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We present the first method to efficiently predict antialiasing footprints to
pre-filter color-, normal-, and displacement-mapped appearance in the con-
text of multi-bounce global illumination. We derive Fourier spectra for ra-
diance and importance functions that allow us to compute spatial-angular
filtering footprints at path vertices, for both uni- and bi-directional path con-
struction. We then use these footprints to antialias reflectance modulated by
high-resolution maps (such as color and normal maps) encountered along
a path. In doing so, we also unify the traditional path-space formulation of
light-transport with our frequency-space interpretation of global illumina-
tion pre-filtering. Our method is fully compatible with all existing single
bounce pre-filtering appearance models, not restricted by path length, and
easy to implement atop existing path-space renderers. We illustrate its ef-
fectiveness on several radiometrically complex scenarios where previous
approaches either completely fail or require orders of magnitude more time
to arrive at similarly high-quality results.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Three-
Dimensional Graphics and Realism

General Terms: Global Illumination, Frequency Analysis

Additional Key Words and Phrases: Raytracing, Filtering

1. INTRODUCTION

Texturing with color, normal and displacement maps is a common
approach to modelling fine details, increasing a scene’s apparent
complexity. Whenever such textures are used antialiasing ap-
proaches are necessary to avoid objectionable aliasing artifacts.
Local prefiltering of color textures [Heckbert 1986] and, most
recently, normal and displacement maps [Han et al. 2007; Dupuy
et al. 2013; Yan et al. 2014], is a well understood problem;
however, all existing antialiasing works only treat directly vis-
ible surface appearance, projecting the pixel footprint onto the
geometry. Very little work has investigated the implications of
appearance aliasing in the presence of complex light transport with
global illumination (GI). Even in this context, techniques such as
mipmapping can be applied for incremental benefits, i.e., to reduce
the cost of loading full resolution textures into memory.

Prefiltering surface appearance in the presence of GI poses several
challenges: since final pixel color results from a multi-dimensional
integration of light paths incident on the pixel’s footprint (and
reflected towards a viewer), we need to express and propagate the
pixel footprint across multiple bounces (e.g., at each light path
vertex; see Figure 5). Intuitively, filtering should be applied at each
vertex along a light path, where the final appearance is correctly
antialiased by band-limiting its content by the frequency content of
the sensor/pixel, as well as emitters/lights and reflectances along
the path.

In previous work, ray differentials [Igehy 1999] (Figure 1, left)
were devised to predict the pixel footprint from specular interac-
tions, whereas path differentials [Suykens and Willems 2001] are
the only technique available to estimate indirect pixel footprints

from non-specular interactions (Figure 1, center). Unfortunately,
both these approaches only treat eye-paths, leading to incorrect
filtering footprints in the common scenario when the light’s
frequency content is non-negligible. We show how to theoretically
account for both the pixel and light’s frequency content at a vertex,
resulting in the correct antialiasing footprints.

We extend covariance tracing [Belcour et al. 2013] to compute
prefiltering bandlimits at path vertices (Figure 1, right), tak-
ing into account the sensor and emitter spectra, formulating
approximate surface footprints from this bandlimit1. We also
merge two independent unidirectional frequency analyses at
path vertex connections, where pixel and light footprints are
propagated independently across multiple scene interactions,
in order to devise the first bidirectional antialiasing approach.
We apply our method to complex GI effects from surfaces with
high-resolution normal, color, and displacement maps (Figures 7
to 13). Note that we do not treat the case of volumetric an-
tialiasing that could appear with different objects being clustered
in the same filter (geometry antialiasing). Such case cannot be
handled by the surface fomulation of light transport we based upon.

Our implementation is straightforward to integrate into modern
renderers and we compare our filtered transport algorithms to path-
sampling approaches with ray differentials [Igehy 1999] (when
available), additionally employing different local appearance
prefiltering methods (i.e., Heckbert’s diffuse color filtering [1986]
and Yan et al.’s specular normal map filtering [2014]). Both
traditional uni- and bidirectional algorithms require orders of
magnitude longer to converge to the same quality as our approach.

In summary, we present the following technical contributions:

˝ a frequency domain formulation of GI prefiltering (Section 4),
including a unidirectional prefiltering analysis,

˝ an analysis relating traditional path-space transport formula-
tions to their Fourier-domain counterparts, correctly treating
spatial-angular sensor and emitter spectra in order to devise
bidirectional vertex antialiasing footprints (Section 5), and

˝ two efficient techniques for predicting antialiasing footprints
and for prefiltering high resolution appearance in GI effects,
supporting uni- and bidirectional path tracing (Section 6).

2. PREVIOUS WORK

Prefiltering Local Appearance. Texture prefiltering is a foun-
dational topic in computer graphics, and we refer readers to
comprehensive surveys on color texture filtering [Heckbert 1986]
and more general local appearance filtering [Bruneton and Neyret
2012]. Several works address normal map prefiltering [Fournier
1992; Toksvig 2005] by representing local normal distribution

1One would expect that filtering the appearance according to the sampling
bandwidth would suffice; however in rendering, appearance is integrated
over a surface footprint that can still introduce superfluous high frequencies.
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Fig. 1. RAY DIFFERENTIALS (left) propagate the differential of the specular ray interaction with respect to the pixel coordinates. This forbids the study of
indirect footprints due to glossy interactions, where a ray spreads across non-mirror directions. PATH DIFFERENTIALS (center) track the gradient of the radiance
(or importance), but they require the costly evaluation of partial path derivatives with respect to each position-direction path vertex pair. Our COVARIANCE

TRACING approach (right) is simpler, more flexible, and it needs only track the variation of radiance in the local tangent plane of the ray.

functions (NDFs) with bases amenable to fast filtering, often on
the GPU [Han et al. 2007; Olano and Baker 2010; Dupuy et al.
2013]. While these interactive techniques are suitable for e.g.,
video games, none of them correctly treat GI.

Several approaches address more complex micro-structure pre-
filtering, such as on surfaces with scratches and grooves [Bosch
et al. 2004; 2008], and two recent techniques accelerate sampling-
based filtering solutions for surfaces with high-resolution NDFs
using hierarchical spatial-angular pruning [Yan et al. 2014] and
discrete microfacet importance sampling [Jakob et al. 2014]. All of
these techniques only antialias the directly-visible appearance of a
surface, resorting to an oversmoothed approximate BRDF model
as a stopgap solution for indirect bounces.

Prefiltering Indirect Effects. Some works consider special cases
of the GI prefiltering problem, often extending the idea of a pixel
footprint through to a specific secondary shading effect. Cone trac-
ing [Heckbert and Hanrahan 1984; Shinya et al. 1987] can prefilter
geometry and 3D color data [Neyret 1998; Crassin et al. 2009],
approximating soft shadows and smooth indirect illumination.
Ray differentials [Igehy 1999; Chen and Arvo 2000; Schjøth et al.
2007; Elek et al. 2014] propagate local differentials from sensors
(or lights) through only specular reflection and refraction events,
but they cannot correctly handle non-specular interactions.

Suykens and Willems’ path differentials [2001] most closely
resemble our work, albeit with several important differences:
while they also identify the importance of devising prefiltering
footprints at path vertices, path differentials only account for
transport and filtering from eye subpaths and neglect the effects
of the light source (and transport from light subpaths), resulting
in over-blurring. Moreover, path differentials track and progres-
sively update full path-space partial derivatives, with a compute
cost that scales quadratically with the path length (Figure 1).
Our solution avoids this costly computation and scalability is-
sue, maintaining only a single 4ˆ4 symmetric matrix along a path.

Frequency Analysis. We employ a frequency analysis of local
light fields [Durand et al. 2005] where, instead of propagating and
updating the full 4D spatial-angular light field spectra, we leverage
a more compact 2nd-order covariance representation [Belcour et al.
2013; Belcour et al. 2014]. Unlike traditional covariance tracing,
we track and update the spectra of radiance and importance in or-
der to derive prefiltering footprints along a path. We also derive a
simpler BRDF reflection operator for the covariance matrix (Ap-
pendix A), and relate our Fourier analysis of path-space filtering to

traditional path-space formulations of light transport. This allows
us to design uni- and bidirectional path filtering algorithms that are
easy to integrate atop existing path-space renderers.

3. OVERVIEW

We will introduce two extended path tracing approaches, each
suitable for prefiltering the effects of complex appearance models
on the final global illumination. Our uni- and bidirectional an-
tialiasing approaches (Sections 4 and 5) enable filtered evaluation
of BSDFs along each path vertex, as illustrated in Figure 2. In
Section 6 we detail how our approaches can be readily integrated
atop any ray tracer with ray differential support. We present and
discuss results in Section 7 before concluding in Section 8.

Unidirectional antialiasing. Starting from the sensor, we prop-
agate a pixel’s filter (Figure 2, red) along an eye-path using
covariance tracing [Belcour et al. 2013], without considering
occlusion. At each scattering interaction, the covariance matrix
is first used to compute a spatial footprint which, in turn, is used
to perform local filtering of the scattering model at the surface.
Here, we employ existing texture filtering [Heckbert 1986] and
normal map filtering [Yan et al. 2014] approaches; our technique
is insensitive to the choice of approach used to perform the local
filtering. After each locally filtered event, the covariance matrix
is updated according to an appropriate light transport operation,
resulting in an indirect “pixel” filter leaving the surface. Standard
path tracing continues, repeating these filtering and evolution steps
at each vertex, until path termination.

Bidirectional antialiasing. To antialias appearance in a bidirec-
tional light transport simulation, we simultaneously propagate the
covariance matrix representing the pixel’s filter for an eye subpath
(Figure 2, red) as well as the covariance matrix representing the
light’s importance for the light subpath (Figure 2, blue). As with
the unidirectional setting, reflectance profiles at each vertex along
both of the subpaths are prefiltered using existing local appearance
filtering techniques. The key remaining issue to address in order to
correctly filter light transport in a bidirectional setting is the man-
ner in which the eye- and light-subpaths’ covariance matrices are
combined when the two subpaths are connected: when forming a
connection between an eye- and light-subpath, we merge the co-
variance matrices from each subpath into a new 6D covariance
matrix that captures the combined frequency content of the propa-
gated light and sensor light-fields at a path vertex. We can then use
this matrix to compute a filter footprint and antialias the reflectance
a vertex without over-blurring the result.
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Fig. 2. We compute filtering footprints at path vertices (visualized as 2D spatial-angular distributions, bottom row insets), for both light and eye subpaths,
using frequency analysis (Section 4). Given appropriate local appearance filtering methods, we can use our footprints to anti-alias high-frequency global
illumination due to, e.g., high-resolution normal maps (x1), displacement maps (x2), or color maps (x3), after any number of interactions. In bidirectional
path tracing (x2 Ø x3), eye and light subpath filtering kernels may not match. We derive the correct filtering footprint for such connections in Section 5.

4. PREFILTERING THE RENDERING EQUATION

Our goal is to antialias complex lighting effects, specifically, trans-
port effects that arise from (potentially many) indirect interactions
from scenes with realistic reflectance profiles that are modulated by
any combination of high-resolution color, normal and displacement
maps. Starting with the rendering equation, we derive an expres-
sion for the propagation of a spatial-angular footprint (e.g., a pixel
footprint) through a scene (Section 4.1). We use frequency analysis
(Section 4.2) to derive an easy-to-compute expression for the prop-
agated footprint that we then use to prefilter texture-modulated re-
flectance models at vertices of the light transport path (Section 4.3).

4.1 Indirect Pixel Footprint

The rendering equation [Kajiya 1986] models global illumination
at a shade point as an integral over incoming light directions S2:

Lpx, ωoq“L
0px, ωoq`

ż

S2

Lpypx, ωq,´ωq rρpx, ωo, ωq dω, (1)

where Lpx, ωq is the radiance at surface point x (with normal n)
in direction ω, rρpx, ωo, ωq “ ρpx, ωo, ωqmax ppn ¨ ωq, 0q is the
spatially-varying cosine-weighted BRDF, L0px, ωoq is the emitted
radiance at x towards ωo, and ypx, ωq is the closest surface to x in
direction ω. Note that here S2 is relative to the normal n at x but
is always an hemisphere.

Equation 1 does not model a pixel’s response on the image sensor.
This response is defined by a point spread function or, equivalently,
a pixel filter function. Given the sensor filter s0

Ipx, ωq for pixel I,
we can extend the rendering equation to one that additionally mod-
els the final pixel sensor’s response as:

LI “

ż

ΩIˆPI

s0
Ipx, ωoqLpx, ωoq dωo dx , (2)

where ΩI ˆ PI is the spatial-angular integration domain of the
pixel filter, comprising all directions through the pixel and all
image locations over the pixel area. We choose to parameterize the
pixel filter using surface points directly visible through the pixel,
and with directions pointing towards the pixel at these points, as
opposed to points on the sensor and directions leaving the sensor;
this choice will simplify our exposition later on.

Substituting the outgoing radiance Lpx, ωoq in Equation 1 into
Equation 2 gives:

LI “ L0
I `

ż

S2

ż

ΩI

ż

PI

s0
Ipx, ωqLpypx, ωoq,´ωq rρpx, ωo, ωq dx dω dωo,

where L0
I “ xs

0
I , L

0y is the directly observed emission at pixel I.

Appearance antialiasing is commonly used in rendering. When
computing the directly-visible appearance of a surface with e.g.,
high-frequency variation, many filtering solutions have been pro-
posed: most notably, the product of a pixel filter (projected onto
a directly-visible surface) and the spatially-varying BRDF can be
pre-integrated, reducing aliasing when shading at low sampling
rates. If the incident radiance Lpy,´ωq is almost constant for all
surface points directly visible to a pixel, we can approximate the
product of the pixel filter and cosine-weighted BRDF with its mean
ρI “

ş

s0
Ipx, ωoqrρpx, ωo, ωqdx dωo. Then, the antialiased shading

for pixel I is:

LI » L0
I `

ż

S2

ρIpωq

ż

PI

Lpypx, ωq,´ωq dx dω . (3)

Here, we choose to integrate the spatial componnent of L as y
combines x and ω. Recall also that we restrict the spatial-angular
integration domain to the extent of pixel I (i.e., the domain of s0

I ).
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Fig. 3. We recursively construct indirect pixel filters by propagating the
interaction of the pixel filter s0I with each path vertex’s BSDF. Since the in-
direct pixel filter for bounce-k, skI , defines a 4D field, we only visualize 2D
slices above: these correspond to angular-distributions (e.g., s0Ipx, ¨q) when
fixing a position (e.g., x P S0), or to spatial-distributions (e.g., s1Ip¨, ω1q)
when fixing a direction (e.g., ω1 P Ω1).
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Fig. 4. Covariance tracing [Belcour 2012] predicts the matrix of second moments, Σ, of the light field spectrum (depicted as ellipsoids, bottom left insets). Σ
is predicted for a given light path by composing individual matrix operators (top left). These operators have simple analytic forms, as depicted in the right of the
Figure: free-space transport and object curvature operators are shears in covariance-space, while the BRDF reflection operator acts as an angular bandlimiting
kernel. We introduce a more efficient evaluation of the BRDF matrix operator in Appendix A.

Departing from the local filtering scenario of previous work to the
global transport setting, we observe that the integrated product of
the pixel filter and the cosine-weighted BRDF at a directly visible
surface point x can also serve as an indirect “pixel” filter, which we
can propagate and apply to the incoming radiance at x (or, equiv-
alently, the outgoing radiance at y; Figure 3). This recursively de-
fines the k-bounce propagated indirect filter from the eye as:

skI py, ωq “

ż

sk´1
I px, ωoq rρpx, ωo, ωq dωo , (4)

where y P PkI is the closest point visible from x in direction ω.
This implicitly defines the propagation of a “filtered” path into the
scene.

By combining Equations 1, 2 and 4, we can rewrite the observed
(and filtered) pixel intensity as an infinite sum:

LI “ L0
I `

8
ÿ

k“0

ĳ

S2ˆPk
I

skI px, ωoq rρpx, ωo, ωqL
0pypx, ωq,´ωq dx dω .

(5)

We use Equation 5 to antialias complex GI effects (after any num-
ber of indirect bounces): at each bounce k, we will antialias the
cosine-weighted BRDF according to the indirect filter’s bandlimit.
An alternative interpretation is to imagine the projected “image” of
the indirect filter, at a surface along a path (i.e., at a path vertex), as
an integration footprint over which we evaluate the mean cosine-
weighted BRDF (Figure 5). This view resembles ray differentials,
however it is not limited to purely specular interactions. Our ren-
dering method computes the appropriate prefiltering bandlimit, and
we will also show how to approximate this footprint in order to sup-
port renderers that already use ray differentials (Section 6).

Two scenarios arise when antialiasing multi-bounce shading
effects. If we assume that the incident radiance variation at each
indirect surface interaction (i.e., each bounce) is negligible com-
pared to the propagated indirect filter’s variation, we can simply
antialias the local reflectance model at each path vertex’s surface
according to only the bandlimit of the indirect pixel footprint.
This corresponds to a straightforward extension of traditional
filtering methods for directly-visible reflectance [Olano and Baker
2010; Dupuy et al. 2013; Yan et al. 2014; Jakob et al. 2014]
to multi-bounce effects. We detail this unidirectional filtering
approach in Sections 4.2 and 4.3, outlining its integration into a
unidirectional path tracer.

Whenever the incident radiance’s variation cannot be ignored, i.e.,
when it has a higher frequency content than the (indirect) pixel

footprint (e.g., with caustics), we can no longer decouple the filter-
ing integral, and the aforementioned unidirectional scheme will fail
to properly antialias the multi-bounce shading effect. To solve this
problem, we will show how to evaluate the correct bandlimit, taking
the bandlimits of both the propagated indirect pixel footprint and
the propagated light footprints into account during filtering (Sec-
tion 5). We will similarly detail the integration of such a filtering
scheme atop bidirectional path tracing.

4.2 Unidirectional Connection Covariance Matrix

To filter appearance at arbitrary vertices along a path connecting
a pixel to an emitter, we need to be able to estimate the indirect
pixel bandwidth at the vertex. We use frequency analysis [Durand
et al. 2005] to accurately predict the Fourier spectra of local light
fields along a path. Conceptually, this analysis predicts the spatial
and angular variation of a light field around any vertex on a light
path. We use this theory to consider the evolution of the light field,
starting from the sensor’s filtering kernel s0

Ipx, ωoq.

First, we define the local Fourier Transform (FT) of the indirect
pixel filter skI px, ωq (after k bounces), centered around px, ωq, as:

pskI pξq “

ż

D
skI px` u, ω ` vq eiru,vs

T ξ du dv, (6)

where ξ “ rpx, pvs is a 1ˆ 4 vector of the spatial- and angular-
frequency coordinates, D “ H2 ˆ Px is the local light field’s
domain. H2 is the 2D space of position centered around x and
tangent to ω while Px is the 2D space of directions parametrized in

Fig. 5. To antialias complex appearance with global illumination, we prop-
agate pixel footprints along a path through the scene. Expressing the indirect
pixel filters skI compactly and accounting for the light interaction is key to
correctly and efficiently perform appearance prefiltering.
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Ours (1spp), MSE “ 0.000414

Path tracing (1spp), MSE “ 0.001309

Fig. 6. TWO PLANES scene. We compare our method (top inset) to
path tracing with ray differentials (bottom inset) at one sample per pixel.
The scene shows the filtering after one indirect bounce by three differ-
ent BRDFs, from very glossy to mid-roughness, on the ground plane. Our
method still exhibits some noise due to random sampling (the BRDF-
sampled outgoing direction affects the filter footprint), low sampling rate,
and the lack of any geometry/visibility pre-filtering).

tangent space [Durand et al. 2005]. pD “ xH2 ˆxPx is the frequency
equivalent of D. We denote by pg the FT of an arbitrary function g.

Frequency analysis of light transport [Durand et al. 2005] allows
us to determine the FT of a spatial-angular distribution propagated
along a light path (i.e., skI px, ωq), using only the FT of the original
distribution (i.e., s0

Ipx, ωq) and the FT of the global transport oper-
ator T . To do so, we decompose FT of T into individual transport
operations and treat each bounce of transport sequentially:

psk`1
I pξq “ T

“

pskI pξq
‰

“ P1{ cosθ1 ˝C´κ ˝Bρ ˝ S ˝Cκ ˝Pcosθ ˝Td

“

pskI pξq
‰

,

where P{X},Cκ,Bρ,S, and Td are atomic transport operators
used to decompose the global transport operator T (see Figure 4)
and, e.g., applying this compound operation once with k “ 0
would propagate the sensor filter by one bounce, corresponding
conceptually to previous directly-visible appearance filtering work
(albeit using our formulation). We refer readers to Chapter 3 of
Belcour’s thesis [2012] for full derivations of these operators.

To characterize the bandlimit of pskI pξq, we use the compact 2nd-
order covariance representation of Belcour et al. [2013], without
considering time nor occlusion. This corresponds to the 4ˆ4 co-
variance matrix of the 4D FT of the propagated sensor footprint:

Σ
`

pskI
˘

“

ż

pD
pξ ¨ ξT q pskI pξq dξ . (7)

The atomic transport operators applied to the 4D light field spectra
can all be expressed as matrix operators (applied to the covariance
matrix; see Figure 4, right); e.g., the free-space travel operator is:

Td

“

ps0
Ipξq

‰

» Td rΣs “ TTd ΣTd .

To estimate the covariance matrix after k bounces, Σk, we first start
at the sensor with covariance Σ0 and propagate for k bounces using
the covariance transport operators, a process illustrated in Figure 4.
At each vertex, we can estimate the prefiltering footprint from the
covariance matrix to perform antialiasing (Section 4.3).

4.3 Unidirectional Path Filtering with Covariance

We first treat forward path tracing, where paths are constructed
from the sensor through the scene and towards emitters. When
evaluating transport contributions at path vertices, we can reduce
aliasing artifacts from i.e., high-frequency surface’s texture, nor-
mal, and geometry variations by replacing pointwise evaluations
of vertex contribution with prefiltered values. This reduces spatial,

Fig. 7. INDIRECT TEXTURE FILTERING. Our method (bottom left) filters
the textured floor after glossy (left & middle spheres) and diffuse (floor)
indirect bounces. Even at prohibitively low sampling rates, we outperform
path tracing with carefully hand-tuned ray differentials (bottom right).
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Fig. 8. Our prediction of the spatial filter (in red), after one indirect bounce
on the right glossy sphere (see pixel in blue), closely matches a ground truth
density estimation of the filter (in green). Specifically, we trace rays in the
pixel filter of the blue pixel until a second interaction and perform density
estimation (similar to photon mapping) to estimate the ground truth indirect
pixel filter.

angular, and temporal noise in the final renderings (see Figures 6
and 7).

We filter the spatially-varying BRDF ρpx, ωo, ωq at a path vertex
xk, where the effects of any color, normal, and/or displacement
map within the indirect pixel filter skI is correctly incorporated into
a prefiltered rρ. For example, in the case of high-frequency normal
maps, the effective BRDF is obtained by integrating the NDF over
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Fig. 9. In BDPT, forming the connection x0 Ø y2 (or x1 Ø y1) without re-evaluating the antialiased BSDF at vertices y2 (or y1 resp.) with a footprint
accounting for the eye path frequencies will lead to over-blurring when the eye path frequencies are higher than the light path frequencies. The same argument
holds in the reverse configuration. On the right, we compare naı̈ve connections (without re-evaluation) to bidirectionnal connections (with re-evaluation). Since
some connections will account for the BSDF antialiased with respect to the light path frequencies, a blur the size of the caustic’s footprint will appear (here
the caustic is purposefully not fully focused, in order to better illustrate the blurring effect).

the indirect pixel filter’s footprint. The filtered appearance is:

rρpxk, ωo, ωq“

ż

F
ρpxk ù, ωò ω, ωqhpu, ωq du dω “ ρ˙h , (8)

where F “ Pu ˆ Ω is the 4-dimensional filtering footprint (over
local positions and directions about xk) and h is the filtering
kernel. Once we determine the filtering kernel, we can use existing
local filtering methods (see below) to compute Equation 8.

To derive the filtering kernel at xk, from the propagated sensor co-
variance Σk, we use a Mahalanobis distance of the light field at xk
to a 0-mean distribution with covariance Σ´1

k as:

hpu, ωq “ g
`

ru, ωsT Σk ru, ωs
˘

M

Kg , (9)

where gpxq is any standard 1D filter and Kg is a normalization
term that takes the footprint dimensionality (i.e., 4) into account.
For a Gaussian filter Kg “ p2πq

2
a

|Σ|). Note that any normalized
1D filter is compatible with this formulation. We show in Figure 8
that using a Gaussian filter correctly depicts the orientation and
spread of the indirect pixel filter after one bounce.

We note, however, that most filtered BRDF models are not defined
with respect to a filter g, but instead to a surface footprint F . In
these cases, we extract an equivalent footprint from the covariance
(Section 6). Note that by using the surface footprint we lose the
ability to incorporate the pixel filter’s profile during antialiasing.

Figures 7 and 14 illustrate the benefits of our covariance path trac-
ing (CPT) over traditional path tracing with (carefully hand-tuned)
ray differentials (PT). Since we account for any BRDF interaction,
we are able to prefilter appearance even at indirect bounces. This
allows us to efficiently render highly detailed textures using EWA
filtering [Heckbert 1986] (Figure 7) and normal maps using the
BRDF filtering model of Yan et al. [2014] (Figure 14).

Next, we extend our prefiltering formulation to bidirectional path
tracing [Veach and Guibas 1994; Lafortune and Willems 1993].

5. COVARIANCE FILTERING IN PATH SPACE

Naı̈vely extending unidirectional prefiltering to bidirectional path
tracing (BDPT)2 can fail to correctly antialias all vertices along
a path (Figure 9). For example, when performing an explicit
connection between the light path and the camera (to compute
the light image, connection x0 Ø y2 in Figure 9), using the
BSDF evaluated from the light path’s footprint will likely result in
overblurring and noticeable artifacts (gray overblur in Figure 9).
Since BSDFs are commonly antialiased during path construction
and evaluated during connection, we first conclude that surface
appearance must be re-antialiased during connections in order
to avoid these artefacts.

We can similarly extend this idea to account for the eye footprint at
the connection vertex; however, this can still lead to over-blurring
when the frequency content at vertices closer to the light is much
lower in light tracing compared to importance tracing (pink and
blue footprints in Figure 9). As such, it is important to devise a
theoretically sound expression for the prefiltering kernel of the
complete path when a connection is made. We will present such an
expression below by building atop the path space formulation of
light transport [Veach 1997].

We will show that prefiltering kernels for bidirectional vertex
connections can be approximated using the sum of covariance
matrices propagated unidirectionally from eye and light sub-paths
(Equation 14), permitting simple BSDF antialiasing during subpath
connection. Readers not interested by the mathematical derivation
of this property can skip to Section 5.4.

We begin by briefly introducing the traditional path space formu-
lation of light transport before performing a local Fourier Trans-
form in this space (Section 5.1). We will derive an expression for
the filtering kernel at a given vertex (Section 5.2) and, after apply-
ing a Fourier transform to this kernel, we will derive its covariance
matrix (relating its computation to the previously defined unidirec-
tional matrices (Section 5.3). Finally, we will discuss how to extend

2That is using the footprints derived previously to antialias the eye sub-path
and light sub-path appearance independently.
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Fig. 10. Consider the 2D case of fixed-length paths interacting with the same surfaces (a), where we window path space (b) in order to perform a local Fourier
analysis (c) of the path throughput (we ensure xk remains on the same surface). The bandwidth of the throughput’s (local) frequency spectrum at a vertex
can be compactly represented by the vertex covariance matrix (d). Here, we are interested in the covariance at vertex k (red), with respect to its neighboring
vertices k ´ 1 and k ` 1 (blue & gray).

BDPT to incorporate appearance antialiasing using the covariance
matrices of the filtering kernel (Section 5.4).

5.1 Frequency Analysis of Path Space

Let x “ rx0, . . . ,xn´1s be a length-n path, Ωn the set of all
length-n paths (Figure 10 (a) and (b)), and Ω the set of all pos-
sible paths. The throughput of a path connecting a sensor pixel to
an emitter point is:

fpxq“s0
Ipx0qGpx0Ñx1qL

0pxnq
n´1
ź

k“1

ρpxkqGpxkÑxk`1q,

(10)
where Gpxk Ñ xk`1q accounts for the form factor and visibility
between two path vertices, and the remaining terms are path
space equivalents of the pixel filter s0

I , BSDF ρ, and light source
emission L0.

The pixel intensity is the accumulation of the integral of this
throughput over all path lengths using an appropriate metric (simi-
lar to Equation 5):

LI “
ÿ

nPN
LnI “

ÿ

nPN

„
ż

Ωn

fpxqdµpxq



.

We define the local Fourier Transform of f around path x as (see
Figure 10 (c) and (d)):

pfxpξq “

ż

Ωn

wprx´ ysT Wmaxrx´ ysq fpyq eiy
T ξ dy , (11)

where wprx ´ ysT Wmaxrx ´ ysq is a windowing function around
x that (conceptually) restricts the analysis to the local subspace
where the Fourier Transform is well defined (note that Ωn is a
cartesian product of differential surface manifolds). Specifically,
this window ensures that vertices remain on the same surface. It
will later be used to ensure that the paraxial approximation of
covariance tracing is met. Here, Wmax is a diagonal matrix that
controls the extent of the window, and ξ “ rξ0, . . . , ξn´1s is a
1 ˆ 2n frequency coordinate vector for a length-n path (n dimen-
sions with 2 coordinates per dimension; similarly to Equation 6).

In practice, Wmax will be determined by the renderer’s pixel
sampling rate, as well as any additional stratification schemes
applied during pixel and light sampling (see Section 6 for details).

5.2 Bidirectional Connection Filtering Kernels

Similar to Section 4, we express the contribution of length-n paths
to the integrated radiance for a pixel I. However, here we will high-

light the appearance at the kth vertex of the path and use the indirect
pixel filter and the integrated radiance until vertex xk:

LnI “

ż

skI pxk´1,xkq ρpxkqL
n´kpxk,xk`1q dxk´1 dxk dxk`1.

Here, skI pxk´1,xkq is the propagated pixel filter and Ln´kpxk,
xk`1q is the integrated incident radiance both defined as:

skI pxk´1,xkq “ Gpxk´1Ñxkq

ż

s0
Ipx0qGpx0Ñx1qˆ

«

k´1
ź

i“1

ρpxiqGpxiÑxi`1q

ff

dx0 ¨ ¨ ¨ dxk´2,

and

Ln´kpxk,xk`1q “ GpxkÑxk`1qˆ

ż

«

n´1
ź

i“k`1

ρpxiqGpxiÑxi`1q

ff

L0pxnqdxk`2 ¨ ¨ ¨ dxn.

Note that this is simply a reformulation of LnI that highlights the
contribution of vertex xk to the radiance of length-n paths. Note
that we omit the metric in these equations for brevity.

Given the Equations above, and following a similar methodology
used when deriving Equation 3, the product of the integrated im-
portance and radiance functions at a vertex can be used as a filtering
kernel hpxq:

LnI “ ||s
k
I ˆ L

n´k||

ż

hpxqρpxkqdxk´1dxkdxk`1,

with hpxq “
skI pxk´1,xkq ˆ L

n´kpxk,xk`1q

||skI ˆ L
n´k||

, (12)

Where ||f || is the norm of f , making hpxq normalized.

To determine the filter’s bandwidth, we can use its Fourier Trans-
form. The Fourier Transform of hpxq is the convolution of the
Fourier Transform of each term along the kth component of ξ (noted
˙k here):

F rhs pξq 9
”

pskI ˙k
pLn´k

ı

pξq . (13)

5.3 Covariance of Bidirectional Connections

The covariance matrix of the filter defined in Equation 13 can be
expressed using the convolution property: the covariance of the
convolution of a zero mean spectra is the sum of the covariances
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of the spectra (see Appendix B):

Σxk
“ Σ

´

pskI ˙k
pLn´k

¯

“ Σ
`

pskI
˘

‘k Σ
´

pLn´k
¯

, (14)

where ΣppskI q and ΣppLn´kq are 4ˆ4 propagated eye- and light-
subpath covariance matrices (Section 4.2), and ‘k is a restricted
matrix sum that only sums the overlapping 2ˆ 2 central region
of these two covariances. Note, the two 2ˆ 2 submatrix blocks
in the top-right and bottom-left corners of Σxk

indicating the
correlations between xk´1 and xk`1 cannot be estimated using
covariance tracing [Belcour et al. 2013].

Alternatively, we can express the vertex covariance matrix from
the Fourier transform of the ratio between the throughput and the
reflectance at vertex k, frpxq “ fpxq{ρpxkq, using the Fourier
transform defined in Equation 11:

Σxk
“

ż

xD

pξk ¨ ξ
T
k q

xfrxpξ̄kq dξk, (15)

where the domain pD “ pxk K pΩn is the restriction of the entire
Fourier domain of length-n path space to the three point domain,
and ξ̄k “ r0, ..., 0, ξk´1, ξk, ξk`1, 0, ..., 0s is a 1ˆ 2n frequency
coordinate vector only capturing the spectrum’s covariance for the
three point configuration only, averaging out the contribution of
the remaining vertices (evaluation at zero in Fourier is equivalent
to integrating/averaging in the primal space).

5.4 Using Covariance for Bidirectional Path Filtering

To filter the reflectance ρpxkq at a vertex xk after a bidirectional
connection, we extend the method in Section 4.3: we first evaluate
the input eye sub-path and light sub-path covariances until xk,
we compute a filtering footprint using Equation 14, and construct
an equivalent ray differential (see Section 6, below) from the
covariance to evaluate the reflectance.

Standard ray differentials, however, can only be constructed from a
4 ˆ 4 covariance matrix (where spatial-angular covariance can be
converted to spatial-angular differential offsets), and so we need to
select one of the two 4 ˆ 4 submatrix from the 6ˆ6 covariance
Σxk

to construct a ray differential: we can either use the top-left or
bottom-right submatrices, corresponding to either the eye or light
connection at xk (see Figure 10 (d), far right in blue and gray).
These options correspond to which “direction” we want to filter
from but are equivalent since they incorporate both the eye and
light frequency content.

Given our choice of the path vertex covariance submatrix we will
use for filtering, the filtering kernel h and footprint F are exactly
the same as in Section 4.3. The antialiased reflectance at the kth

vertex can be expressed as the integral of the spatially varying re-
flectance multiplied by the kernel on the footprint.

6. IMPLEMENTATION DETAILS

We present two new rendering algorithms, covariance path tracing
(CPT; based on Section 4) and covariance bidirectional path
tracing (CBDPT; based on Section 5), that combine our covariance
filtering formulations with covariance tracing to antialias complex
global illumination effects. Given the ubiquitous support for
ray differentials in modern renderers (i.e., PBRT [Pharr and
Humphreys 2010] and Mitsuba [Jakob 2010]), we will derive

expressions for our filtering footprints (Sections 4.3 and 5.4) based
on equivalent ray differentials (see below), allowing us to leverage
existing support for efficient texture filtering in modern renderers.

In practice, our algorithms require few changes to existing uni- and
bidirectional integrators, described at a high-level as follows:

(1) We compute 4ˆ4 covariance matrices from either the sensor or
the light during path tracing: at each interaction, we update the
covariance using standard covariance operators (see [Belcour
et al. 2013; Belcour et al. 2014]) and store covariance at each
path vertex for potential bidirectional connections;

(2) When forming bidirectional connections, we combine the eye
and light covariance submatrices to construct the vertex covari-
ance from the eye’s direction;

(3) We compute equivalent ray differentials from these footprints
(see below) to evaluate texture coordinate partial derivatives
with respect to a virtual pixel footprint and to perform the ap-
propriate local texture/appearance filtering.

We now discuss specific implementation details of our algorithms.

Covariance Stratification. In our implementation, pixel sampling
rate defines the minimum observable frequency content, corre-
sponding to the diagonal entries of Wmax. At sensor vertices x0,
we scale the outgoing filter’s covariance to conservatively account
for any pixel stratification, ensuring that we remain consistent
and avoid over-blurring. Note that one could use Wmax to build a
progressive renderer that progressively reduces the bias introduced
by antialiasing by increasing the diagonal entries of this matrix.

Bi-directional Covariance Connections. We compute the vertex
covariance Σxk

at a vertex (Section 5.3, Equation 14) using propa-
gated eye and light subpath covariances, ΣppskI q and ΣppLn´kq.

When forming a filtered bi-directional connection, we have two
choices for the covariance matrix that we use to compute the
filtering footprint (Section 5.4): either the eye path submatrix
Σxk´1Ñxk

or the light path submatrix ΣxkÐxk`1
. In our imple-

mentation, we choose Σxk´1Ñxk
in order to remain compatible

with existing appearance antialiasing techniques: all existing
models are defined according to an incident 2D surface footprint.
This footprint is encoded in the 2D submatrix of vertex k. The
remaining components of the covariance matrix describe the
angular footprint for antialiasing, which we could use to to more
efficiently prefilter appearance in the presence of defocus, for
example. We leave this application to future work.

Filtering with Equivalent Ray Differentials. To integrate
our work with existing ray-tracing engines, we build atop ray
differentials [Igehy 1999]. After each interaction, we build an
equivalent ray differential from our covariance matrix to evaluate
the prefiltered appearance model.

A ray differential is defined by a central ray r “ to, ~d u and its
partial derivatives with respect to the pixel position: tBo{Bu, B~d{Buu,
tBo{Bv, B~d{Bvu. Partial derivatives are taken with respect to the pixel
frame p~u,~vq, and the ray differential is propagated into the scene
and updated to account for all specular interactions from the sensor.

We can “extract” a ray differential from our 4 ˆ 4 covariance ma-
trix using a separate eigendecomposition of the spatial and angular
submatrices. Assuming a Gaussian filter, we extract the differential
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CBDPT (Ours) BDPT Reference
3.78 hrs (2048 spp) 3.78 hrs (3968 spp) 141 days (100M spp)

Fig. 11. CHRISTMAS scene. CBDPT renders 1024 spp in 3.78 hours while BDPT can generate 3968 spp in equal time in this complex scene, where emitters
are modeled realistically and all visible illumination is from caustics. BDPT completely fails to render the indirect normal mapped microfacet reflections on
the ornaments. The reference was run on a cluster of Intel Xeon E5 CPUs and took 1133 core days (141 days on a 8 core machine).

Fig. 12. Our prediction of the spatial filter (in red) after one indirect
bounce on the right glossy sphere (see pixel in blue) and the spatial com-
ponent of the equivalent ray differential (in yellow). This quadrilateral can
be used to evaluate the antialiased appearance at the hitpoint location using
any nested local appearance filtering method.

using the inverse covariance C “ Σ´1. An eigendecomposition on
the first 2ˆ 2 block of C gives us the spatial differential:

Bo

Bu
“

a

Λx0

2π
x0 and

Bo

Bv
“

a

Λx1

2π
x1,

where tx0,x1u are the spatial eigenvectors, and tΛx0
,Λx1

u the
spatial eigenvalues. We use a square root of the eigenvalues as they
define variance and not standard deviation. The 2π factor is due to
the change of domain from the Fourier to the primal. Similarly, we
extract the the angular differential using the last 2ˆ 2 block of C:

B~d

Bu
“

a

Λω0

2π
ω0 and

B~d

Bv
“

a

Λω0

2π
ω1,

where tω0,ω1u are the angular eigenvectors, and tΛω0
,Λω1

u the
angular eigenvalues. The resulting spatio-angular footprint accu-
rately matches the orientation and spread of the indirect pixel filter
(see Figure 12) and allows use to easily integrate our technique into
existing rendering engines that are not compatible with anisotropic-

Gaussian kernels (e.g. PBRT, Mitsuba). We provide full source
code online [Belcour 2016].

7. RESULTS AND DISCUSSION

We implement CPT and CBDPT in Mitsuba [Jakob 2010], with
minimal modifications, overloading the RAYDIFFERENTIAL class
to perform covariance filter construction (Section 6). We compare
our two algorithms to their unfiltered counterparts: forward unidi-
rectional (PT) and bidirectional path tracing (BDPT), both using
the reference Mitsuba implementations with ray differentials. Our
implementation is not optimized and relies as much as possible on
existing Mitsuba functionality, with the exception of an (unopti-
mized) implementation of Yan et al.’s local filtering model [2014]
(originally conceived to antialias directly visible high-resolution
normal mapped specular surfaces). More recent, high-performance
methods (i.e., [Yan et al. 2016]) can be readily substituted into our
framework, further increasing our performance; this is particularly
noteworthy since our render times are indeed dominated by the
evaluation of local appearance filtering models (see our perfor-
mance breakdown and discussion below). The remaining overhead
of covariance tracing and equivalent ray differential computation
is negligible.

We demonstrate the usefulness and efficiency of our methods on
scenes with complex light transport (TWO PLANES, TEXTURE,
SNAILS, ASTRONAUT, CHRISTMAS, and CAUSTIC). All results
are computed with multi-threading on a 4-core Intel i7-2600K with
8GB of RAM.

TWO PLANES (Figure 6) illustrates our method’s ability to
antialias textures with different types of glossy reflections. The
bottom plane has three different roughness gradings and reflects
the green and red checkerboard. Our method correctly prefilters
the reflected appearance of the checkerboard and reduces the
image noise significantly, all with only one sample per pixel. Note,
however, that since we are using BRDF importance sampling
with a random number generator, the filtering kernel is not con-
tinuous across pixels which explains the residual noise in the result.

TEXTURE (Figure 7) illustrates our method’s ability to antialias
textures viewed through indirect reflection. We use EWA for
albedo filtering and compare our CPT to PT with ray differentials.
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Fig. 13. CAUSTIC scene. We compare our bidirectional method (CBDPT) to PT and BDPT. After 48 minutes, CBDPT begins to visually converge, much
faster than both PT and BDPT. BDPT requires prohibitively long render times (here, 24 days) before converging visually on e.g., the spoon’s handle. We report
the MSE of the different methods compared to the 1M spp rendering using BDPT (rightmost inset).

We use a low sampling rate to highlight the form of our error versus
that of PT. Note that, at this sampling rate, CPT still contains some
noise due to integrand discontinuities (i.e., visibility).

SNAILS and ASTRONAUT (Figures 14 and 15) illustrates our
ability to correctly predict filtering kernels for indirect bounces,
even on challenging cases like the curved snail shell. CPT uses 1.1
mins (1024 spp at 512 ˆ 512; Figure 14, middle), the majority of
which is spent filtering the normal-mapped reflectance [Yan et al.
2014], whereas PT reaches equal error in 18 mins (100K spp; right)
and equal time with 5K spp (left). The equal time result has high
variance and, despite a roughly equivalent RMSE/SNR, our result’s
errors are not visually apparent (due to filtering bias). Moreover,
the smoothness of our result corresponds much more closely to
ground truth and remains temporally coherent (see video). For AS-
TRONAUT, images are rendered in HD resolution (1280ˆ720). We
compare CPT and PT for a roughly equal render time (1024 spp).
Despite the relatively simple geometry of the scene, radiometric
complexity is high: it is impossible for PT to form a connection
between the spoon and the distant star lights after the glossy
bounce. We also use BDPT to generate results with high sampling
rates (1M and 10M spp), requiring 1 and 10 days to render just the
inset images! Using BDPT at these rates to render the full image
would have taken 13 and 131 days. Even at this exagerated setting,
the BDPT results have not converged, although they hint shape of
the reflection CPT can generate in a negligible fraction of that time.

CHRISTMAS and CAUSTIC (Figures 11 and 13) both use CBDPT.
CHRISTMAS is our most complex scene: spherical emitters
are embedded in glass bulbs, and so all emitted light is due to
indirect caustics, which is subsequently reflected indirectly off
the glittery Christmas ornaments and shiny presents (both with
high-resolution color and normal maps modulating microfacet
reflectance models). CAUSTIC casts a complex caustic, resulting
from curved reflections and refractions off the displacement
mapped glass block, onto the ground and a glittery normal-mapped
spoon. CHRISTMAS is rendered at 1280 ˆ 720 and CAUSTIC at
1024 ˆ 512. In both cases, BDPT requires a prohibitive amount
of time to converge to the correct result (141 day render time on 8
cores for 100M spp). Neither PT nor BDPT can resolve both the
ground caustic and its indirect reflection off the spoon in CAUSTIC.

In the ASTRONAUT and CAUSTIC scenes, “mollifying” the BSDF
(as per [Kaplanyan and Dachsbacher 2013]) of the spoon would
improve convergence, since the almost-specular interaction could
then be replaced with a glossier interaction. Note, however, that
the high frequency content of the normal map would then have

Fig. 14. SNAILS. Equal time & equal error comparison. PT suffers from
high-frequency noise (and temporal incoherence; see video) due to aliasing
in the indirect reflectance sampling caused by a detailed normal map and
environment map. CPT’s results visually correspond much more closely
to ground truth and remain temporally coherent in animation (see video)
despite having roughly equal error (due to filtering bias; see Section 7).

to be integrated with Monte Carlo integration while our method
directly antialiases this effect.

We list performance statistics for covariance tracing and path vertex
filtering comparing timings of PT or BDPT with ray differentials
(“Alt.”) to only tracing covariance (“Cov. only”) and to tracing and
filtering appearance at vertices (“Ours”):

Scene Alt. Ours Cov. only
ASTRONAUT (1024spp) 10.9 min 15.6 min 13.5 min

SNAIL (128spp) 56 s 4 min 1.15 min
CAUSTIC (1024spp) 14.5 min 48 min 19.8 min

CHRISTMAS (1024 spp) 48.35 min 3.8 hours 1.0 hour

From our experiments, covariance tracing without antialiasing adds
an overhead of 1.23-1.36ˆ atop traditional ray tracing (without
any fine tuning or optimization of our code). Hence, the majority
of our approach’s additional cost is due to local appearance
filtering (e.g., [Yan et al. 2014]). Note that, at these render times,
no existing approach comes close to visual convergence, whereas
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all our results do.

Discussion and Future Work. We concentrate on appearance
antialasing on individual objects, leaving the question of geometry
antialiasing (i.e., across multiple objects falling within the pixel
footprint) to future work. Our method can, however, be used to
perform geometry antialiasing when such a pre-filtering model
is available to the renderer [Neyret 1998; Crassin et al. 2009].
Note that, in this case, it would be necessary to use the volu-
metric formulation of covariance tracing [Belcour et al. 2014]
for further bounces as the notion of a “surface” becomes ill-defined.

In our implementation, we assumed that the indirect pixel filtering
is close to Gaussian shaped (and used Gaussian based antialasing
methods). While this is a good approximation for indirect bounces,
it isn’t true for the first bounce when the pixel filter is not a Gaus-
sian. Since we have a mapping from covariance to ray differentials
it is possible to use ray differentials for specular bounces when the
pixel filter is a box (note that using other pixel filters shape with
ray differentials is incorrect).

Current local appearance antialiasing mostly treat spatial aliasing
but largely ignore angular aliasing (some works consider the
correlation between view elevation and spatial footprint, however).
Filtering according to both spatial and angular footprints could
lead to more robust local antialiasing, and our global approach
could also readily leverage such extensions, as we already provide
the angular bandwidth of indirect pixel/emitter filters as input to
the local filtering methods we use.

Extensions of our formulation should be able to antialias motion
blurred appearance, since covariance tracing inherently supports
motion covariance estimation; similarly, since covariance tracing
can also be applied to participating media [Belcour et al. 2014],
one could generalize our theory to filter volumetric effects so long
as local volumetric prefiltering solutions can be devised.

We believe that our method could be combined with filtered
importance sampling [Kivánek and Colbert 2007] to form an
effective joint-filtering strategy in instances where the number and
directions of samples per bounce are fixed directions and known
beforehand (such as with low-discrepancy samplers). In these
instances, the covariance of the BRDF would be proportional to
the square of the sampling pdf. We leave this investigation to future
work.

Lastly, our bidirectional path space covariance can be applied to
problems beyond antialiasing: indeed, it can be used to predict ker-
nel sizes or regularization filters for density estimation and vertex
merging algorithms. Specifically, the 2nd-order nature of covari-
ance, and its relation to the Hessian, makes it practical for density
estimation [Belcour and Soler 2011; Belcour et al. 2014].

8. CONCLUSION

We have presented an approach to filter complex global illumina-
tion appearance, taking the secondary effects of detailed color, nor-
mal, and displacement maps into account. We build two comple-
mentary theoretical views of the problem, including relating fre-
quency analysis of light transport to path space formulations of the
problem, in order to devise unidirectional and bidirectional filter-
ing techniques. Our method is simple to implement in existing ren-

CPT (Ours) PT BDPT
15.6 min (1024 spp) 15.6 min (1465 spp) 1&10 days (1M&10M spp)

“

full frame render time
‰ “

full frame render time
‰ “

inset render time
‰

Fig. 15. ASTRONAUT scene. We compare our unidirectional CPT to PT
and BDPT. PT cannot form the necessary connections to the small star-like
luminaires, mandating a filtering approach that supports indirectly-visible
objects and high-frequency appearance texturing. Bi-directional approaches
are able to form these connections, but they do so with such low probability
that multi-day renderings are still unable to visually converge.

derers and generates equal quality renders for complex images in
orders of magnitude less time than the state-of-the-art.
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APPENDIX

A. IMPROVING THE SCATTERING OPERATOR

We improve the performance of evaluating the band-limiting covariance re-
flectance operator. The reflectance operator is expressed as a double inver-
sion of the covariance matrix [Belcour et al. 2013, Equation 18]:

Σ1 “
`

Σ´1 `B´1
˘´1

,

where B is the is the 4ˆ 4 rank 2 covariance matrix of the BRDF:

B “ r0 0 0 0 ; 0 0 0 0 ; 0 0 bu 0 ; 0 0 0 bvs

We can avoid computing the costly double matrix inversion with Wood-
bury’s matrix identity [Woodbury 1950]:

Σ1 “ Σ´ΣU
`

B ` V ΣU
˘´1

V Σ,

with UT “ V “ r0 0 1 0 0 ; 0 0 0 1 0s, and B “ rbu 0 ; 0 bvs. Fi-
nally, B ` V ΣU can be inverted analytically as it is a 2ˆ 2 matrix:

B ` V ΣU “

„

bu ` σuu σuv
σvu bv ` σvv



.

B. COVARIANCE MATRIX OF CONVOLUTION

PROPERTY 1. Belcour’s thesis [Belcour 2012, Chapter 4.2] presents a
proof that state that the covariance matrix of the convolution of two inde-
pendent density functions f and g, each with zero mean, is the sum of the
covariance matrices of the two functions. Let Σpfq be the covariance of f
and Σpgq be the covariance of g, then:

Σpf ˙ gq “ Σpfq `Σpgq

PROOF. Recall that Σpfq “NÑ8
1
N

řN
i“0 xix

T
i , when x „ f (if f

has zero mean). For this proof, we use the property that a random variable
whose pdf is a convolution can be expressed as a sum of uncorrelated ran-
dom variables: Xf˙g “ Yf `Zg . If we express the unbiased estimator of
Σpf ˙ gq, we obtain:

Σpf ˙ gq “NÑ8
1

N

N
ÿ

i“0

xix
T
i

But we can express xi as a draw of two independent random variables yi
and zi:

Σpf ˙ gq “ lim
NÑ8

1

N

N
ÿ

i“0

”

yiy
T
i ` ziz

T
i ` yiz

T
i ` ziy

T
i

ı

The last terms
řN
i“0 yiz

T
i and

řN
i“0 ziy

T
i are the correlation terms and are

equal to zero. Thus the estimator of the covariance matrix of the convolution
is:

Σpf ˙ gq “NÑ8
1

N

N
ÿ

i“0

yiy
T
i `

1

N

N
ÿ

i“0

ziz
T
i

“ Σpfq `Σpgq
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