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Filtering Non-Linear Transfer Functions
on Surfaces

Eric Heitz Derek Nowrouzezahrai Pierre Poulin Fabrice Neyret

Abstract—Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes,
or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range
of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper
filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering
remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through
procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering
over a pixel’s footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions
on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied
to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We
introduce a novel representation of a (potentially modulated) color map’s distribution over pixel footprints using Gaussian statistics
and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent,
and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based
rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework
is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be
represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground
truth and our solution is well suited to real-time applications, requires only a few lines of shader code (provided in supplemental
material), is high performance, and has a negligible memory footprint.

Index Terms—LOD, procedural texture, noise, Gaussian statistics
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1 INTRODUCTION

Procedural textures are a popular approach for adding
detail to 3D objects with a long-standing history [1],
[2]. Modern graphics hardware allows on-the-fly eval-
uation of procedural texture functions with easy in-
tegration into, e.g., shader-based pipelines, requiring
little additional memory usage. Another benefit of
these approaches is their ability to cover a wide
range of appearance variations with a small set of
parameters.

As with standard textures, procedural textures re-
quire proper filtering to reduce aliasing, e.g., when
viewed from varying distances or angles. Mipmap-
ping [3] is a common texture prefiltering approach;
however, it cannot apply to procedural textures where
texels are evaluated on the fly rather than stored
in memory. Currently, the only way to accurately
filter arbitrary procedural textures is with numerical
integration. The cost of this solution grows not only
with the cost of evaluating the underlying procedural
function but also with the number of samples which,
in turn, grows with the size of the filter. As such,
pixels with larger texture footprints require more
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integration samples, incurring a non-uniform filtering
cost in image space, which is unacceptable for real-
time rendering.

Lagae et al. [4] recently solve the problem of fil-
tering procedural noise functions r(x) by computing
the filtered value

∫
r(x)dx directly from properties of

r’s generating process, thus avoiding numerical inte-
gration. However, it is less common to apply noise di-
rectly as a texture. Instead, noise and other procedural
processes are often mapped through a transfer function
in order to obtain the final procedural texture [5],
which can, in turn, be applied as an albedo map atop
a surface or according to geometric properties of, e.g.,
some fine-scale microsurface. A color map C(x) is a
transfer function mapping grayscale values to colors.

Anti-aliasing color mapped procedural textures re-
quires integrating the color map “driven” by a pro-
cedural function:

∫
C(f(x))dx. Since color maps are

often non-linear, the naı̈ve solution of color map-
ping the filtered/mipmapped driving function (i.e.,
C(
∫
f(x) dx)) is not valid in general. According to

recent surveys [4], [6], accurate and efficient filtering
of this composite function is an open problem.

We present the first method to accurately and effi-
ciently filter color mapped textures (Section 4). Our
method is several orders of magnitude faster than
numerical integration, has cost independent of foot-
print size, and accurately filters across all scales. Our
solution is exact when f(x) is a noise function (e.g.,
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Fig. 1. An anti-aliased procedural texture produced by applying a color map to noise (left), introducing structure
that cannot be generated using only the noise function. Meshes with tessellated color mapped procedural
microsurface details. The color map is applied to the microsurface heights (middle) and orientations (right) and
filtered appropriately according to view-dependent masking and shading effects.

f = r), as these processes have Gaussian statistics [4],
and it also approximates filtering with non-Gaussian
driving functions.

High-resolution textures traditionally augment the
apparent detail of coarser underlying geometry. Given
the discrepancy between texture and geometry reso-
lutions, filtering textures while ignoring the under-
lying geometric variation is a suitable simplification.
However, with the onset of programmable tessel-
lation units, GPUs can now dynamically generate
sub-pixel geometric detail on the fly, eliminating the
texture/geometry resolution discrepancy. Given this,
texture-level detail can now become correlated with
the underlying geometry, and must be filtered in
tandem with this geometry.

We extend our solution to two instances of joint
texture-geometry filtering (Section 5): color maps cor-
related to heights, and to local orientations, of the
underlying microdetail geometry. We note that, with
joint texture-geometry filtering, the filtered result ac-
counts for occlusion and masking (i.e., it is both view-
and light-dependent). Our filtering strategy can be
extended to transfer functions that map geometry to
physical quantities other than albedo (Section 5.3) and
the individual solutions can easily be combined lin-
early or non-linearly (Section 6) for greater flexibility.

Our general approach can additionally be applied
to transfer functions (Section 7) that modify the mi-
crogeometry of a surface, leading to the same efficient
and correct view- and light-dependent filtering of
detailed shading.

2 PREVIOUS WORK

For an in-depth study of procedural noise usage and
filtering, we refer readers to recent surveys [4], [6]. We
instead focus on solutions to filtering color mapped
textures and geometry-correlated textures. We assume
that the driving function f is either tabulated or a
procedural noise (i.e., f = r).

Filtering Color Mapped Textures: Shader-
simplification [7], [8], [9] progressively blends evalu-
ated shader colors with an average shader value based

on an analysis of the shader’s procedural shade tree.
In some cases, blending is applied once the maximal
frequency of the procedural shader surpasses the pixel
sampling rate. While high frequencies should ideally
be filtered progressively, these methods attenuate all
frequencies of the procedural shader in parallel. This
results in a trade-off between anti-aliasing quality and
features preservation.

Standard color map filtering uses mipmaps [3], [10]
that store average color map values over an interval.
An approximate interval is chosen, according to pixel
footprint size and color map gradient information,
to sample the mipmap. Hart et al. [11] refine this
approach, approximating the integration domain with
a 1st-order approximation of the procedural texture,
that is only valid for small footprint sizes. Lagae et
al. [12] compute the spectrum of procedural noise
functions, and analytically estimate the variance lost
due to filtering. These methods are limited to box
prefiltering.

Worley [13] uses an adaptive numerical integration
scheme based on heuristic bounds of the spectrum
of the procedurally driven color map. Better heuris-
tics [14] can improve this approach, however even
an adaptive numerical scheme cannot scale to the
demands of interactive rendering algorithms.

We refer the reader to the independent and concur-
rent work of Hadwiger et al. [15] on using distribu-
tion representations for image processing. We instead
focus on high-performance texture and geometry fil-
tering using specialized Gaussian representations in
the context of a real-time rendering system.

Filtering Color Mapped Surfaces: Few methods
address the problem of applying procedural color
maps to surfaces according to underlying properties
such as normals, reflectance, or occlusion.

Wu et al. [16], [17] use characteristic point maps to
find view-dependent correlations between procedural
color maps and surface structures. To our knowledge
their method is the most general reflectance filtering
method but its memory usage and precomputation
times preclude its application to truly dynamic tex-
tures.
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Heitz and Neyret [18] analytically solve the special
case where the color map is applied to the height of
a Gaussian microsurface (Section 3). Their approach
efficiently reconstructs complex view-dependent ef-
fects, however, it is restricted to only sigmoid-based
color maps and height mapping. We present a more
general solution for procedurally driven color maps
(Section 4), procedurally driven height and local-
orientation correlated color maps of arbitrary form
(Section 5), and any combination of these approaches
(Section 6). We finally generalize to height transfer
functions by applying the same methodology to the
transfer function’s Gaussian statistics (Section 7).

3 PRELIMINARIES AND OVERVIEW

pixel

P
x

Li(x, ωi)ρ(nx, ωo, ωi)

wp(x)
V (x, ω)

nx

Fig. 2. The geometry of our problem. We use Gaussian
statistics to filter color mapped textures and microsur-
face detail at all scales.

Figure 2 illustrates the geometry of our problem
and Table 1 lists the key mathematical notations. We
define the observed pixel intensity I , reflected by
an ensemble of surface elements x towards the eye,
according to the following local illumination model:

I=

∫
P
Li(x, ωi)C(x) ρ(nx, ωo, ωi)Vo(x)Vi(x)wP (x) dx∫

P
Vo(x)wP (x) dx

(1)

where nx is the microsurface normal at
x, Vo(x) = V (x, ωo) max(cos θo, 0), and
Vi(x) = V (x, ωi) max(cos θi, 0). We only consider
a single directional light source and integration
over incident directions is required to handle more
complex lighting.

It is clear from Equation (1) that the observed
pixel intensity I depends on a complex interplay
between geometry, reflectance, incident lighting, and
the color map. While previous approaches have ad-
dressed the sub-problem of filtering the geometric and
radiometric quantities in Equation (1), the manner in
which the color map C is filtered across the pixel
footprint has only recently been considered by Heitz
and Neyret [18]. We briefly review their work before
identifying our more complete treatment of this prob-
lem.

Symbol Description
P Surface elements x that project to a fixed pixel P
H Surface heights h that project to a fixed pixel P

wP (x) Filter over the pixel P footprint projected on P
ωi θi Light direction and its angle formed with x’s normal
ωo θo View direction and its angle formed with x’s normal
V (x, ω) Line-of-sight visibility of ray from x towards ω
Li(x, ωi) Incident radiance at x from light direction ωi

C(x; f(·)) Color map generated according to function f
(e.g., color mapped noise, height-dependent color, etc.)

ρ(nx, ωo, ωi) Bi-directional reflectance distribution function (BRDF)

TABLE 1
The notation used throughout the paper.

Existing Work on Color Map Filtering: Heitz
and Neyret [18] filter color maps applied to Gaussian
microsurface heightfields h(x), where the color map
is a very specific function of the height, C(x; f(·)) ≈
C(h(x)), detailed below.

With a microsurface height distribution ph(h), pro-
jected onto the surface, of zero mean and variance σ2

h,
ph(h) = N (0, σ2

h), Heitz and Neyret apply an analytic
expression for the visibility as

V (x, ω) =

[∫ h(x)

−∞
ph(h′) dh′

]Λ(ω)

= Ph(h(x))Λ(ω) , (2)

where Ph(h) = 1− 1
2 erfc

(
h/(
√

2σh)
)

is the cumulative
distribution function of the microsurface heights and

Λ(ω) =
1√
2π

σs
cot θi

exp

(
−cot2 θi

2σ2
s

)
− 1

2
erfc

(
cot θi√

2σs

)
,

where cot θi is the slope of the incident direction, and
σs is the standard deviation of the microsurface slopes
in direction ω.

If C is the combination of a base color c0 and a color
c1 that is scaled according to the microsurface height
(namely, C(h) = c0 + c1 Ph(h)), then Heitz and Neyret
show (using Equation (2)) that the view-occluded and
light-masked filtered color is

C(x, ωi, ωo) =

∫
H
C(h)V (h, ωo)V (h, ωi) ph(h) dh∫
H
V (h, ωo)V (h, ωi) ph(h) dh

= c0 + c1
Λ(ωo) + Λ(ωi) + 1

Λ(ωo) + Λ(ωi) + 2
, (3)

where H is the projected height over P , and the
mapping h(x) of locations x to heights h implicitly
includes the weight wP (x).

We propose several solutions which, among other
things, include Heitz and Neyret’s work as a spe-
cial case. We do not impose any constraints on the
form of the color map, and we support procedural
color map texture filtering as well as procedural color
mapped surface modulation based on height and
local-orientation variations. The latter two filtering
solutions properly model the effects of occlusion to-
wards the eye and visibility towards the light. We
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consider the proper, filtered shading of irradiance en-
vironment maps applied over large terrains. We also
outline how to combine the three filtering methods
together.

General Problem Statement and Overview: We
consider each term in the integrand of Equation (1)
separately and, in particular, their correlation to the
height and local orientation (which is parameterized at
x, and that we interchangeably call the “slope”, for
simplicity of writing) of the underlying Gaussian mi-
crosurface. We leverage the fact that if two functions
a(x) and b(x) are uncorrelated over the entire domain
of integration, then the integral of their product can
be simplified:

∫
a b dx =

∫
a dx

∫
b dx. Our model

assumes that the Gaussian microsurface heights and
slopes are uncorrelated1 [19]. We exploit this property
to factor and manage separately the terms in the
integrand of Equation (1).

The incident radiance Li is independent of the
surface and can be integrated separately (a common
assumption in filtering methods),

Li =

∫
P
Li(x, ωi)wP (x) dx

/∫
P
wP (x) dx . (4)

The visibilities to the viewer and light, V (x, ωo) =
V (h(x), ωo) and V (x, ωi) = V (h(x), ωi), are func-
tions of the microsurface height (see Equation (2)),
but are, according to our assumptions, uncorre-
lated to the microsurface slope. Similarly, the BRDF
ρ(nx, ωo, ωi) and clamped cosine terms (max(cos θo, 0)
and max(cos θi, 0)) depend on the microsurface slope,
but remain uncorrelated to the microsurface height.

The only remaining term of interest in the inte-
grand of Equation (1) is the color map and, here,
we decompose it into three components: a term that
is completely uncorrelated to the microsurface (but
still potentially driven by an abstract function f ),
C(x; f(·)) = C0(f(x)); a term that depends only on
the microsurface heights, C(h(x)) = Ch(x); and a term
that depends only on the microsurface local orien-
tations/slopes, C(nx) = Cs(x). Figure 3 illustrates a
diagrammatic example of these three terms.

C0(x) no correlation

Ch(x) correlation
with height

Cs(x) correlation
with slope

Fig. 3. We decompose the color map into three inde-
pendent components.

1. Or that correlation is sufficiently small and can be neglected.

We reduce the general color map filtering problem
to the problem of filtering each of these three types
of color maps. The remainder of the paper is dedi-
cated to solving Equation (1) in the context of these
three cases (Sections 4 and 5), and how to combine
these solutions to handle color maps composed of
combinations of each three base cases (Section 6). The
approach is finally generalized to geometric transfer
functions (Section 7).

Note that filtering color maps of the form C0 cor-
responds to the long-standing problem of filtering
procedurally driven textures; we solve it in Section 4.

4 FILTERING COLOR MAPPED TEXTURES

Even filtering the simplest instance of a color map
function, C(x; f(·)) = C0(f(x)), that does not depend
on any microsurface attributes, is an open problem
in computer graphics. This scenario occurs when
procedurally generated textures are used to “drive”
lookups into a complex color map.

In this isolated case, Equation (1) can be simplified,
exploiting the absence of correlation between the color
map (and incident light) and the remaining terms in
the integrand, as

I=Li

[∫
PC0(f(x))wP dx∫

P wP dx

]
︸ ︷︷ ︸

C0

[∫
P ρ(nx)Vo(x)Vi(x)wP dx∫

P Vo(x)wP dx

]
,

(5)

where C0 is the average color over the pixel footprint.
We omit parameters from the BRDF and footprint
weight for conciseness.

Computing C0 or, in other words, the texture of
f color mapped through C over the pixel footprint,
requires solving the following integral at every pixel:

C0 =

∫
P
C0(f(x))wP (x) dx

/∫
P
wP (x) dx , (6)

where wP is the filter defined over the pixel footprint
projected onto P (for which common choices are box
or Gaussian filters).

The integral in Equation (6) can be interpreted as a
combination of the values contained in the color map
C0 weighted by the filter wP , and their presence in f .
As such, Equation (6) can be formulated as an inner
product (expressed with angled bracket notation):

C0 =

∫ ∞
−∞

C0(v)Df (P, v) dv = 〈C0, Df (P, ·)〉 , (7)

where Df (P, v) is the distribution of values in f
over P , weighted by wP , which we call the filtering
distribution.

To efficiently compute Equation (7) we seek a rep-
resentation of the distribution Df (P, v) > 0 that will
facilitate the evaluation of the inner product. Such
a representation should be scalable, meaning that it
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can be computed with a memory footprint and a
computational complexity independent of the size of
the filter extent of wP .

4.1 Determining the Filtering Distribution

The non-negative filtering distribution Df (P, v) can
be interpreted as a normalized histogram (i.e.,∫
Df (P, x′)dx′ = 1).
The filtering distribution Df (P, v) has a dimension-

ality that grows with the number of parameters that
are used to describe f , and depends on P , wP , and the
type of these parameters. For arbitrary color maps and
grayscale texture functions, the filtering distribution
may have very high dimensionality. No single repre-
sentation can be used to exactly describe all possible
filtering distributions, let alone doing so in a manner
that is both memory efficient and suitable for rapid
computation of the inner product in Equation (7).

At a high level, in cases where f is a precom-
puted/pretabulated texture, Df may also be precom-
puted/pretabulated. Similarly, if f is constructed, e.g.,
procedurally, then it may be possible to construct Df

from the process that generated f . We note that the
choice of the filter wP influences the form of Df .
For instance, mipmapping of an unfiltered Df would
correspond to having a box filter as wP .

We will briefly discuss conditions under which
the filtering distribution may be exactly representable
(in a reasonable amount of time and memory), or
approximated, before investigating a specific solution
that exploits Gaussian statistics (Section 4.2).

Exact Solutions: As mentioned above, for tab-
ulated f (and, specifically, C0 and f that are low
dimensional), Df may be represented with only a few
parameters: e.g., when f is a grayscale function with a
small number of entries v ∈ {v1, . . . , vn}. Here, the Df

histogram can be discretized and precomputed. If C0

is also coarsely discretized, C0 =
∑
i λiδvi , Df needs

only be evaluated at the vi samples.
This idea generalizes to the case where both C0 and

Df are represented with a finite weighted combina-
tion of basis functions {a} and {b}: C0(v) =

∑
i αiai(v)

and Df (P, v) =
∑
j βjbj(v). In this general case the

inner product in Equation (7) reduces to

〈C0, Df (P, ·)〉 =
∑
i

∑
j

αi βj 〈ai, bj〉 , (8)

where the inner product of basis function pairs 〈ai, bj〉
can be (pre)computed analytically. Exact analytic solu-
tions may be possible depending on the choice of the
basis functions; for example, precomputed radiance
transfer [20], [21] considers the special case where the
basis function sets used to represent both functions
are identical (i.e., {a} = {b}) and orthonormal (i.e.,
〈ai, bj〉 = δij , where δij is the Kroenecker delta func-
tion).

Approximate Solutions: When f cannot be ex-
actly expressed in a finite basis set, but instead can
be approximated, e.g., with a Taylor expansion (see
[6] for examples of other approximations), we may
be able to leverage properties of the representation
in order to efficiently approximate Df . For example,
when f is a procedural function, the processes used
to generate f may have statistical properties that can
be used to define the filtering distribution: e.g., noise
functions can be defined as processes that produce
Gaussian distributions [4]. The statistical distribution
of the process can be used as an approximate substi-
tute for the distribution Df of the considered instance
of the process. Note that, in this case, the distribution
differs slightly from the correct distribution since the
statistics of an instance never perfectly match the
statistics of the generative process. However, when
the number of considered samples increases (and as
the size of the filter wP increases), the statistics of the
instance are well approximated by the statistics of the
process and converge toward it.

We will exploit these observations next in Sec-
tion 4.2 in order to devise our specific filtering so-
lution.

4.2 Color Mapped Gaussian Distributions
We propose a solution for cases where f(x) is a
procedural (e.g., noise) function generated through a
Gaussian process. A broad set of procedural functions
commonly used in computer graphics fall into this
category (see [4]). We are further motivated by the
compactness of Gaussian representations—only two
parameters, mean and variance, are necessary to fully
describe them—and the fact that Gaussians accurately
approximate an important class of real-world distri-
butions. As such, these advantages make Gaussian
distributions a good choice for a generic lightweight
representation.

What’s more, the inner product of a function C0

and a Gaussian with mean f̄ is the convolution
C0 ∗ N (0, σ2

f ) evaluated at the mean,

〈C0,N (f̄ , σ2
f )〉 =

[
C0 ∗ N (0, σ2

f )
]

(f̄) . (9)

In practice, this allows us to precompute the con-
volutions of C0 and Gaussian kernels N (f̄ , σ2

f ) with
standard deviation values in the interval [0, σmax],
where σmax is a user-parameter we set according to
the noise process. We store these preconvolutions in a
2D texture indexed by f̄ and σf . At run-time, a shader
efficiently computes f̄ and σf over the footprint P of
the procedural (e.g., noise) function, and uses these
parameters to sample C̄0 (see Figure 4).

Thus, the color map filtering problem is reduced to
the efficient computation of the mean and standard
deviation of f within the footprint P . For precom-
puted/tabulated f , we need only precompute the first
two moments of f , f̄ and f2, at each level of detail
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P1

P0

f̄0

σf0

f̄1

f̄

σf

(f̄1, σf1
)

(f̄0, σf0
)

σf1

〈C0, Df〉

〈C0, Df〉

P0

P1

Fig. 4. We prefilter the color map applied to a proce-
dural function (e.g., noise). We sample specially con-
structed filtering distributions (right) using the function’s
statistics over the surface patch.

Naı̈ve filtering Ground truth Our result

Fig. 5. Filtering color mapped textures that cannot
be created using only the application of a procedural
(noise) function.

in a mipmap hierarchy of the original tabulated f .
We compute the variance of f after linear texture
interpolation of the first two moments, sampled from
the appropriate level of detail in the mipmap hi-
erarchy: σ2

f = f̄2 − f̄ . Note that this method is also
compatible with anisotropic texture filtering methods
(i.e., more complex wP ). For procedural (e.g., noise)
functions f , such as Perlin noise [1], we precompute
the noise standard deviation for different levels of
detail and store it in a 1D texture. More sophisticated
noise functions such as Gabor noise [12] allow for
an analytical evaluation of the noise variance in the
spectral domain. Note that the idea of preconvolving
a signal with a Gaussian is not new. Previous work
based on this technique are discussed in [6].

We have detailed a method for computing C0, and
thus Equation (5), under the Gaussian statistics as-
sumption. This method allows us, for the first time, to
accurately filter a color mapped procedural function
at very high framerates. Figure 5 compares our color
map filtering method to a super-sampled ground-
truth simulation, as well as a standard naı̈ve method
of sampling the color map with the filtered driving
function f (i.e., C0(

∫
f(x)dx)).

Our filtering results closely match
ground truth and have performance
roughly equivalent to the naı̈ve
mipmapping solution. Figure 6 illus-
trates an example of explicit data
with non-Gaussian statistics. Here,
we approximate the histogram of the data (right;
blue) with a Gaussian (right; red) and the resulting
simplification still yields an accurate result. Some

results also appear in Section 1 of the supplemental
document associated with this paper.

Naı̈ve filtering Ground truth Our result

Fig. 6. The color map (left) is applied to our filtering
method with a Gaussian approximation (right), which
still closely matches ground truth computed with the
original statistics (middle).

5 FILTERING COLOR MAPPED SURFACES

If the color is correlated to a surface attribute, then
Equation (5) is no longer a valid solution to Equa-
tion (1) and we require new specialized solutions that
depend on the type of correlation.

We will isolate and discuss solutions to two cases:
first, when C(x) is correlated to the microsurface
heights (Section 5.1) and, second, when it is correlated
to the microsurface slopes (Section 5.2). The latter can
be applied to shading with irradiance environment
maps (Section 5.3).

Finally, we will discuss how these individual solu-
tions, as well as the texture filtering solution presented
in Section 4, can be combined to handle more general
color maps (Section 6).

5.1 Height-correlated Color Filtering

When the color is correlated to the microsurface
heights, namely C(x; f(·)) ≈ C(h(x)) = Ch(x), then
Equation (1) can be factored according to terms that
depend on the height and those that do not:

I=Li

[∫
P Ch(x)V (x, ωo)V (x, ωi)wP dx∫

P V (x, ωo)wP dx

]
︸ ︷︷ ︸

Ch

×

[∫
P ρ(nx) max(cos θi, 0) max(cos θo, 0)wP dx∫

P max(cos θo, 0)wP dx

]
︸ ︷︷ ︸

ρ

,

(10)

where ρ is the filtered reflectance. We simplify the
problem of solving Equation (10)—and thus, Equa-
tion (1) in this special case—to that of computing Ch.
Solving the reflectance filtering problem is outside the
scope of our work; we employ one of the simpler
techniques described in the recent survey [6].

Motivated by the flexibility of Gaussian statistics,
which we already leveraged in Section 4.2, we will
assume that the height density ph(h) of our micro-
surface geometry is formed according to a zero-mean
Gaussian process: N (0, σ2

h). In Section 9 we show that
GPU tessellation shaders can be used to procedurally
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add microsurface geometry according to these same
statistics.

We will now proceed to our solution to Equa-
tion (10) that extends the ideas and techniques pre-
sented earlier in Section 4 for filtering uncorrelated
color mapped functions.

Filtering Color Mapped Gaussian Height Dis-
tributions: We first define the averaged shadowing
over the surface footprint,

V (ωo, ωi)=

∫
P
V (x, ωo)V (x, ωi)wP dx

/∫
P
V (x, ωo)wP dx ,

(11)
which we solve for analytically (in the case of Gaus-
sian microsurface height distributions) by substituting
each visibility term in the integrands above with
Equation (2)2:

V =

∫
H
Ph(h)Λ(ωo) Ph(h)Λ(ωi) ph(h) dh

/∫
H
Ph(h)Λ(ωo) dh

=

∫
H
Ph(h)[Λ(ωo)+Λ(ωi)] ph(h) dh

/∫
H
Ph(h)Λ(ωo) dh

=
1 + Λ(ωo)

1 + Λ(ωo) + Λ(ωi)
. (12)

Given the average visibility above, we can simplify
Ch as follows:

Ch(ωo, ωi) =

∫
P Ch(x)V (x, ωo)V (x, ωi)wP dx∫

P V (x, ωo)wP dx

= V (ωo, ωi)

∫
H Ch(h)V (h, ωo)V (h, ωi) ph(h) dh∫
H V (h, ωo)V (h, ωi) ph(h) dh

= V (ωo, ωi)

∫
H
Ch(h)Dh(P, h, ωo, ωi) dh

= V (ωo, ωi) 〈Ch, Dh(P, ·, ωo, ωi)〉 , (13)

where Dh(P, ·, ωi, ωo) is a normalized distribution of
heights over P , and generalizes the filtering distri-
bution idea introduced in Section 4.1 for solving the
uncorrelated color map filtering problem in Equa-
tion (7). It is important to note that this new filtering
distribution depends on light and view directions.

All that remains to solve Equation (10) is an ac-
curate and computationally efficient representation of
Dh, which we present below.

An Efficient Height Filtering Distribution Rep-
resentation: Given Equation (13) we see that

Dh(P, h, ωo, ωi) =
V (h, ωo)V (h, ωi) ph(h)∫

H V (h′, ωo)V (h′, ωi) ph(h′) dh′
.

(14)

After substituting Equation (2) (similarly to the de-
velopment of Equation (12) from Equation (11)), we

2. Here, we additionally change the domain of integration from
the pixel footprint to the microsurface heights, absorbing the foot-
print weighting wp into the microsurface height distribution ph(h).

have:

Dh(P, h, ωo, ωi) =
Ph(h)[Λ(ωo)+Λ(ωi)] ph(h)∫

H Ph(h′)[Λ(ωo)+Λ(ωi)] ph(h′) dh′
.

(15)

Note that when the microsurface is lit and observed
from directly above (i.e., head-on incidence, where
θi = θo = 0◦), then Λ(ωo) + Λ(ωi) = 0 and the
height filtering distribution reduces to the microsur-
face height distribution: Dh = ph. This is clear as
occlusion (of either the light and/or the view) of
the heightfield microsurface only occurs at off-normal
incidence, and thus the height filtering distribution is
only modulated in these circumstances.

As such, when Λ(ωo) + Λ(ωi) > 0, we observe
empirically that Dh can be approximated very closely
with a single Gaussian (see Figure 7): Dh ≈ N (µd, σd),
and we fit the following non-linear functions to these
parameters, starting with the mean,

µd =

∫
H hPh(h)[Λ(ωo)+Λ(ωi)] ph(h) dh∫
H Ph(h)[Λ(ωo)+Λ(ω)] ph(h) dh

≈ αµ σh log (βµ [Λ(ωo) + Λ(ωi)] + 1.0) , (16)

and variance

σ2
d =

∫
H h

2 Ph(h)[Λ(ωo)+Λ(ωi)] ph(h) dh∫
H Ph(h)[Λ(ωo)+Λ(ωi)] ph(h) dh

≈
[

σh
1.0 + ασ log (βσ (Λ(ωo) + Λ(ωi)) + 1.0)

]2

.

(17)

We obtain the form of Equation (16) by empirically
observing that: µd grows proportional to σh (leading
to the multiplicative σh term); µd increases mono-
tonically with [Λ(ωo) + Λ(ωi)] with a derivative that
decreases as [Λ(ωo) + Λ(ωi)] increases (leading to the
log(constant × [Λ(ωo) + Λ(ωi)]) term); and that µd = 0
at [Λ(ωo) + Λ(ωi)] = 0 (leading to the 1.0 offset in the
log). We follow a similar methodology to derive the
form of Equation (17).

We fit the parameters of the approximations using
non-linear optimization, obtaining: αµ = 0.39, βµ =
4.75, ασ = 0.26, and βσ = 1.13. Figure 7 compares
our approximations to the true values of µd and σd at
several view/light directions.

At head-on incidence (θi = θo = 0◦) we effectively
match the expected effective height distribution, and
our approximation is accurate even at grazing angles.
Figure 7 also illustrates the shifting and sharpening
behavior of the distribution as the view (or light)
angle increases. Properly capturing this warping and
shifting of the effective height distribution when the
view and/or light configurations change is essential
in order to properly filter the height-mapped color
map. Our representation is easy and efficient to com-
pute, requires little additional memory, and accurately
captures the behavior of the ground truth effective
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θi = θo = 0

Dh(P , h, ωo, ωi)
Our Approximation

θi = θo = 90◦

Fig. 7. Our analytic approximation of Dh(P, h, ωo, ωi).
When θ∗ = 0◦ (left) the distribution and our approxima-
tion match microsurface height distribution. At grazing
angles, θ∗ = 90◦ (right) the distribution is still well
approximated by a Gaussian.

height distribution. Figure 8 as well as Section 2 of
the supplemental document illustrate some results.

Our representation for the effective height distri-
bution can also easily be extended to a microsurface
with noise-perturbed heights. For example, instead of
mapping the color map directly to the microsurface
heights, we can offset the heights according to a
noise function r(x) and then sample the color map:
C(h(x) + r(x)). In this case we need only modify the
mean and variance of our effective height filtering
distribution as µ̄d = µd + µr and σ̄2

d = σ2
d + σ2

r , where
µr and σr are the mean and standard deviation of the
noise r(x). We generate a Gaussian prefiltered color
map hierarchy and Equations (16) and (17) are used
to sample the appropriately filtered color map value
in the hierarchy at run-time3(see Section 9).

5.2 Slope-correlated Color Filtering

When the color function depends on the slope of
the surface (e.g., C(x; f(·)) = C(nx) = Cs(x)), then
we require another factorization of Equation (1) that
segments the integrand into terms that depend on the
local orientation nx and terms that do not:

I = Li

[∫
P V (x, ωo)V (x, ωi)wP dx∫

P V (x, ωo)wP dx

]
︸ ︷︷ ︸

V

×

[∫
P Cs(x) ρ(nx) max(cos θo, 0) max(cos θi, 0)wP dx∫

P max(cos θo, 0)wP dx

]
.

This formulation is particularly difficult to solve due
to potential correlations between the color map and
the BRDF, and so we make an additional assumption
that these two terms are uncorrelated, leading to a
simplified formulation:

I=Li × V × ρ ×
[∫
P Cs(x) max(cos θo, 0)wP dx∫
P max(cos θo, 0)wP dx

]
︸ ︷︷ ︸

Cs

,

3. We sample with the standard deviation σd, not the variance σ2
d.

where we re-formulate the average foreshortened
color Cs as

Cs(ωo)=

∫
Ωx

C(nx)Ds(P, nx, ωo) dnx=〈Cs, Ds(P, ·, ωo)〉,
(18)

where Ds(P, ·, ωo) is a normalized distribution of
slopes over P . We are following a similar method-
ology as in the earlier cases, and all that is required
is a robust representation for Ds. Equation (18) is an
accurate and computationally efficient representation
of Ds.

An Efficient Slope Filtering Distribution Rep-
resentation: The slope distribution of a Gaussian
microsurface is itself a Gaussian with average slope
s̄ = (s̄x, s̄y) and covariance Σ. Here, s̄ and Σ are
defined in the local coordinate frame of x.

We observe empirically that the slope filtering dis-
tribution Ds shifts and stretches as ωo varies, and
it can be well approximated with a single Gaussian
whose parameters can be computed directly from s̄
and Σ. Our approximation of Ds is illustrated in
Figure 9 and we include its full derivation in our
supplemental document.

θ o
=

0
◦

θ o
=

9
0
◦

ps Ds Ds approximation

Fig. 9. (Left to right) The distribution of slopes in P, the
ground-truth view-dependent slope filtering distribution
Ds, and our analytic approximation of Ds. Note that
the view-dependence of Ds results in shifting and
stretching of the distribution at grazing angles. Here we
color code the directional probability density in angular
(θ,φ) coordinates.

5.3 Filtering for Irradiance Environment Maps

An irradiance environment map [22] tabulates outgo-
ing radiance for (unshadowed) Lambertian reflection
from environment lighting as a function of normal
orientation. Filtering diffuse shading by evaluating
the diffuse BRDF with filtered normals is a common
solution, but it does not correctly capture the de-
pendence on surface microstructure that causes view-
dependent effects, even in the diffuse case. We can
in fact interpret an irradiance map as an orientation-
correlated energy density transfer function and apply
our approach to the problem of filtering diffuse re-
flectance from environment lighting.
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Texture filtering Ground truth Our filtering Ours (close-up) Texture filtering Ground truth Our filtering Ours (close-up)

Fig. 8. View-independent filtering versus surface filtering of color mapped microsurface heights and slopes.

We apply our color mapping filtering framework to
Lambertian terrains lit by an environmental lighting
by treating the irradiance captured at each normal as
a function applied to the surface slope, i.e., irradiance
is treated as a slope color map and filtered with our
framework. We note that this assumption only holds
if the macrosurface is planar, as we do not consider
macroscale masking/shadowing.

In this case, the local tangent frame is spatially
invariant and each microslope of the surface is asso-
ciated with a unique normal in world space, and thus
a unique irradiance value. An example use scenario
would be level-of-detail (LOD) rendering of massive
terrains with irradiance mapping. Figure 10 compares
our environment map filtering to traditional normal
filtering and ground truth (computed with super-
sampling), clearly illustrating the accuracy of our
approach in this context.

6 COMBINING TECHNIQUES INTO SOLU-
TIONS

Sections 4 and 5 describe methods for filtering color
maps correlated to individual properties of the un-
derlying microsurface geometry. In this section we
investigate how to combine these individual solutions
to more general color map filtering problems.

Linear Combinations: If the final color is ex-
pressed as a linear combination of height-correlated
(Section 5.1), slope-correlated (Section 5.2), and color
mapped textures (Section 4.2),

C = κ0 C0 + κ1 Ch + κ2 Cs ,

then we can combine our individual solutions to solve
Equation (1):

I = Li ρ
[
κ0 C0 V + κ1 Ch + κ2 Cs V

]
.

Non-Linear Combinations: If instead, the final
output color is expressed as a non-linear combination
of our different correlated color mappings, then the
final color will be a non-linear product of the filtering
results with the appropriately filtering uncorrelated
terms (if any) included in the product. For example,
if C = C0 Ch Cs then I = Li C0 Ch Cs.

Filtering Ground Our Ours
normals truth filtering (close-up)

Fig. 10. Filtering diffuse reflection from irradiance
environment maps on detailed microstructures. The
outgoing radiance is a function of the microsurface ori-
entations (Cs). When the predominant directional light
source in the environment is behind the camera (top of
each pair of rows), front-facing microgeometry reflects
more light; when this light source is behind front-
facing microgeometry (bottom of each pair of rows),
its shading diminishes appropriately. When viewed at a
distance, our filtering properly maintains this important
relative intensity change as well as the spatial vari-
ation of the shading. Evaluating the irradiance map
on the averaged normal does not preserve this view-
dependence.

7 FILTERING HEIGHT TRANSFER FUNC-
TIONS

We have demonstrated how to filter colors and tex-
tures applied on surface height maps, assuming sur-
face distributions of heights and slopes are driven by
known Gaussian statistics. We used these statistics
to correctly filter view- and light-dependent surface
colors at different scales. In the special case of sur-
faces driven by a noise function h = f , we showed
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that the Gaussian height and slope statistics can be
analytically deduced from the noise process. While
interesting procedural height maps can be produced
using noise functions, it remains particularly challeng-
ing to produce visually rich content exclusively using
these functions.

Similar to the application of non-linear color maps
to gray-scale functions, applying non-linear mapping
to heights of a surface is a simple and expressive
way to extend the class of representable procedurally
generated height maps. Here we investigate the case
where surface height maps h are mapped with a
1D spatial transfer function g applied to an existing
gray-scale height function (e.g., noise) f . The surface
height is then defined as h(x) = g(f(x)) as shown in
Figure 11.

g ◦ f(x) = h(x)

Fig. 11. The height h results from a noise pattern f
mapped with a non-linear height transfer function g.
These transfer functions are used to create the moss
and sponge patterns shown in Figure 12.

Texture Ground Our Ours
filtering truth filtering (close-up)

Fig. 12. View-independent texture filtering versus our
surface filtering for color mapped microsurface heights,
with heights transformed by the transfer functions of
Figure 11 .

However, if a non-linear height transfer function g
is applied to f , then the height map statistics h =
g ◦f are not identical to those of the underlying noise

process f . The application of the transfer function g
modifies the surface properties and statistics.

In order to support this different kind of height
surface within our color mapping filtering framework,
we need to accurately approximate its height and
slope statistics, ph and ps, with Gaussian distributions.
These can then be applied in a similar fashion as
described in Section 5. As previously discussed in
Sections 4.2 and 5.1, we suppose that the surface
gray-scale (height) distribution Df of f is known and
follows a 1D-Gaussian distribution. Furthermore, as
in Section 5.2, we suppose that the first and second
moments of the gray-scale slope

(
∂f
∂x ,

∂f
∂y

)
distribution

are available.
In order to approximate the surface height distribu-

tion ph with a Gaussian, parameterized as usual by its
mean h and variance σ2

h, we need to compute first and
second moments

h =

∫
P
h(x)wP (x) dx

/∫
P
wP (x) dx

=

∫
P
g(f(x))wP (x) dx

/∫
P
wP (x) dx (19)

h2 =

∫
P
h2(x)wP (x) dx

/∫
P
wP (x) dx

=

∫
P
g2(f(x))wP (x) dx

/∫
P
wP (x) dx . (20)

These equations resemble Equation (6) as computing
the average value of a height transfer function applied
to a gray-scale function is similar to computing the
average color of a color map applied to a gray-scale
function. Thus, we proceed in a similar fashion as
presented in the color mapping case: we store first
and second moments of g in a preconvolved texture
parameterized by the f ’s statistics and we compute

h = g =

∫ ∞
−∞

g(v)Df (P, v) dv = 〈g,Df (P, ·)〉 (21)

h2 = g2 =

∫ ∞
−∞

g2(v)Df (P, v) dv = 〈g2, Df (P, ·)〉 .
(22)

We use the average height value h within the filter
region wP to displace the surface during tessellation
and we compute the variance as σ2

h = h2 − h2
. We

approximate the PDF ph of h (within filter region
wP ) with the 1D Gaussian N (h, σ2

h), and we use this
distribution in Equation (15).

The slopes of the surface are the gradient of the
heights

(
∂h
∂x ,

∂h
∂y

)
which, when driven by the transfer

function, can be expressed as, e.g.,

∂h

∂x
=
∂g(f)

∂x
= g′(f)

∂f

∂x
. (23)

Section 3 assumed that the surface heights and slopes
(of a Gaussian process) are uncorrelated, which leads
to f and ∂f

∂x being uncorrelated; as such, g′(f) and ∂f
∂x

are also uncorrelated. Now we can separably integrate
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the moments of ∂h
∂x = g′(f) ∂f∂x ; they are simply the

moments of ∂f
∂x multiplied by the moments of g′:

∂h

∂x
= g′

∂f

∂x
(24)(

∂h

∂x

)2

= (g′)2

(
∂f

∂x

)2

(25)(
∂h

∂x

∂h

∂y

)
= (g′)2

(
∂f

∂x

∂f

∂y

)
, (26)

where h’s average slope vector is
(
∂h
∂x ,

∂h
∂y

)
,

and its variance and covariance are given

by σ2
x =

(
∂h
∂x

)2 − ∂h
∂x

2
, σ2

y =
(
∂h
∂y

)2

− ∂h
∂y

2
, and

cxy =
(
∂h
∂x

∂h
∂y

)
− ∂h

∂x
∂h
∂y . The 2D Gaussian distribution

given by these parameters corresponds to the surface
slope distribution ps and is used in the computation
of the visible slope distribution Ds of Equation (18)
(see our supplemental material). The moments g′

and (g′)2 of the derivatives of g and g′, respectively,
can also be similarly computed. We store the first
and second moments of g′ in a preconvolved texture
parameterized by the statistics of f :

g′ =

∫
P
g′(f(x))wP (x) dx

/∫
P
wP (x) dx

=

∫ ∞
−∞

g′(v)Df (P, v) dv = 〈g′, Df (P, ·)〉 (27)

(g′)2 =

∫
P

(g′)2(f(x))wP (x) dx

/∫
P
wP (x) dx

=

∫ ∞
−∞

g′2(v)Df (P, v) dv = 〈(g′)2, Df (P, ·)〉 .
(28)

In practice we store in a preconvolved texture the
moments g, g2, g′, and (g′)2 of the height transfer func-
tion g and its derivative g′. This texture is sampled
according to Df ’s average and standard deviation, as
with the color mapping case in Section 4. Tessellated
surfaces are displaced according to g and, given g and
g2, we compute the 1D Gaussian height distribution
ph. From g′, (g′)2, and the moments of ∂f∂x , we compute
the 2D Gaussian slope distribution ps. Finally, given
these surface height and slope distributions, we are
able to directly apply our color mapping approach as
described in earlier.

Figure 12 illustrates how a finely tessellated dis-
placed microstructure is properly shaded with our
method, especially along the silhouettes and when
viewed from overhead. Simply filtering the texture
without the associated masking/shadowing effects
generates a very different appearance than ours and
the ground truth results.

8 ABOUT THE GAUSSIAN APPROXIMATION
The filtering framework described in this paper re-
lies on several Gaussian approximations. This section
discusses their validity and robustness.

Figure 13 illustrates different types of surfaces and
associated Gaussian approximations. One implication
of the Central Limit Theorem is that most unstruc-
tured, stochastic, fractal, or multilayered surfaces tend
towards having Gaussian statistics, and therefore in
many cases our Gaussian approximation is very ac-
curate. However, the approximation breaks down in
cases of repetitive, multimodal, or structured patterns,
as illustrated in Figure 13 (bottom).

Microsurface Slope distribution Ds Approximation G

Fig. 13. Microsurfaces, their associated slope distribu-
tions, and our Gaussian approximations.

Error Analysis: Figure 13 illustrates the approx-
imation inherent in our Gaussian representation, and
we will detail the sensitivity of our output to the
error introduced by this approximation. We have
shown that the general problem of filtering color
maps applied on textures or surfaces can be efficiently
solved by computing the inner product of the color
map C and the view-dependent distribution D of
the attribute a on which the color map is applied,
expressed as

C̄ =

∫
C(a)D(a) da, (29)

where a can represent many different potential quan-
tities, such as a grayscale noise value, a height, or
a slope. It is important to note that this formulation,
used throughout our paper, introduces no approxima-
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tion (i.e., it is exact); however, to allow for fast and effi-
cient evaluation in Sections 4, 5 and 7, we approximate
D with a Gaussian, G ≈ D and precompute and store
the inner products

∫
C(a)G(a) da in a preconvoluted

color map. This inner product can be expressed in the
frequency domain, since Fourier transformation is a
linear operator and thus preserves inner products:

C̄ =

∫
F{C}(w)F{G}(w) dw, (30)

where F is the Fourier transform operator. Replacing
D by G preserves the value F{G}(0) of the spectrum
at DC. Indeed, the DC component is the average value
of G, and thus of D. In general, low frequencies with
periods much larger than the standard deviation of
the distribution tend to be preserved when replac-
ing D by G. An important spectral property of the
Gaussian approximation, G ≈ D, is that error remains
primarily in higher, rather than lower, frequencies of G.
This implies that, given the inner product of C and
G, the higher the frequency content of C the larger the
sensitivity of the error to the Gaussian approximation.
Figure 14 illustrates this behavior in the errors pro-
duced by applying color maps on slopes on surfaces
with either Gaussian or non-Gaussian statistics: the
result can be accurate even for highly non-Gaussian
surfaces, as long as the color map has little high
frequency content. Our technique is particularly well-
suited to the use of gradient-based color maps, since
these have zero frequency content outside of DC. If
the color map is linear or affine, i.e. C(a) = c1a + c2,
then

C̄ =

∫
C(a)D(a) da = c1

∫
aD(a) da+ c2 (31)

where
∫
aD(a) da is the first moment of the distribu-

tion (the average position) and is preserved with our
Gaussian approximation. Note that even if the color
map is linear, the filtering problem remains non-linear
because distribution D is view-dependent. Indeed,
even if the color map is linear, the resulting transfer
function that we filter is the (non-linear) product of
the color map and visibility. This is precisely why
mipmap texture filtering yields incorrect results even
in the case of linear color maps applied on surfaces.

Conclusion: Our framework is designed so as to
remain accurate with surfaces whose statistics are well
approximated by Gaussian distributions, and this is
the case for many real-world surfaces. Even though
there exist surfaces with non-Gaussian statistics, if the
color map contains few high frequencies then the final
distribution profile will have little impact; the final
output will remain driven primarily by the average
position of the distribution and the shifting effect pro-
duced by view dependence. These surfaces are also
accurately filtered using our Gaussian approximation.

Low frequencies High frequencies

Error: 0.07% 3 Error: 0.54% 3
Low frequencies High frequencies

Error: 0.08% 3 Error: 5.50% 7
Microsurface Slope color maps and errors

Fig. 14. Errors introduced by the Gaussian approxi-
mation in slope color mapping. The 1D color map is
applied on the x component of the slope. (Top) The sur-
face slope distribution is well approximated by a Gaus-
sian and the error is low (< 1%) for high frequencies as
well as for low frequencies color maps. (Bottom) The
surface slope distribution is not well approximated by
a Gaussian. The error is still negligible for low frequen-
cies color maps but becomes significative (> 5%) when
high frequencies are important.

9 IMPLEMENTATION AND RESULTS

Our method is implemented on an Intel Core i7
2.80GHz CPU with an Nvidia GTX 480. We use a
prefiltered color map distribution size of 256 × 256
(only 192 KB of storage). The average performance of
our implementation is driven by the size of the input
mesh. We compare rendering performance on the
Bears (74MB) and Snake (1MB) scenes by measuring
the frames per second (FPS) with and without our
filtering, as well as with and without tessellation.

Scene Tess. + Filter No Tess. +
Filter Only No Filter

Bears (Fig. 8) 85 143 145
Snake (Fig. 15) 130 800 869

Most of the rendering time is spent outside of our
filtering code in the tessellation stage, and the perfor-
mance difference between our filtering strategies and
the naı̈ve strategy is negligible. Our method requires
only a few lines of shader code (1 for texture filtering,
3 for height-correlated filtering, and roughly 50 for
orientation-correlated filtering), where we outline the
most complex orientation correlation pseudocode in
the supplemental material associated with this paper.

Figures 1 and 8 compare our filtering for micro-
surface correlated procedural color mapping exam-
ples, to ground truth (using 32 × 32 jittered super-
sampling) and to a roughly equal-time naı̈ve fil-
tering (i.e., C(

∫
f dx)) using mipmapping. Ground

truth is computed offline using the GPU and the
32 × 32 sampling rate was chosen to resolve the
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most difficult features for far away scene elements.
Our results remain smooth across continuous scale
transitions (see accompanying video) and, at zoom-ins
(Figures 1 and 8, far right) we use adaptive tessellation
to generate and display the microsurface geometry.
These microsurfaces are displaced by a procedural
noise function, generating Gaussian height and local-
orientation statistics.

Figure 15 illustrates a linear combination of our
filtering approaches. The snake’s skin pattern is stored
in a mipmapped displacement map whose slope
statistics are approximated using a Gaussian distri-
bution.

Texture filtering Ground truth Our filtering Ours (close-up)

Fig. 15. Combining techniques: the snake’s skin
blends a green procedural texture with a red pattern
according to a procedural view-dependent function cor-
related to the microsurface slopes.

Our view- and light-dependent filtering clearly gen-
erates results much closer to ground truth than the
only other real-time alternative (naı̈ve color mapping
of mipmapped distributions). This is because we more
accurately solve the filtering integrand, including the
color mapping, occlusion, and visibility terms.

Figure 16 illustrates filtering results across continu-
ous scales.

Fig. 16. View-dependent filtering across continuous
scales.

10 CONCLUSION AND FUTURE WORK

We presented a high-performance and accurate color
map procedural texture filtering solution. By quickly
computing filtering distributions of the procedural
texture function over a pixel’s weighted footprint, we
are able to efficiently and accurately filter the complex
non-linear behavior of color mapped textures across
all scales.

Furthermore, we extend these filtering distributions
to procedural microsurface color mapped details,
properly modeling the correlations between the mi-
crosurface’s color map, height, and local orientation.

Here, filtering is view- and light-dependent, account-
ing for occlusion towards the viewer and masking to-
wards the light. We finally extended our approach to
transfer functions applied on surface microgeometry,
thus demonstrating its generality and flexibility.

Our method is simple to integrate into existing
renderers, requiring only a few lines of shader code,
it has low memory and computation costs, and very
closely matches ground-truth results.

Future Work: An avenue of future work would
consider color maps correlated to a joint function of
microsurface heights and slopes. In this case, a 3D
filtering distribution would have to be formulated.
Such a formulation may contain structure that could
be exploited, e.g., for simplification via factorization,
accounting for the separability of multidimensional
Gaussian statistics.
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