf{f}_{\log}\right) pprox \mathbf{1} + \mathbf{f}_{\log} + \frac{\mathbf{f}_{\log}^2}{2} + \frac{\mathbf{f}_{\log}^3}{3!} + \cdots$$

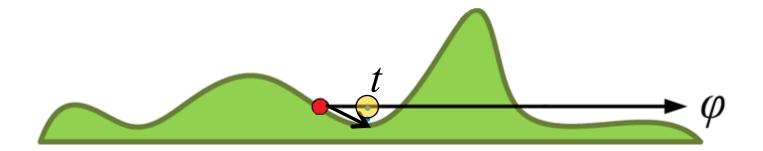
Summary of Main Ideas

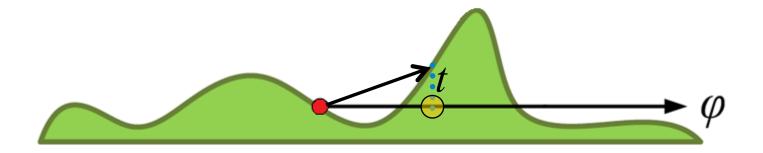
- 1. compute *HF* self-visibility (in *log-SH* space)
 - create multi-resolution height *pyramids*
 - sample from pyramid levels
 - pre-filter data
 - compose visibility *analytically* in log-space
- 2. compute *HF cast-visibility* (onto meshes)
- 3. compute mesh cast-visibility (onto HF) and self-visibility
- 4. accumulate total spherical visibility
- 5. compute log-SH BRDF and perform final shading

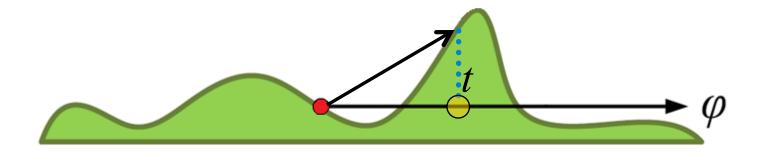
HF Definitions and Notation [SN08]

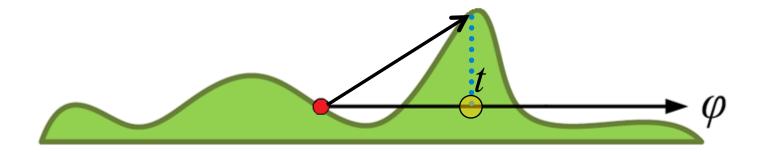


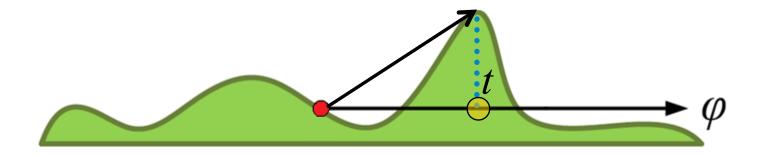
Need to find maximum blocking angle ω_{max} along direction φ .

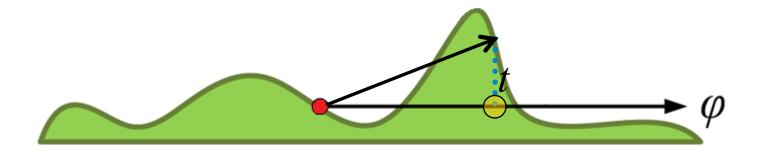


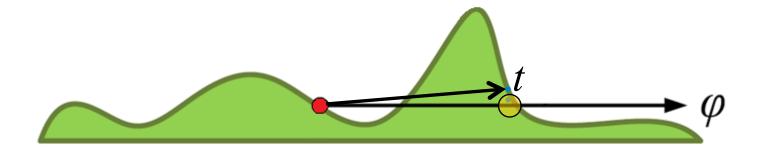


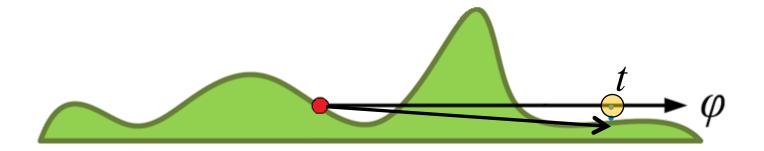


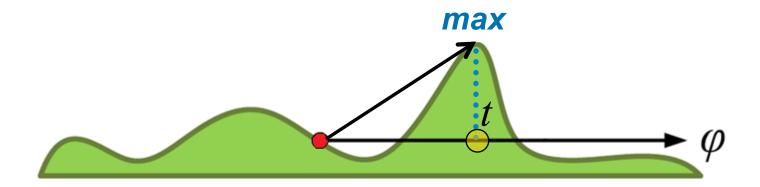




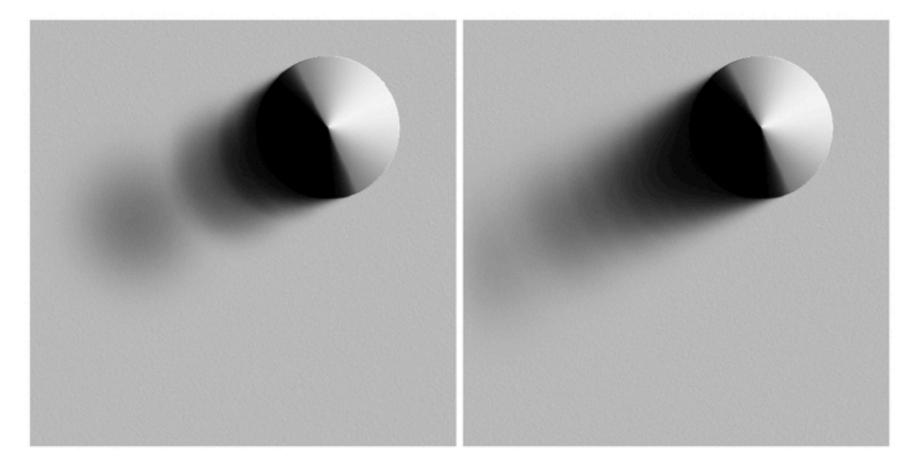




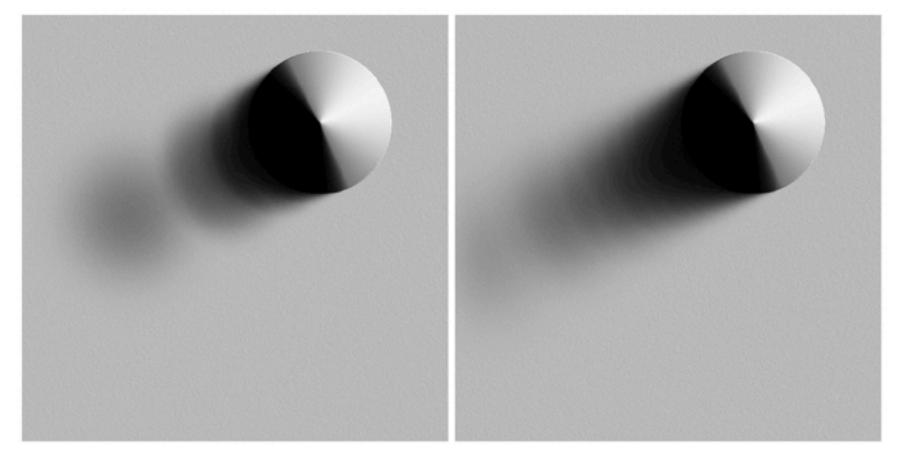




Brute Force Sampling [SN08]

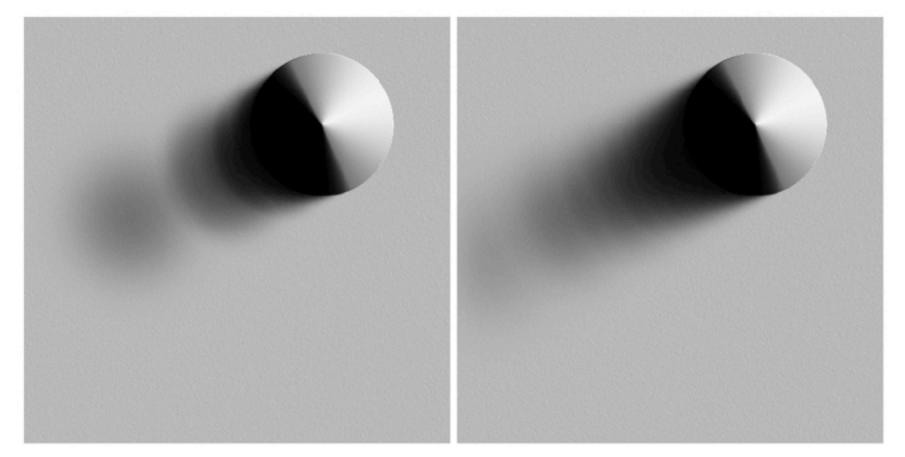


Brute Force Sampling [SN08]



Problem: *aliasing* – need *many* samples in *t*.

Brute Force Sampling [SN08]



Problem: *aliasing* – need *many* samples in *t*. Solution: *prefilter* data, apply *multi-scale* sampling.

Multi-Resolution Height Sampling [SN08]

 $\tau_i = 2^{f(i)}$

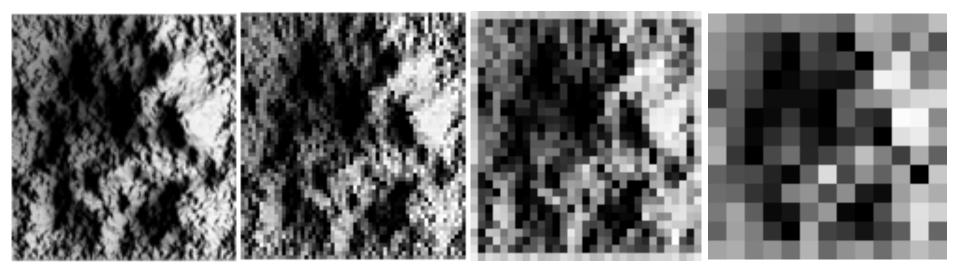
 f_i

sampling distance for level i

Multi-Resolution Height Sampling [SN08]

 f_i $\tau_i = 2^{f(i)}$

sampling distance for level i



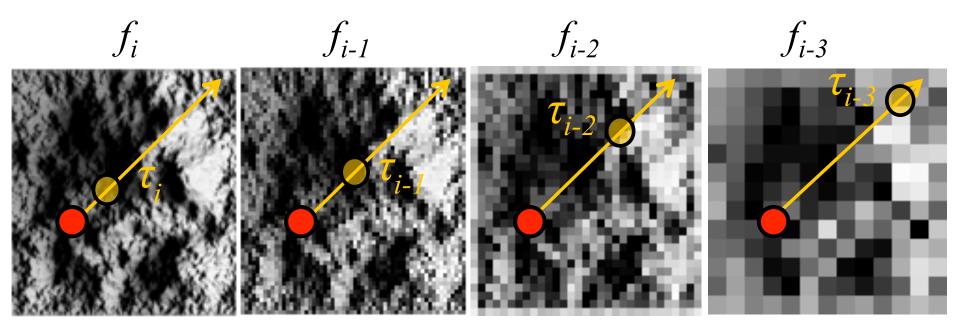
Multi-Resolution Height Sampling [SN08]

 f_i

 $\tau_i = 2^{f(i)}$

sampling distance for level *i*

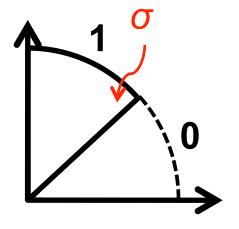
Sample coarser levels further from x.



Elevation Visibility

• starting with binary *visibility* for an elevation slice:

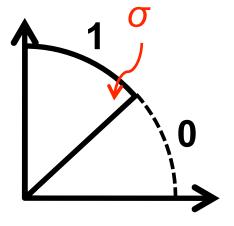
$$v(\omega; \sigma) = \begin{cases} 0, & \text{if } \omega \leq \sigma \\ 1, & \text{otherwise.} \end{cases}$$



Elevation Visibility

• starting with binary *visibility* for an elevation slice:

$$v(\omega; \sigma) = \begin{cases} 0, & \text{if } \omega \leq \sigma \\ 1, & \text{otherwise.} \end{cases}$$



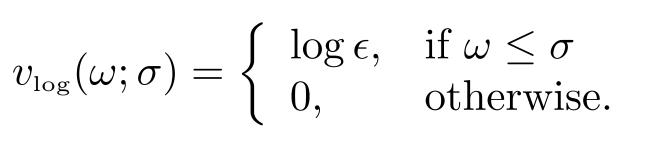
Ο

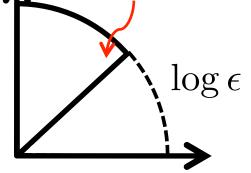
 $\log \epsilon$

()

• we can express the *log-visibility* for the slice as

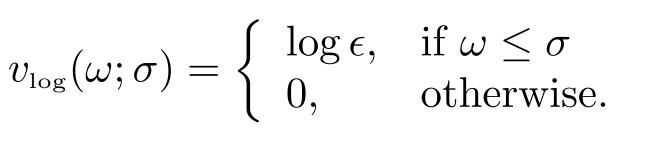
$$v_{\log}(\omega;\sigma) = \begin{cases} \log \epsilon, & \text{if } \omega \leq \sigma \\ 0, & \text{otherwise.} \end{cases}$$

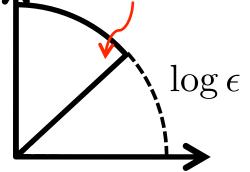




and represent it analytically in the **Normalized Legendre Polynomial (NLP)** basis:

$$\mathbf{v}_{\log}(\sigma) = \int_{\pi/2-\sigma}^{\pi} (\log \epsilon) \,\, \hat{\mathbf{P}}(\cos \theta) \, \sin \theta \mathrm{d}\theta$$





and represent it analytically in the **Normalized Legendre Polynomial (NLP)** basis:

$$\mathbf{v}_{\log}(\sigma) = \int_{\pi/2-\sigma}^{\pi} (\log \epsilon) \,\, \hat{\mathbf{P}}(\cos \theta) \,\sin \theta \mathrm{d}\theta$$

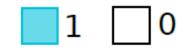
$$= \log \epsilon \times \left[\frac{\sin \sigma + 1}{\sqrt{2}}, \frac{-3\cos^2 \sigma}{2\sqrt{6}}, \frac{-5\sin \sigma \cos^2 \sigma}{2\sqrt{10}}, \frac{7\cos^2 \sigma (-4 + 5\cos^2 \sigma)}{8\sqrt{14}} \right]$$

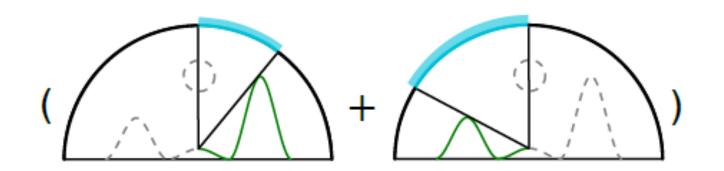
Accumulating HF Visibility

• in the primal domain: can **sum** SH visibility for each slice

Accumulating HF Visibility

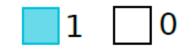
- in the primal domain: can **sum** SH visibility for each slice
- initialize the total visibility to 0 (fully occluded)
- add in visible portions per slice

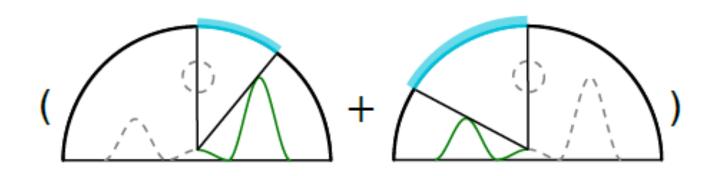




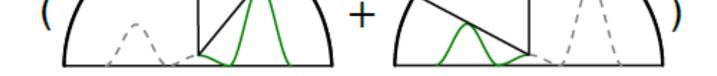
Accumulating HF Visibility

- in the primal domain: can **sum** SH visibility for each slice
- initialize the total visibility to 0 (fully occluded)
- add in visible portions per slice

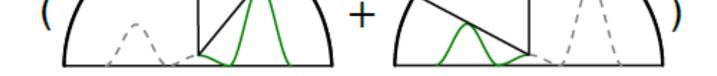




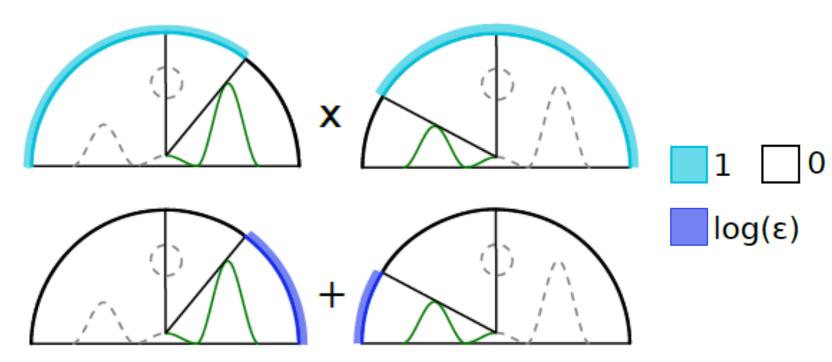
- but, in the log domain: **sum**s correspond to **products**
- how do we accumulate products of visibility?



- but, in the log domain: **sum**s correspond to **products**
- how do we accumulate products of visibility?
- begin by initializing total *log*-visibility to 1 (full visibility)
- multiply in the occluded portions
 - do this by **summing** the log-visibility

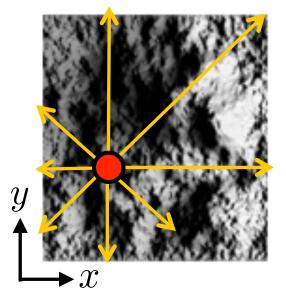


- but, in the log domain: **sum**s correspond to **products**
- how do we accumulate products of visibility?
- begin by initializing total *log*-visibility to 1 (full visibility)
- multiply in the occluded portions
 - do this by **summing** the log-visibility

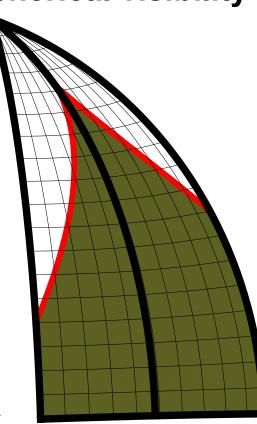


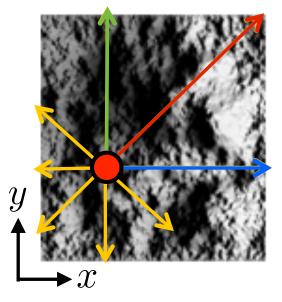
• already computed log-ZH azimuthal visibility, per-direction

- already computed log-ZH azimuthal visibility, per-direction
- can combine and interpolate azimuthal log-SH elevation coefficients together to form full log-SH spherical visibility

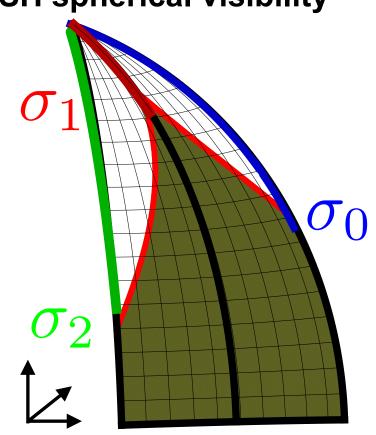


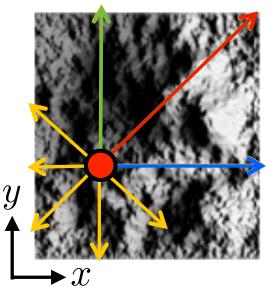
- already computed log-ZH azimuthal visibility, per-direction
- can combine and interpolate azimuthal log-SH elevation coefficients together to form full log-SH spherical visibility





- already computed log-ZH azimuthal visibility, per-direction
- can combine and interpolate azimuthal log-SH elevation coefficients together to form full log-SH spherical visibility





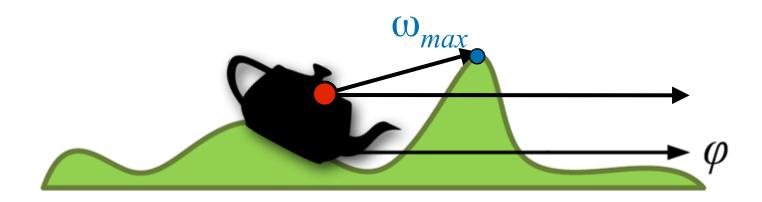
requires 1 precomputed interpolation + projection matrix

- rotate and sum across each wedge's $v_{\rm log}^{\rm wedge}$ to form final log-SH vector $v_{\rm log}^{\rm HF}$

Summary of Main Ideas

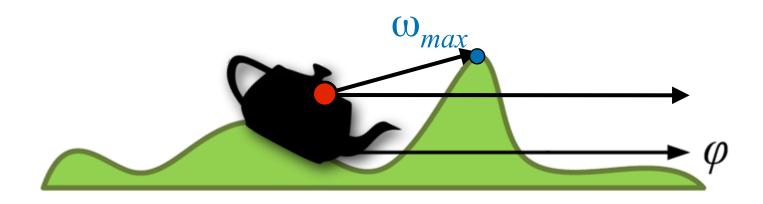
- 1. compute *HF* self-visibility (in *log-SH* space)
- 2. compute *HF cast-visibility* (onto meshes)
 - repeat multi-resolution marching
 - **offset** the height field queries
- 3. compute mesh cast-visibility (onto HF) and self-visibility
- 4. accumulate total spherical visibility
- 5. compute log-SH BRDF and perform final shading

Height Field Cast Visibility onto Meshes



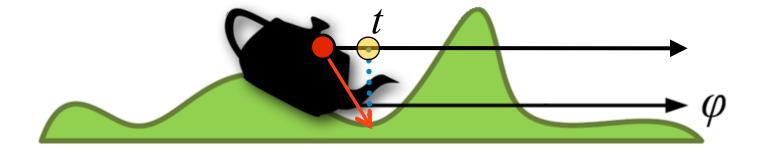
Need to find $\omega_{\textit{max}}$ on mesh shading point along each direction ϕ

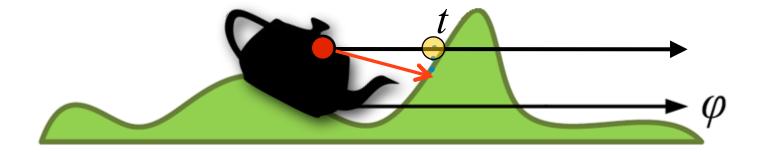
Height Field Cast Visibility onto Meshes

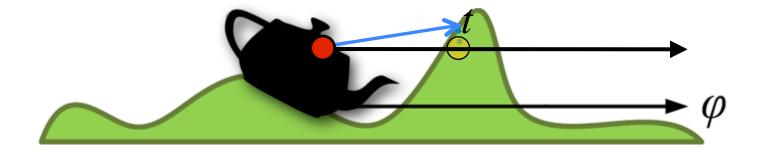


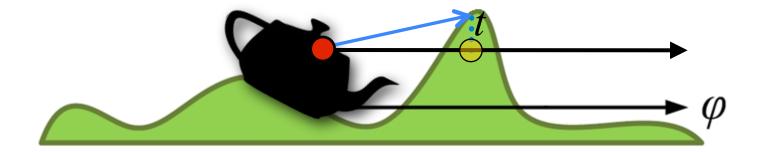
Need to find $\omega_{\textit{max}}$ on **mesh shading point** along each direction ϕ

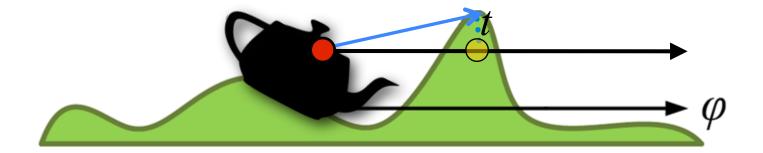
- Assume an infinite plane for the HF base elevation
 - minimum blocking angle can't go negative

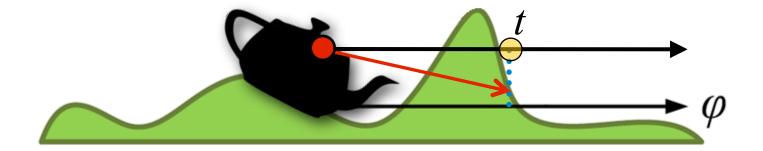


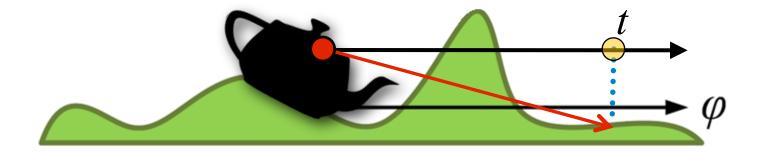


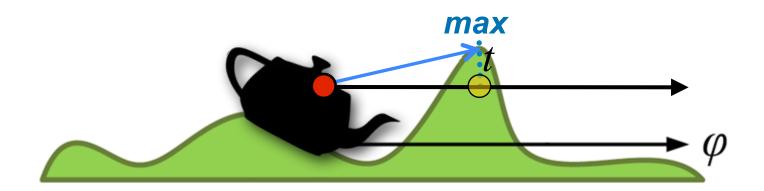










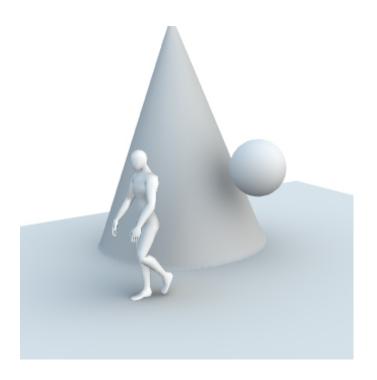


Summary of Main Ideas

- 1. compute *HF* self-visibility (in *log-SH* space)
- 2. compute *HF cast-visibility* (onto meshes)
- 3. compute *mesh cast-visibility* (onto HF) **and** *self-visibility*
 - extend traditional SH exponentiation approach [RWS*06;SGNS07]
 - decompose dynamic mesh blockers into spheres
 - compute & accumulate log-SH visibility for spherical blockers
 - on the mesh shading points
 - repeat over the HF shading points
 - intelligently cull the sphere set during accumulation
 - reduces numerical accumulation error
- 4. accumulate total spherical visibility
- 5. compute log-SH BRDF and perform final shading

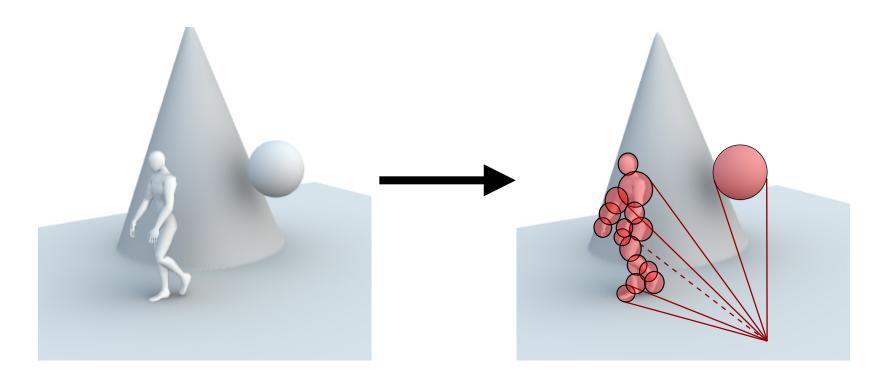
Spherical Blockers [RWS*06]

- approximate dynamic meshes with a set of spheres
 - precomputed once
 - skinned dynamically during animation/deformation



Spherical Blockers [RWS*06]

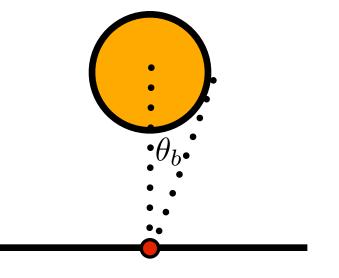
- approximate dynamic meshes with a set of spheres
 - precomputed once
 - skinned dynamically during animation/deformation



Spherical Blocker Log SH Visibility

- can compute log-visibility SH coefficients *analytically*
- begin with a canonical alignment:

$$\theta_b = \arcsin\left(r/d\right)$$

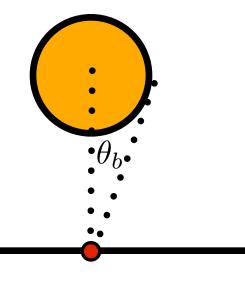


Spherical Blocker Log SH Visibility

- can compute log-visibility SH coefficients *analytically*
- begin with a canonical alignment:

$$\theta_b = \arcsin\left(r/d\right)$$

$$\int_{\theta=0}^{\theta_b} \int_{\phi=0}^{2\pi} (\log \epsilon) \ y_l^0(\theta,\phi) \sin \theta \, \mathrm{d}\theta \mathrm{d}\phi$$

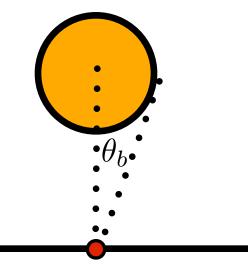


Spherical Blocker Log SH Visibility

- can compute log-visibility SH coefficients *analytically*
- begin with a canonical alignment:

$$\theta_b = \arcsin\left(r/d\right)$$

$$\int_{\theta=0}^{\theta_b} \int_{\phi=0}^{2\pi} (\log \epsilon) \ y_l^0(\theta,\phi) \sin \theta \, \mathrm{d}\theta \mathrm{d}\phi$$



solve analytically (we use order-4 SH, so 4 ZH coefficients)

$$\mathbf{v}_l^{\log} = \log \epsilon \times \left[-\sqrt{\pi} (-1 + \cos \theta_b), \frac{\sqrt{3\pi}}{2} \sin^2 \theta_b, \frac{\sqrt{5\pi}}{2} \cos \theta_b \sin^2 \theta_b, \frac{\sqrt{7\pi}}{16} (3 + 5 \cos(2\theta_b)) \sin^2 \theta_b \right]$$

$$\int_{\theta=0} \int_{\phi=0}^{0} (\log \epsilon) y_l^0(\theta, \phi) \sin \theta \, \mathrm{d}\theta \mathrm{d}\phi$$

• solve analytically (we use order-4 SH, so 4 ZH coefficients)

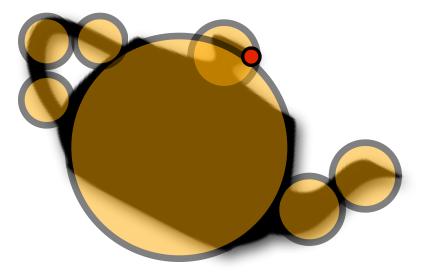
$$\mathbf{v}_l^{\log} = \log \epsilon \times \left[-\sqrt{\pi} (-1 + \cos \theta_b), \frac{\sqrt{3\pi}}{2} \sin^2 \theta_b, \frac{\sqrt{5\pi}}{2} \cos \theta_b \sin^2 \theta_b, \frac{\sqrt{7\pi}}{16} (3 + 5 \cos(2\theta_b)) \sin^2 \theta_b \right]$$

align to shading frame with ZH rotation [SLS05]

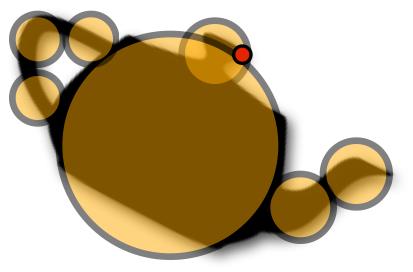
$$\mathbf{v}_{l,m}^{\log} = \sqrt{\frac{4\pi}{2l+1}} \, \mathbf{v}_l^{\log} \, y_l^m(\vec{\omega_d}) \qquad \vec{\mathbf{z}}$$

• accumulate spherical blocker occlusion for both:

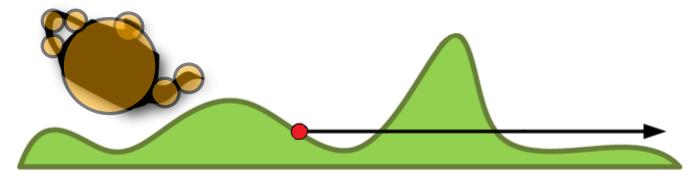
- accumulate spherical blocker occlusion for both:
 - dynamic object self-occlusion



- accumulate spherical blocker occlusion for both:
 - dynamic object self-occlusion



• and dynamic object *cast-occlusion* onto the HF



Ratio Attenuation

Ratio Attenuation

• SH exponentiation suffers from accumulation error when there are **many overlapping** blocker spheres



Ratio Attenuation

- SH exponentiation suffers from accumulation error when there are **many overlapping** blocker spheres
- we reduce accumulation error by:
 - weighting log-SH visibility by blocker solid angle, and
 - only accumulating blockers in upper shading hemisphere

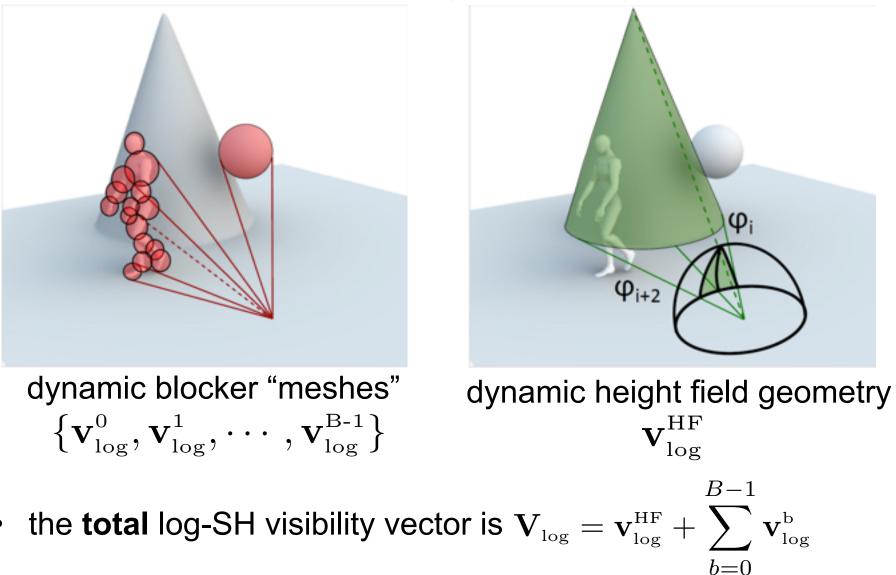


Summary of Main Ideas

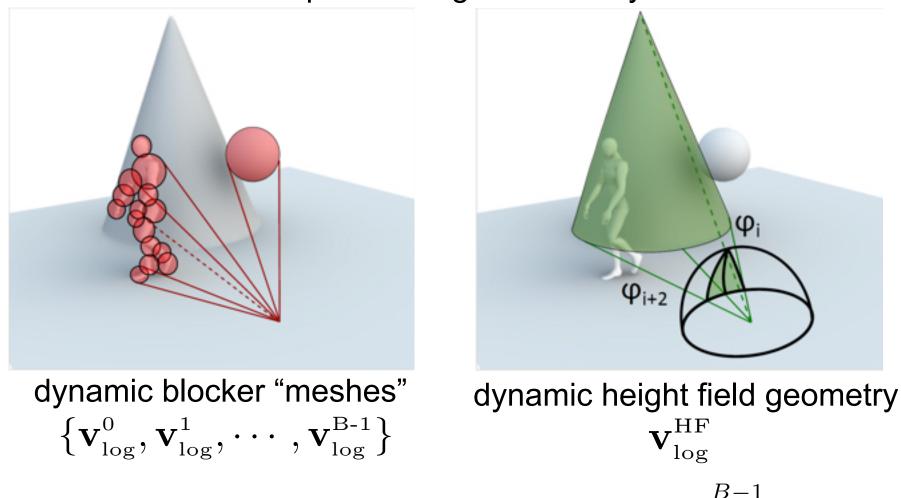
- 1. compute *HF* self-visibility (in *log-SH* space)
- 2. compute *HF cast-visibility* (onto meshes)
- 3. compute mesh cast-visibility (onto HF) and self-visibility
- 4. accumulate total spherical visibility
 - combine **per-slice** HF (log) visibility to form **full** spherical visibility **[NS09]**
 - accumulate dynamic mesh blocker log-visibility and HF log-visibility
 - perform **SH exponentiation**
- 5. compute log-SH BRDF and perform final shading

Accumulate Log-SH Visibility

Given spherical log-SH visibility for



Given spherical log-Strivisionity for



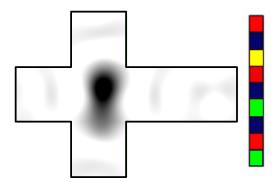
• the total log-SH visibility vector is $\mathbf{V}_{\log} = \mathbf{v}_{\log}^{\mathrm{HF}} + \sum_{b=0} \mathbf{v}_{\log}^{\mathrm{b}}$

 $\mathbf{V} = \exp\left(\mathbf{V}_{\log}\right) \approx \mathbf{1} + \mathbf{V}_{\log} + \frac{\mathbf{V}_{\log}^{2}}{2} + \frac{\mathbf{V}_{\log}^{3}}{3!} + \cdots$

Summary of Main Ideas

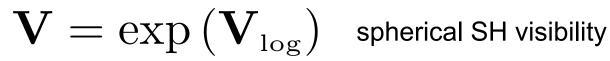
- 1. compute *HF* self-visibility (in *log-SH* space)
- 2. compute *HF cast-visibility* (onto meshes)
- 3. compute mesh cast-visibility (onto HF) and self-visibility
- 4. accumulate total spherical visibility
- 5. compute log-SH BRDF and perform final shading
 - simplify triple-product shading to double-product shading
 - formulate view-evaluated BRDF in log-SH space
 - accumulate BRDF with multi-product visibility

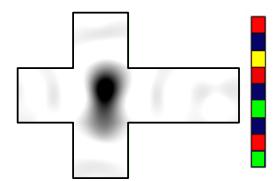
Traditional Triple Product SH Shading

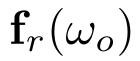


 $\mathbf{V}=\exp\left(\mathbf{V}_{ ext{log}}
ight)$ spherical SH visibility

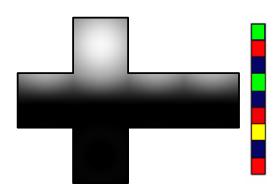
Traditional Triple Product SH Shading



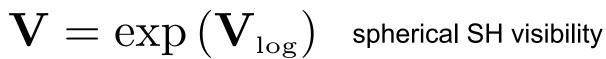


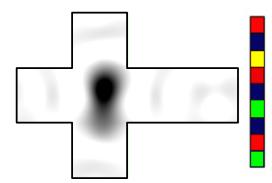


view-evaluated BRDF



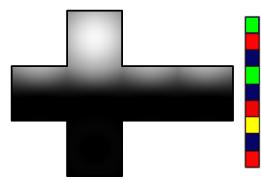
Traditional Triple Product SH Shading





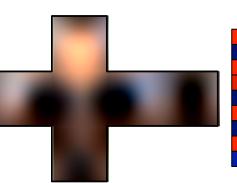
 $\mathbf{f}_r(\omega_o)$

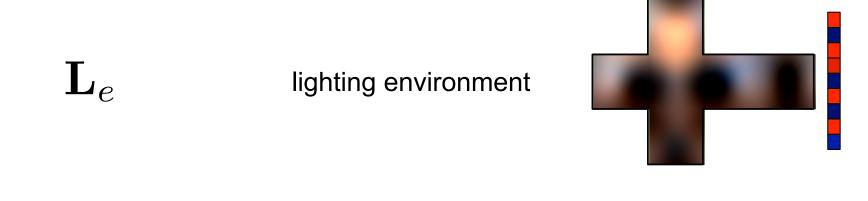
view-evaluated BRDF



 \mathbf{L}_{ρ}

lighting environment





 final shading traditionally ([RWS*06;SGNS07]) computed with triple-product SH integration:

$$L_o(\omega_o) = \sum_{ijk} [\mathbf{L}_e]_i [\mathbf{V}]_j [\mathbf{f}_r(\omega_o)]_k \Gamma_{ijk}$$

where

$$\Gamma_{ijk} = \int_{S^2} y_i(\omega) y_j(\omega) y_k(\omega) d\omega$$

are the SH *tripling coefficients*, a sparse order-3 tensor.

• Triple product shading computation is still costly!

Log-BRDF Shading

• We already use log-space to perform a multi-product

$$\mathbf{V} = \exp\left(\mathbf{V}_{\log}\right) \approx \prod_{b=0}^{B-1} \mathbf{V}_b$$

Log-BRDF Shading

• We already use log-space to perform a multi-product

$$\mathbf{V} = \exp\left(\mathbf{V}_{\log}\right) \approx \prod_{b=0}^{B-1} \mathbf{V}_b$$

 Triple-product shading composes the BRDF-weighted visibility (*transfer*) in the primal domain with a product

$$\mathbf{T} = \mathbf{f}_r(\omega_o) \times \prod_{b=0}^{B-1} \mathbf{V}_b$$

Log-BRDF Shading

• We already use log-space to perform a multi-product

$$\mathbf{V} = \exp\left(\mathbf{V}_{\log}\right) \approx \prod_{b=0}^{B-1} \mathbf{V}_b$$

 Triple-product shading composes the BRDF-weighted visibility (*transfer*) in the primal domain with a product

$$\mathbf{T} = \mathbf{f}_r(\omega_o) \times \prod_{b=0}^{B-1} \mathbf{V}_b$$

• Idea: use log-space to compose transfer with a sum

• Idea: use log-space to compose transfer with a sum

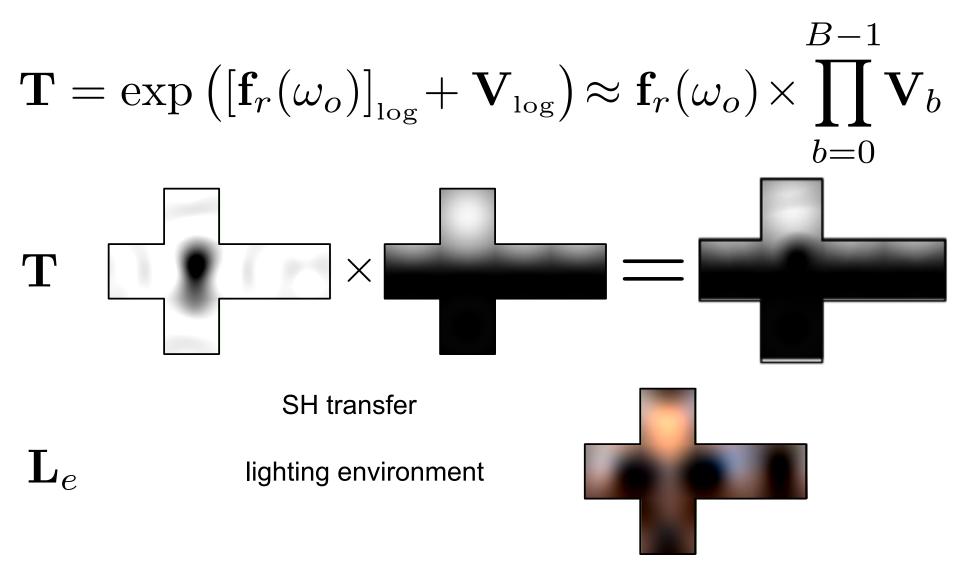
$$\mathbf{T} = \exp\left(\left[\mathbf{f}_r(\omega_o)\right]_{\log} + \mathbf{V}_{\log}\right) \approx \mathbf{f}_r(\omega_o) \times \prod_{b=0}^{B-1} \mathbf{V}_b$$

• Idea: use log-space to compose transfer with a sum

SH transfer

• Idea: use log-space to compose transfer with a sum

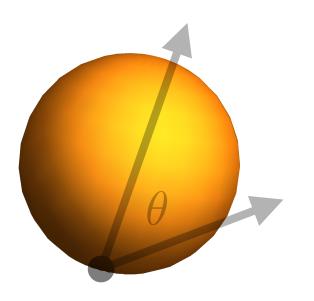
Idea: use log-space to compose transfer with a sum



- Now shading requires a cheap double-product SH integral!
 - but how do we compute the *log-BRDF* SH coefficients?

Log-BRDF SH Coefficients

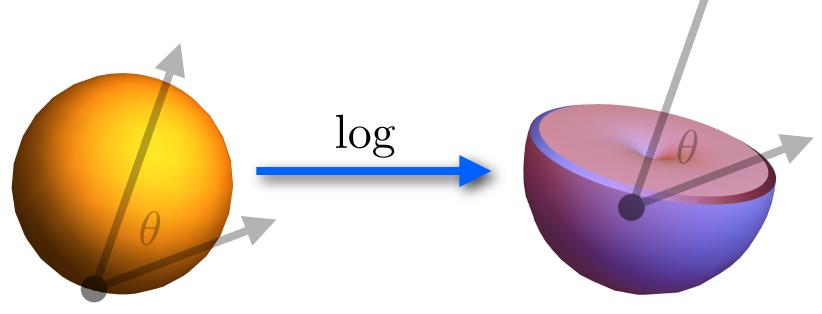
- We compute the log-**ZH** BRDF coefficients *numerically* for:
 - diffuse BRDFs,
 - and Phong BRDFs



 $f_r(\theta) = \frac{\alpha+1}{2\pi} \max(\cos^{\alpha} \theta, 0)$

Log-BRDF SH Coefficients

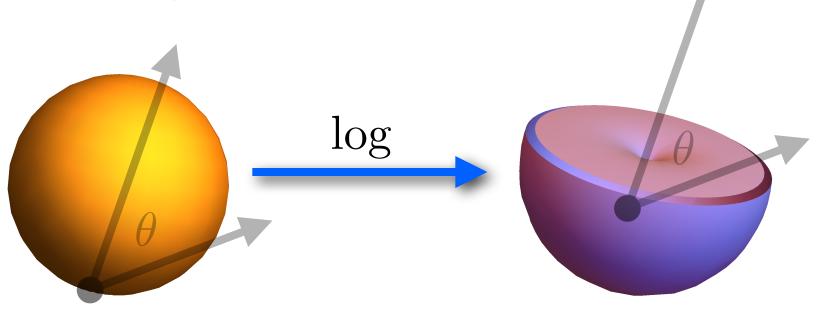
- We compute the log-**ZH** BRDF coefficients *numerically* for:
 - diffuse BRDFs,
 - and Phong BRDFs



 $f_r(\theta) = \frac{\alpha+1}{2\pi} \max(\cos^{\alpha} \theta, 0)$

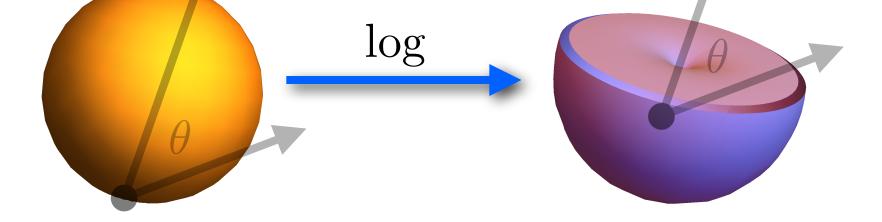
Log-BRDF SH Coefficients

- We compute the log-**ZH** BRDF coefficients *numerically* for:
 - diffuse BRDFs,
 - and Phong BRDFs



 $f_r(\theta) = \frac{\alpha+1}{2\pi} \max(\cos^{\alpha} \theta, 0)$

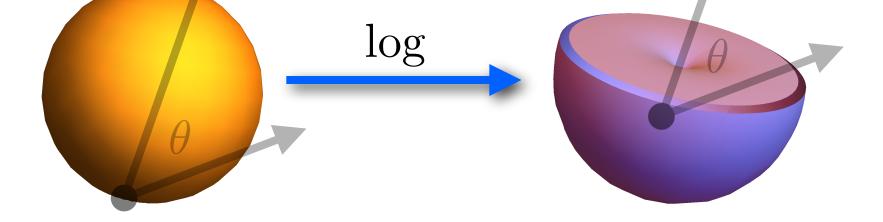
Need to treat hemispherical clamping carefully!



$f_r(\theta) = \frac{\alpha+1}{2\pi} \max(\cos^{\alpha} \theta, 0)$

- Need to treat hemispherical clamping carefully!
- Canonical-frame ZH log-BRDF coefficients are then:

$$f_{l,0}^{\log} = \int_{H^{2+}} \log\left(\frac{\alpha+1}{2\pi} \max(\cos^{\alpha}\omega_{\theta}, \epsilon)\right) y_{l}^{0}(\omega) d\omega + \int_{H^{2-}} \left(\log\epsilon\right) y_{l}^{0}(\omega) d\omega$$



$f_r(\theta) = \frac{\alpha+1}{2\pi} \max(\cos^{\alpha} \theta, 0)$

- Need to treat hemispherical clamping carefully!
- Canonical-frame ZH log-BRDF coefficients are then:

$$\begin{split} f_{l,0}^{\log} &= \int_{H^{2+}} \log \left(\frac{\alpha + 1}{2\pi} \max(\cos^{\alpha} \omega_{\theta}, \epsilon) \right) \, y_{l}^{0}(\omega) \, \mathrm{d}\omega + \\ &\int_{H^{2-}} \left(\log \epsilon \right) \, y_{l}^{0}(\omega) \, \mathrm{d}\omega \end{split}$$

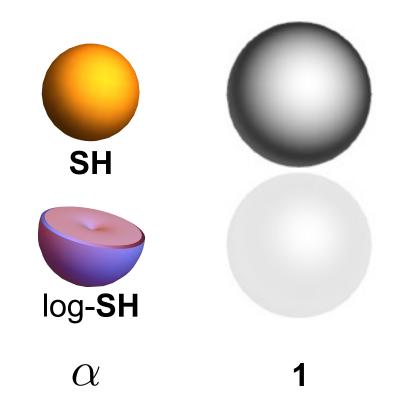
• We compute & tabulate order-4 ZH coefficients numerically

Log-BRDF Error

• In a *worse case* lighting scenario, log-SH BRDF shading still maintains a cosine-like fall-off profile

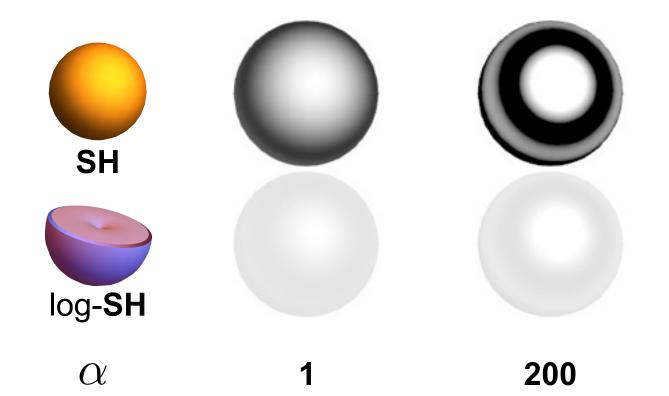
Log-BRDF Error

• In a *worse case* lighting scenario, log-SH BRDF shading still maintains a cosine-like fall-off profile



Log-BRDF Error

• In a *worse case* lighting scenario, log-SH BRDF shading still maintains a cosine-like fall-off profile

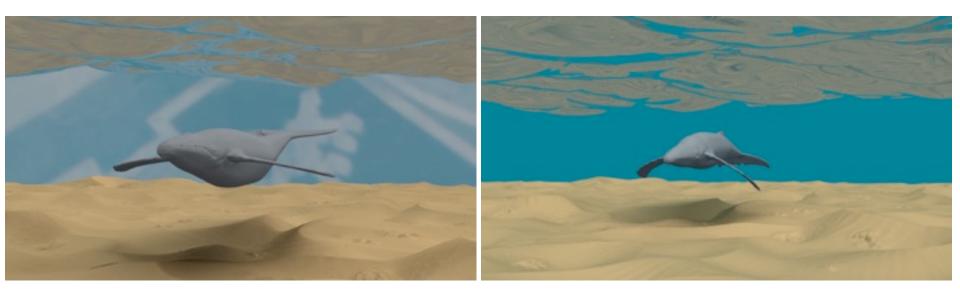


- Hybrid image/object-space renderer
 - spherical blockers splatted onto screen [SGNS07]
 - multi-resolution HF ray-marching in HF object-space
 - rendered at 960 x 540 with (avg.) pixel coverage of 83%.

- Hybrid image/object-space renderer
 - spherical blockers splatted onto screen [SGNS07]
 - multi-resolution HF ray-marching in HF object-space
 - rendered at 960 x 540 with (avg.) pixel coverage of 83%.

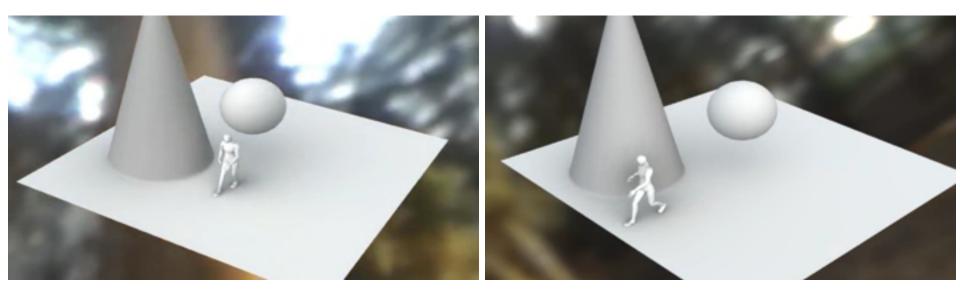
Wrecking Ball	Whale in Ocean	Cone Man
402 blockers + HF	50 blockers + HF	25 blockers + HF
15Hz (GTX 480)	10 Hz (GTX 480)	68 Hz (GTX 480)

- Hybrid image/object-space renderer
 - spherical blockers splatted onto screen [SGNS07]
 - multi-resolution HF ray-marching in HF object-space
 - rendered at 960 x 540 with (avg.) pixel coverage of 83%.



Wrecking Ball	Whale in Ocean	Cone Man
402 blockers + HF	50 blockers + HF	25 blockers + HF
15Hz (GTX 480)	10 Hz (GTX 480)	68 Hz (GTX 480)

- Hybrid image/object-space renderer
 - spherical blockers splatted onto screen [SGNS07]
 - multi-resolution HF ray-marching in HF object-space
 - rendered at 960 x 540 with (avg.) pixel coverage of 83%.



Wrecking Ball	Whale in Ocean	Cone Man
402 blockers + HF	50 blockers + HF	25 blockers + HF
15Hz (GTX 480)	10 Hz (GTX 480)	68 Hz (GTX 480)

 Combine soft shadowing from environment lighting for scenes with dynamic blockers and dynamic HFs

- Combine soft shadowing from environment lighting for scenes with dynamic blockers and dynamic HFs
- Extend multi-resolution marching to non-HF objects
 - offset marching and infinite plane assumption

- Combine soft shadowing from environment lighting for scenes with dynamic blockers and dynamic HFs
- Extend multi-resolution marching to non-HF objects
 - offset marching and infinite plane assumption
- Novel log-SH visibility composition for HF slices
 - analytic Legendre polynomial coefficients for log-visibility elevation functions

- Combine soft shadowing from environment lighting for scenes with dynamic blockers and dynamic HFs
- Extend multi-resolution marching to non-HF objects
 - offset marching and infinite plane assumption
- Novel log-SH visibility composition for HF slices
 - analytic Legendre polynomial coefficients for log-visibility elevation functions
- Propose Log-SH BRDF formulation to reduce triple-product shading to double-product shading

- infinite plane assumption when marching non-HF elements
 - leverage negative blocking angle formulation of [NS09]

- infinite plane assumption when marching non-HF elements
 leverage negative blocking angle formulation of [NS09]
- analytic log-BRDF formulation with better hemi-clamping

- infinite plane assumption when marching non-HF elements
 leverage negative blocking angle formulation of [NS09]
- analytic log-BRDF formulation with better hemi-clamping
- indirect lighting accumulation in log-SH space

- infinite plane assumption when marching non-HF elements
 leverage negative blocking angle formulation of [NS09]
- analytic log-BRDF formulation with better hemi-clamping
- indirect lighting accumulation in log-SH space
- generalize geometry
 - local height field displacements
 - tiled height field representations
 - non-spherical blockers

We acknowledge the helpful suggestions of the anonymous reviewers.

Thanks! Any questions?