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Abstract
Interactively computing smooth shading effects from environmental lighting, such as soft shadows and glossy
reflections, is a challenge in scenes with dynamic objects. We present a method to efficiently approximate these
effects in scenes comprising animating objects and dynamic height fields, additionally allowing interactive manip-
ulation of view and lighting. Our method extends spherical harmonic (SH) exponentiation approaches to support
environmental shadowing from both dynamic blockers and dynamic height field geometry. We also derive ana-
lytic expressions for the view-evaluated BRDF, directly in the log-SH space, in order to support diffuse-to-glossy
shadowed reflections while avoiding expensive basis-space product operations. We illustrate interactive render-
ing results using a hybrid, multi-resolution screen- and object-space visibility-marching algorithm that decouples
geometric complexity from shading complexity.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Three-Dimensional
Graphics and Realism—Display Algorithms

1. Introduction

Shadows provide important lighting and depth cues, espe-
cially in the presence of complex illumination. Computing
shadows from large area and environmental light sources is
a difficult and long-standing problem in image synthesis.

Precomputed radiance transfer (PRT) efficiently approx-
imates shading and shadows from environmental light
sources by representing incident light in a compact basis-
space (e.g., spherical harmonics (SH)), and then shading
with potentially spatially-varying BRDFs entirely in this
space. These approaches, however, typically require static
geometry in order to precompute the complex inter- and
intra-object visibility relationships that capture the shadow-
ing effects.

We combine two techniques for efficient visibility deter-
mination, one for dynamic blockers and another for dynamic
height field geometry, in order to compute visibility inter-
actively in a PRT-context for scenes with dynamically ani-
mated meshes and height fields. We extend a logarithmic SH
formulation [RWS∗06] to couple both the visibility and the
view-evaluated BRDF, allowing us to interactively compute
final shading completely in the log basis-space, unlike ex-
isting log-SH techniques. Shading is performed on the GPU
using a hybrid image- and object-space marching approach.

2. Previous Work

Precomputed Radiance Transfer. PRT methods render
soft shadows from large area and environmental light
sources [SKS02]. The transfer function that combines the
view-evaluated BRDF and visibility at each point of an ob-
ject is projected onto a compact spherical basis, and the
shading integral is evaluated as the inner-product of the
basis-projected transfer and incident lighting. The precom-
putation involves a costly ray-tracing for static objects in or-
der to resolve visibility relationships, forming a bottleneck
that precludes the use of standard PRT in dynamic scenes.

Ren et al. [RWS∗06] lift this constraint by approximat-
ing dynamic and static objects with spheres, and then using
spherical harmonic exponentiation (SHExp) to replace ex-
pensive SH product accumulation of blocker visibilities with
cheap additions in SH log-space. At each receiver point, they
accumulate log-SH over a hierarchy of blocking spheres,
and exponentiate to evaluate the final SH visibility. The
spheres’ log-SH visibility vectors are calculated individu-
ally from a simple tabulation. We similarly accumulate log-
SH for spherical blockers, but we additionally derive ana-
lytic formulations for wedge-visibility accumulation in log-
SH space for dynamic height fields (see Section 4).

Blocker Accumulation. We approximate dynamic objects
with spheres and height fields, accumulating their visibility

c© The Eurographics Association 2015.



Aude Giraud & Derek Nowrouzezahrai / Practical Shading of Height Fields and Meshes using Spherical Harmonic Exponentiation

ϕiϕi+2 ϕi

ϕi+2

Figure 1: Accumulation of the visibility vectors of the blocker spheres and of the height field (consisting of the plane and the
cone).

in log-SH space in order to compute the blocker visibility.
Unlike the sphere fitting used by Ren et al. [WZS∗06], we
simply apply a k-means clustering in order to approximate
our dynamic (non-height field) objects with spherical block-
ers. Conversely, Kautz et al. [KLA04] rasterize blocker ge-
ometry directly into hemispherical bitmaps at each receiver
point, but their method is quickly limited by the scene com-
plexity, which they alleviate to a certain degree using simpli-
fied blocker geometry during visibility accumulation. Zhou
et al. [ZHL∗05] precompute volumetric basis-space shadow
fields for each rigid object in the wavelet and SH bases to
render soft shadows, where the complete visibility across
objects is combined using expensive basis-space products.
As such, they are limited in the number of dynamic rigid
objects, and they do not support deformations from, e.g.,
skinned mesh animations. For these reasons, we were mo-
tivated to build atop the approach of Ren et al.

Our approach does not require any costly precomputation,
and we completely avoid triple-product shading by working
almost exclusively in the log-SH domain: we are the first
to explore BRDF representations in the log-SH domain, and
our initial investigation yields some promising results (see
Section 5).

We combine deformable objects with dynamic height
fields. Many existing works have looked at the problem of
computing shadows on height field geometry, starting with
the seminal horizon mapping work [Max88, SC00] where
azimuthal directions are discretized and object-space ray-
marching is employed to precompute maximum blocking
angles along these directions. At run-time, an azimuthal
“slice” is queried depending on the light source posi-
tion/direction, in order to determine whether the point is in
(hard) shadow or not.

Snyder and Nowrouzezahrai [SN08] extend this ap-
proach to dynamic height fields and environmental lighting.
Their method replaces naÃŕve ray-marching with a multi-
resolution approach that takes non-uniform steps into pre-
filtered geometric approximations of the height field. This
reduces the number of required samples, but at the cost of

biasing the resulting maximum blocking angle computation.
They directly compute SH visibility vectors by composition
across azimuthal wedges, where the per-wedge visibility is
pre-tabulated. In 2009, the same authors extend their method
to indirect illumination and an analytic formulation of per-
wedge SH visibility [NS09]. We base ourselves on this tech-
nique and derive an analytic per-wedge visibility formula-
tion directly in log-SH space (Section 4).

Timonen and Westerholm [TW10] use a GPU-based con-
vex hull formulation to further accelerate the per-wedge
blocking angle computation, completely avoiding any ap-
proximation bias. This allows them to more accurately rep-
resent visibility, avoiding low-frequency basis representation
and capturing all-frequency shadows from dynamic environ-
ment maps. Timonen [Tim13] later applied this concept to
the problem of screen-space ambient occlusion, treating the
Z-buffer as a height field.

3. Overview and Terminology

We provide a quick overview of the mathematical concepts
we will use throughout our paper.

Height fields are 3D surfaces defined by a height function
h, where each 2D point on the plane of the height field (x,y)
has height z = h(x,y). Height fields are often represented by
a texture, or height map, where each texel stores a height
value. In general, these grey level values are multiplied by
a coefficient to scale the heights. Height fields can represent
macro-geometry, like mountains or oceans (as we do in our
applications), but also micro-geometry like a skin’s geomet-
ric texture.

Visibility is a spherical function at a shading point that de-
termines, for each direction s on the unit sphere, whether an
outgoing ray in that direction would be occluded or not. We
define the visibility function v as:

v(ω) =
{

0 if the ray is occluded,
1 otherwise.

(1)
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In numerical log space, visibility v is expressed by

vlog(ω) =

{
logε if the ray is occluded,
0 otherwise.

(2)

Spherical Harmonics are an orthonormal, frequency-space
basis used to represent spherical functions. They are useful
for representing irradiance environment maps [RH01] or for
computing soft shadows and glossy reflections [SKS02]. The
SH projection coefficients of a spherical function f are de-
fined as:

fff m
l =

∫
Ω

f (ω) yyym
l (ω)dω (3)

where yyym
l (ω) is the m-th band-l SH basis function, evaluated

in direction s on the unit sphere S. After projection, we can
reconstruct an order-n band-limited approximation of f as:

f̃ (ω) =
n−1

∑
l=0

l

∑
m=−l

fff m
l yyym

l (ω) =
n2

∑
i=0

fff i yyyi(ω) , (4)

where we often replace the (l,m)-double indices with a more
compact single index i = l(l +1)+m.

Zonal Harmonics (ZH) are the m= 0 circularly-symmetric
(about the canonical zzz up-vector) subset of SH basis func-
tions. An order-n ZH expansion requires only n projection
coefficients, instead of n2 for an SH expansion, however
it can only represent a (band-limited) circularly-symmetric
function aligned along zzz. The SH projection coefficients of a
circularly-symmetric aligned about an arbitrary direction
d can, however, be obtained using the Funke-Hecke convo-
lution theoreom [Slo08] as:

fff m
l =

√
4π

2l +1
zzzl yyym

l (d) , (5)

where zzzl = yyy0
l are the ZH projection coefficients of the

circularly-symmetric function aligned along the canonical z
axis.

SH Product Operators can be defined in order to compute
the (approximate) SH projection coefficients of the product
of two SH-projected functions. This operation is useful for
shading, where we require the product of the visibility, the
view-evaluated BRDF, and the lighting prior to spherical in-
tegration. SH products can also be used to accumulate the
spherical visibility across blockers, as in e.g., [ZHL∗05].
The SH coefficients of the product of two functions f (s) and
g(s) (with projection coefficient vectors fff and ggg) can be ex-
pressed as:

( fff ∗ggg)i =
n2

∑
j=0

n2

∑
k=0

Γi jk fff j gggk with Γi jk =
∫

Ω

yyyi yyy j yyyk dω,

(6)
where Γ is the SH tripling coefficient tensor [Slo08], and we
temporarily omit parameters for brevity. Computing Equa-
tion 6 has O(n5/2) time complexity in SH [NRH04], which

becomes prohibitively slow in the case of many blockers
(i.e., many product operations).

SH Logarithm and Exponentiation are used to approxi-
mate SH products. Ren et al. [RWS∗06] compute numeri-
cally the log-ZH projection coefficients of a canonically ori-
ented spherical blocker. In log-space, we must take care to
treat the undefined behavior of the log operator for values
below zero; Sloan et al. [SGNS07] simply clamp their func-
tions to a small (positive) value ε prior to taking the log.
Ren et al. improve upon this naive method by clipping the
eigenvalues of the product matrix [RWS∗06]. Another way
to handle negative values is to use the log-modulus trans-
formation [JD80], but this is used primarily in statistics for
data visualization. We use the naive method, and explore the
effect of changing ε on the accuracy of the log-SH represen-
tation, particularly in the context of our new analytic log-SH
BRDF formulation (see Section 5). Concretely, the log-SH
projection coefficients of a spherical function f (s) are de-
fined as

fff log
i =

∫
Ω

log(max( f (ω),ε)) yyyi(ω) dω . (7)

SH Blocker Accumulation combines the visibility func-
tion across all blockers at a shading point p. We decompose
our scenes into a set of m spherical blockers, approximating
deformable objects, and a dynamic height fields (see Fig-
ure 1). Here, the visibility can be composed as a sequence
of (SH) product operations over of the m blockers’ SH vis-
ibility vectors vvv[i] and the height field’s SH visibility vector
vvv[HF] as:

vvv = vvv[1]∗ vvv[2]∗ . . .∗ vvv[m]∗ vvv[HF] . (8)

In log-SH, however, these product operations are replaced
with cheaper additions [RWS∗06] of the log-SH visibility
vectors, after which we take an SH exponentiation to obtain
an approximation of the final accumulated visibility, as ex-
pressed in Equation 9. We note exp∗ the exponential opera-
tor applied to SH vectors as in [RWS∗06]. We use the hybrid
variant, called HYB in [RWS∗06].

vvv≈ exp∗(vvv
log[1]+ . . .+ vvvlog[m]+ vvvlog[HF]) . (9)

4. Visibility

We combine the effects of visibility from dynamic height
fields and blockers. Here, we will describe how we perform
this accumulation entirely in log-SH space by building atop
the approaches of Ren et al. [RWS∗06] and Nowrouzezahrai
and Snyder [NS09]. We derive analytic expressions for per-
wedge log-SH visibility, as well as devise a new ratio clamp-
ing heuristic that reduces ringing artifacts that arise from ac-
cumulated numerical imprecisions in log-SH representation.
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4.1. Height Field Log-SH Visibility

We build atop the multi-resolution ray-marching approach
of Nowrouzezahrai and Snyder [NS09] to compute log-SH
visibility for points on a dynamic height field. Consider point
p = (px, py, pz) on the height field, we define the blocking
angle between p and any other point on the height field p′

as:

θb(p, p′) = arctan

 p′z− pz√
(p′x− px)2 +(p′y− py)2

 . (10)

This angle is measured from the horizon plane to the North
pole, representing the portion of the sky hidden by the height
field in a given direction (i.e., from p to p′). The visibility is
zero below this elevation angle and one above it. It is conve-
nient to adopt Max’s [Max88] horizon angle definition:

θh(p, p′) = π/2−θe(p, p′) , (11)

where horizon angle θh is directly related to the visible por-
tion of the great-circle (see Figure 2).

p′

θh(p, p′)

p

Figure 2: Horizon angle θh for point p on the height field.

We can use a compact representation of the elevation
function to define a slice of the height field’s visibility, as
in [NS09]. We use the orthonormal Normalized Legendre
Polynomial (NLP) basis to project the log-SH visibility of a
single azimuthal slice. Zonal harmonics are related to NLP
basis function, denoted P̂l , via the following expression:

yyy0
l (θ,φ) =

√
1

2π
P̂l(cosθ) . (12)

The NLP functions are given by Rodrigues’ formula:

P̂l(z) =

√
2l +1

2
1

2l l!
dl

dzl

[
(z2−1)l

]
, (13)

where z = cosθ.

For order 4, they can be analytically expressed by:

P̂PP(z) =

[√
1
2
,

√
3z√
2
,

√
5
√

2(3z2−1)
4

,

√
7
√

2(5z3−3z)
4

]
.

(14)

The visibility vector for a slice with a horizon angle σ,
projected in the NLP basis, is then given by:

vvvlog(σ) =
∫ π

π/2−σ

logε P̂PP(cosθ) sinθ dθ . (15)

At order 4, their expression is the following:

vvvlog(σ) =

[
logε

sinσ+1√
2

, logε
−3cos2

σ

2
√

6
,

logε
−5sinσcos2

σ

2
√

10
, logε

7cos2
σ(−4+5cos2

σ)

8
√

14

]
.

(16)

To reconstruct the continuous function of the visibility,
one has to do a dot product of the visibility vector and the
basis vector, as in Equation 17.

vlog(θ) = vvvlog · P̂PP(cosθ) . (17)

We compose log-SH visibility due to the height field
by summing over the log-SH wedge visibility, similarly
to [NS09] albeit with a few important modifications, dis-
cussed below. First, we must not only compute the height
field’s self-shadows, but also its shadows projected onto the
other objects in the scene.

Height Field Self-shadowing. For the height field self-
shadowing, we sample the (log) visibility on a discrete set
of azimuthal directions, as in [NS09]. At each height field
shading point, and for each azimuthal direction, we use a
multi-resolution pyramid marching scheme [SN08] to march
along the azimuthal direction and sample the (filtered) height
field in order to approximate θh for each discrete ϕ. We
linearly interpolate the visibility between these n− 1 dis-
crete azimuthal wedges: the first wedge is aligned canon-
ically at ϕ = 0 , and each successive wedge is rotated by
k4ϕ, with4ϕ = 2π/W , with W the number of wedges and
k ∈ [0,W −1].

In the primal SH domain, wedge visibilities could be
added together in order to obtain the final SH height field
visibility [SN08], since visibility value outside a wedge is
(implicitly) zero, as illustrated in Figure 3. In the log-SH
domain, however, summation equates to multiplication in
the primal domain (after exponentiation), and so we have to
rethink the wedge accumulation strategy.

Specifically, we now treat the (log-)visibility as 1 out-
side the wedge; it now has effectively an implicit value of
log(1) = 0 in log-SH space. Thus, when working in log-SH
space we can apply the same tactic as used in [NS09]. We
construct a canonical log-SH wedge function from the two
log-ZH azimuthal values on the borders of the wedge, using
a composition operator that explicitly sets all the visibility
outside the wedge to a value of 0 (see Figure 3). Assum-
ing that Vi(θ,φ) is the visibility function of the i-th wedge,
Equation 18 gives its projection in log-SH space.

VVV log
i =

∫ ∆ϕ

0

∫ π

0
V log

i (θ,φ)yyyi(θ,φ) sinθ dθ dφ , (18)
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Figure 3: Combining visibilities. Top: The visibility wedges are added before we multiply them with the blockers’ visibility
vectors. Middle: Adding in log-SH space is equivalent to multiplying in SH space. Bottom: When using spherical harmonics
exponentiation, we add the visibility vectors in log-SH space; the numerical values are inverted as log(1) = 0, and we use a
factor ε because log(0) is undefined. Right: The resulting visibility.

where V log
i results from the linear interpolation of the

slices’ functions in the directions ϕi and ϕi+1:

V log
i (θ,φ) =((

1− φ−ϕi

∆ϕ

)
vvvlog

i +

(
φ−ϕi

∆ϕ

)
vvvlog

i+1

)
· P̂PP(cosθ) . (19)

When substituting Equation 19 into Equation 18, we see
that the integral can be expressed by a product between a
matrix of linear interpolation, and the NLP log-SH vectors of
the visibility of the discrete border directions of the wedge:

VVV log
i =Mlin

[
vvvlog

i vvvlog
i+1

]T
, (20)

where Mlin coefficients are calculated with

[Mlin]i, j =
∫ ∆φ

0

∫ π

0
[Ilin] j P̂PP j(cosθ) yyyi(θ,φ) sinθ dθ dφ ,

(21)
and

αi =
φ−ϕi

∆ϕ
(22)

Ilin = [1−αi,1−αi,1−αi,1−αi,αi,αi,αi,αi] . (23)

We precompute the wedge interpolation and composi-
tion operator Mlin which, for e.g., an order-4 SH expan-
sion has dimensions (42)× (2× 4) = 16× 8. After apply-
ing this operator to the two wedge boundary coefficients
(Equation 21), we align the canonical log-SH wedge to its
actual starting azimuthal coordinate using a fast z-rotation,
as in [SN08,NS09]. We finally add the rotated wedges to get
the complete visibility function, as in [NS09].

Height Field Cast Shadows. To compute the shadow of the
height field onto another (non-height field) object’s point, we
use a similar approach: we first project the shading point of

the object onto the plane of the height field, and we offset our
maximum blocking angle calculation using the height of the
point above the height field. We march along each azimuthal
direction as before, accumulating and compositing log-ZH
visibility slices, as illustrated in Figure 4.

θh(p, p′) p′

p

Figure 4: Horizon angle θh for one receiver point p of a
blocker.

4.2. Dynamic Blocker Shadows

When treating spherical blockers, the log-SH visibility for
a single blocker can be determined analytically: consider a
spherical blocker with center c and radius r. If we first as-
sume that c is aligned directly above our shading point p, the
horizon angle formed by the projection of the sphere onto the
point is:

θ(p,c,r) = arcsin
(
r
/
‖c− p‖

)
. (24)

The log-ZH of this canonical blocker visibility is simply:

VVV l =
∫ 2π

φ=0

∫ π

θ=θ(p,c,r)
yyy0

l (θ) sinθ dθ dφ , (25)

which we can quickly rotate to align along the actual direc-
tion between p and c using the Funke-Hecke theorem (see
Section 3). We can similarly compute the log-ZH blocker
visibility analytically as:

VVV log
l =

∫ 2π

φ=0

∫ θ(p,c,r)

θ=0
logε yyy0

l (θ) sinθ dθ dφ , (26)
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and repeat the rotation to obtain the log-SH visibility, which
we will accumulate (with a sum) across all spherical block-
ers (and the accumulated height field log-SH visibility). All
dynamics objects (except the height field) are approximated
with a set of spheres [RWS∗06], and we use a simple k-
means clustering to place the sphere blockers and determine
their radii. Equation 26 (and Equation 25, for that matter) has
compact analytic forms that we hardcode into our shaders.
Figure 1 shows how we accumulate the visibilities at a point
p.

A common problem with log accumulation is that, given
many blockers, numerical accumulation errors are com-
pounded as the occluded regions of blockers overlap. For
example, for a given direction s occluded by m blockers, the
threshold logε will be accumulated m times yielding an ef-
fective value of log(εm). Since ε < 1, log(εm) approaches
infinity and the error (after exponentiation) can become un-
bounded. To mitigate this problem, we smoothly attenuate
the influence of distant blockers to the shading point dur-
ing log-SH accumulation. To avoid visible transitions, we
multiply the log-SH vector of each sphere’s visibility (Equa-
tion 26) by the ratio r

/
‖c− p‖. The farther and smaller a

blocker, the lower its influence. This approach has limits,
e.g., when a small sphere close to p is aligned with a big
sphere far from p, but we found it gives visually pleasing
results in most of the cases. Figure 5 illustrates the impact
of our attenuation approach for a scene with 402 blockers.
Moreover, for a shading point p with a normal nnn, we only
consider blockers b in direction dddb (from p) if nnn ·dddb > 0.

(a) Without ratio attenuation (b) With ratio attenuation

Figure 5: Use of a ratio criterion to decide if a blocker is
considered or not.

5. BRDF

Log-SH Diffuse. Ren et al. [RWS∗06] accumulate log-SH
visibility, exponentiation, and then perform an expensive
triple-product basis-space shading operation with the view-
evaluated BRDF and the light source SH coefficients. This
amounts to the application of an SH product and double-
product integration.

We instead compute log-SH BRDF coefficients, accumu-
late them with the (accumulated) log-SH visibility, and expo-
nentiate, prior to double-product integration with the light-
ing coefficients. This allows us to completely avoid SH prod-
ucts, and reduces shading to a simpler double-product in-
tegration. For a diffuse BRDF, we first can again compute

canonical log-ZH coefficients as:

fff log
i =

∫ 2π

φ=0

∫ π

θ=0
log(max(cosθ/π,ε) yyy0

l (θ) sinθ dθ dφ .

We then rotate this vector in the direction of the shading
point’s normal.

Log-SH Phong. For a glossy Phong BRDF we again project
the canonical log-ZH lobe as:

fff log
i = (27)∫ 2π

φ=0

∫ π/2

θ=0
log
(

max
(

r+1
2π

cosθ
r,ε

))
yyy0

l (θ)sinθ dθ dφ

+
∫ 2π

φ=0

∫ π

θ=π/2
logε yyy0

l (θ)sinθ dθ dφ ,

where we have to take care to split the integral in case r
is even, in order for the hemispherical clamping to logε to
hold. For a Phong term, we simply rotate (using Funke-
Hecke again) the log-ZH lobe to align with the reflected
view-vector.

ε Parameter Setting. We choose ε experimentally: for dif-
ferent values of ε, we compute the ground-truth ZH BRDF
vector, as well as the exponentiated log-ZH BRDF vector,
and we compute their L2 error (see Figure 6). The closer ε

is to one, the larger the error. For example, consider the dif-
fuse BRDF, cosθ/π < 1, which means that when ε = 0.9,
max(cos(θ)/π,ε) = ε most of the times. Thus, logε is close
to 0, and its exponentiation is close to 1. The same reasoning
holds for our glossy BRDF.

Figure 7 shows a specular sphere with different expo-
nents. When the exponent is high, we can see that the spec-
ular highlight on the sphere is not very strong. This is due to
our choice of order 4, as low order SH cannot capture high
frequency information [Slo08].

0.01 0.05 0.10 0.50 1 ε

1

2

3

4

L2 error

r = 200 r = 60 r = 1

Figure 6: L2 error between the SH BRDFs and the exponen-
tiated log-SH BRDFs for various values of r and ε.
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SH
lo

g-
SH

1 60 200

Figure 7: Spheres lit by a directional light with varying r.
Our log-SH BRDF is a coarse approximation of the SH
BRDF, but avoids a costly triple-product integration. log-SH
uses ε = 0.2.

6. Implementation and Results

We generate G-buffers of our scenes in Blender for the posi-
tions, the normals, the UV coordinates and the type of each
object (height field, water, diffuse or specular surfaces). We
also use Mathematica to approximate our general meshes
with spherical blockers. If a mesh is animated, we create
a list of blockers for each separate frame and record the
centers’ positions and radii in a file. For the light, we pre-
generate SH vectors representing the environment maps us-
ing Monte Carlo sampling.

We load the G-buffers, the height map, the lights’ SH
vectors, and a buffer with the blockers’ informations on the
GPU. We hardcode a table of pre-generated log-ZH coeffi-
cients for the BRDFs, that are rotated along the normal or
the reflection vector depending on the type of material. We
compute the shading interactively in a pixel shader. At each
pixel, we determine the type of object. The material ID is
used to choose which log-SH vector to use for the BRDF.
We apply the ray-marching algorithm on the heightmap with
or without an offset depending on whether the pixel is on the
height field or a blocker. This gives us the log-SH visibil-
ity vector resulting from the height field geometry. We then
process the list of blockers and compute their visible angles
and directions on the fly. We rotate them and add their log-
SH visibility vectors together. We add the height field’s vis-
ibility log-SH vector, and the complete visibility is summed
with the BRDF log-SH vector. We finally exponentiate the
resulting log-SH visibility vector summed with the log-SH
BRDF vector and do a dot product with the light’s SH vec-
tor to get the final shading. The lights’ SH vectors can be
rotated according to the user input, who can manipulate the
light interactively.

We render our scenes on a NVIDIA GTX480 card, at the
resolution of 960×540 pixels. The whale in Figure 8 is ap-
proximated by 50 spheres and runs at 10fps. The reflection is
computed using ray-tracing in Blender to pre-generate a spe-
cial G-buffer for the water surface, that gives the positions,
normals, and object’s ID of the reflected point. The method

Figure 9: A glossy wrecking ball crashing into a block of
diffuse and glossy cubes.

is then applied on the water surface as if it were the reflected
point, for example if sand is reflected, then we compute the
shading as if we were on the sand’s surface. The wrecking-
ball scene in Figure 9 has 402 blockers and runs at about
15fps. The ball and half the cubes are specular. We retrieve
the view direction from the moving camera using a python
script in Blender and use this information to rotate the spec-
ular BRDF log-SH vector. Finally, the scenes with the walk-
ing man do not use G-buffers, and run at 68fps.

7. Conclusion and Future Work

Our method provides a unified framework to combine low-
frequency visibility from dynamic objects and a dynamic
height field. We derive a model to represent diffuse and spec-
ular BRDFs in the log-SH space, as well as height field’s
visibility. We combine those log-SH vectors with the accu-
mulations of the spherical blockers’ log-SH vectors and use
the SH exponentiation to reduce the number of SH products.
Our method can be applied as a post-processing step, and
runs interactively.

In future work, we could add indirect illumination. Guer-
rero et al. use the spherical blockers as secondary light
sources to compute real-time indirect illumination [GJW08],
and we could combine this approach with indirect illumina-
tion for height fields [NS09]. These methods work only for
diffuse surfaces, and for specular BRDFs we could adapt
the approach of Pan et al. [PWXLPB07]. We could ex-
tend the work of [RWS∗06] to find an optimal value for
ε in a systematic way. The use of a hierarchy of blockers

c© The Eurographics Association 2015.
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Figure 8: A whale under water with self- and cast-shadows.

as in [RWS∗06] would probably speed up the rendering as
fewer blockers would be considered, and it would reduce the
artifacts of SH ringing without the need for a ratio criterion.
Another approach would be to drop the blockers’ approxi-
mation and use a semi-analytic visibility function for general
meshes [NBMJ13].
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