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Fig. 1. Le� to right: (a) noisy image generated using path-traced global illumination with one indirect inter-reflection and 1 sample/pixel; (b) edge-avoiding
wavelet filter [Dammertz et al. 2010] (10.3ms at 720p, SSIM: 0.7737); (c) SURE-based filter [Li et al. 2012] (74.2ms, SSIM: 0.5960); (d) our recurrent denoising
autoencoder (54.9ms, SSIM: 0.8438); (e) reference path-traced image with 4096 samples/pixel.

We describe a machine learning technique for reconstructing image se-

quences rendered using Monte Carlo methods. Our primary focus is on

reconstruction of global illumination with extremely low sampling budgets

at interactive rates. Motivated by recent advances in image restoration with

deep convolutional networks, we propose a variant of these networks better

suited to the class of noise present in Monte Carlo rendering. We allow

for much larger pixel neighborhoods to be taken into account, while also

improving execution speed by an order of magnitude. Our primary contri-

bution is the addition of recurrent connections to the network in order to

drastically improve temporal stability for sequences of sparsely sampled

input images. Our method also has the desirable property of automatically

modeling relationships based on auxiliary per-pixel input channels, such as

depth and normals. We show signi�cantly higher quality results compared

to existing methods that run at comparable speeds, and furthermore argue a

clear path for making our method run at realtime rates in the near future.
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1 INTRODUCTION
Ray and path tracing have recently emerged as the rendering algo-

rithms of choice for visual e�ects [Keller et al. 2015]. This has en-

couraged the development of �ltering and reconstruction techniques

to reduce the noise inherent in Monte Carlo renderings [Zwicker

et al. 2015], but the focus on �lm-quality results provides hundreds

to thousands of samples per pixel prior to �ltering.

Meanwhile, games have also recently migrated towards physically-

based shading from more empirical models [Hill et al. 2015], but

much of the potential increase in realism from this transition hinges

on the possibility of sampling light transport paths more �exibly

than rasterization allows. Unfortunately, even the fastest ray tracers

can only trace a few rays per pixel at 1080p and 30Hz. While this

number doubles every few years, the trend is (at least partially)
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countered by the move towards higher resolution displays and hig-

her refresh rates. It therefore seems likely that a realistic sampling

budget for games and other realtime applications will remain on

the order of one (short) path per pixel for the foreseeable future. We

present a new general reconstruction technique that signi�cantly

improves the state-of-the-art in this regime.

Reconstructing global illumination from a single path per pixel

presents considerable challenges. Monte Carlo integration of indi-

rect illumination leads to very noisy images at low sampling rates,

so that much of the energy is concentrated in a small subset of paths

or pixels (e.g. Figure 1, left). We therefore frame the problem as a

reconstruction of the �nal image (rather than denoising) from these

sparse samples since, at prohibitively low sampling rates, many

image areas have almost only noise to begin with. This problem

is further compounded when trying to obtain a temporally stable

result in animation.

Motivated by recent work in single-image restoration using deep

convolutional networks, we propose signi�cant modi�cations to the

structure of these networks in order to address the particular chal-

lenges of reconstructing rendered image sequences with extreme

Monte Carlo noise. Our solution has the following novel aspects:

• recurrent connections in a deep autoencoder structure lead

to increased temporal stability, and

• end-to-end training allows our network to automatically

learn how to best utilize auxiliary pixel features, such as

depth and normals, with no guidance from the user.

These advances allow us to interactively generate plausible image

sequences with global illumination at extremely low sampling bud-

gets, consistently outperforming the quality of the state-of-the-art

in this regime.

2 RELATED WORK
A large body of work exists for image denoising and the recon-

struction of images from a sparse set of samples. Our primary focus

is on the denoising of images rendered using Monte Carlo methods,

which has been an important research �eld for over two decades [Lee

and Redner 1990; McCool 1999]. We �rst review the most relevant

work in computer graphics literature and then draw connections to

the machine learning-based image and video restoration methods.

Recent surveys provide further information [Schmidhuber 2015;

Schwenk 2013; Zwicker et al. 2015].

O�ine Denoising for Monte Carlo Rendering. “Last-mile” image de-

noising is essential for making physically based rendering methods

viable for production [Keller et al. 2015], due to long-tailed image

convergence error with stochastic Monte Carlo (MC) methods. To

address this, Jensen and Christensen [1995] apply non-linear image-

space �lters to indirect di�use illumination. More recently, by look-

ing at the frequency analysis of light transport, Egan et al. [2011a;

2011b; 2009] derive high quality sheared �lters for speci�c e�ects.

These �lters are applied over individual ray samples in a 4D domain.

Lehtinen et al. [2012] present high quality image reconstruction

from a coarse light �eld with auxiliary information for each sample.

Sen and Darabi [2012] estimate parameters for a cross bilateral �lter

based on mutual information, and track the noise parameters for

each sample.

Many recent papers use auxiliary features from the rendering

process. Li et al. [2012] use Stein’s unbiased risk estimate [1981] to

select from a �lter bank in the process of minimizing the denoising

error. Rousselle et al. [2013] employ additional features from the

renderer for denoising. The challenge is how to select the �lter

parameters, and the in�uence of each feature. To address this, Ka-

lantari et al. [2015] train the parameters of a non-local means �lter

using machine learning. Zimmer et al. [2015] further decompose

path-space in multiple bu�ers and apply individual �lters to each

bu�er. Image features have also been used to build local regression

models [Bitterli et al. 2016; Moon et al. 2015, 2016].

These approaches e�ciently reduce residual noise at a cost of

higher execution times measured in seconds or minutes. In an o�ine

setting, slow reconstruction times are often acceptable, representing

a small fraction of the total image render time. Our proposed method

also uses auxiliary features, but works well with low sample counts,

and runs at interactive rates with plausible results. Next, we will

review interactive approaches to denoising.

Interactive Denoising for Monte Carlo Rendering. Images produced

with ray tracing are challenging to render interactively due to a

high amount of noise with low number of rays traced per pixel [Bik-

ker and van Schijndel 2013]. Robison and Shirley [2009] explore

noise-reducing gathering for �ltering an input image with a single

sample per pixel. Schwenk [2013] proposes to �lter the incident in-

direct radiance, as well as providing a good overview of interactive

denoising methods.

A common theme for interactive MC denoising is to separate

direct and indirect illumination and �lter the latter using edge-

avoiding �lters. Examples include: edge-avoiding À-trous wavelets

[Dammertz et al. 2010; Hanika et al. 2011], adaptive manifolds [Gas-

tal and Oliveira 2012], guided image �lters [Bauszat et al. 2011],

�ltering on adaptive manifolds [Bauszat et al. 2015], and in tex-

ture space [Munkberg et al. 2016]. These approaches are fast and

produce convincing results, but lack the error estimates applied by

many o�ine approaches. Therefore, local detail may be lost. Please

refer to Moon et al. [2015] for an example comparison. Moreover,

the amount of �ltering is a user parameter. Our approach does not

need to separate direct and indirect light and does not require user

guidance.

Another class of methods are based on the frequency-space ana-

lysis of light transport. Axis-aligned �lters have been proposed for

interactive soft shadows [Mehta et al. 2012], di�use indirect lig-

hting [Mehta et al. 2013], and multiple distribution e�ects [Mehta

et al. 2014]. These are faster but less accurate than the sheared �lters

discussed in the previous section. Yan et al. [2015] propose a fast

implementation of a quantized 4D sheared �lter, which is more accu-

rate, but slower than the axis-aligned versions. Note that these are

domain-speci�c �lters tailored for particular light transport e�ects.

Furthermore, the soft shadow �lter is applied once (with di�erent

parameters) for each individual area light, which makes it hard to

scale to larger scenes. In contrast, our approach is independent of

the illumination in the scene.

In a concurrent work [Bako et al. 2017], a new denoising met-

hod based on machine learning is presented, which targets image

denoising with high sample count.
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Convolutional Neural Networks (CNN). CNNs have recently been

used in a wide range of graphics-related tasks, including image

classi�cation [Krizhevsky et al. 2012], object localization [Girshick

et al. 2014], colorization [Iizuka et al. 2016; Larsson et al. 2016],

inpainting [Pathak et al. 2016], and view interpolation [Dosovitskiy

et al. 2015; Flynn et al. 2016], with consistently good results. We refer

an interested reader to the recent survey on this topic [Schmidhuber

2015].

CNNs consist of a sequence of layers that apply a set of con-

volution kernels to input from the preceding layer, followed by a

non-linear mapping [LeCun et al. 1998]

ali = σ
©­«
∑
j
al−1j ∗ kli j + b

l
i
ª®¬ . (1)

Here ∗ denotes convolution, ali is the scalar 2D image of the ith

activation on the lth layer, kli j and bli are the jth 2D convolution

kernel and bias term associated with output activation i at level

l , respectively, and σ is typically a recti�ed linear unit, ReLU, i.e.

max(0, ·). The input RGB image is usually considered as a layer with

three activations.

Our algorithm makes heavy use of skip connections that jump over

a set of layers. Such shortcuts make the training of deep networks

substantially easier [He et al. 2015a; Raiko et al. 2012]. We also

use recurrent connections that link layers to themselves, so that

the network becomes able to retain state between frames in an

animation sequence [Schmidhuber 2015].

Image Restoration using Deep Learning. The denoising of images

corrupted with Gaussian noise is an active research topic in image

processing and neural networks. Currently the best published results

come from a deep convolutional architecture that uses hierarchical

skip connections [Mao et al. 2016]. The same architecture also yields

state-of-the-art results for super-resolution, JPEG deblocking, and

text removal. The network is trained using a large number of natural

images, and it learns to complete or correct the images to look locally

like the training image patches. We build on this approach, but in

our application the noise has very di�erent characteristics compared

to the additive Gaussian noise. Some samples typically have a very

high energy (well outside the dynamic range of an image), while

most areas appear black. The input pixel values are therefore not

even approximately correct, but we do know that they are correct

on the average.

The task of �lling in the missing pixel colors is closely related

to image inpainting [Pathak et al. 2016] and single-image super-

resolution [Ledig et al. 2016]. The key di�erence is that in our ap-

plication we control the image generation process and have access

to auxiliary information such as depth and normal bu�ers, in addi-

tion to the pixel colors. In a work closely related to ours, Kalantari

et al. [2015] use a fully connected network to estimate the weights

for the auxiliary parameters in a non-local means �lter. In contrast,

we do the entire �ltering operation using CNNs.

Since our focus is on highly interactive—and ultimately realtime—

rendering, temporal stability of the reconstructed frames is very

important. In the context of video super-resolution, good results

have been demonstrated using recurrent neural networks (RNNs) [Hu-

ang et al. 2015] and sub-pixel CNNs [Shi et al. 2016]. Pătrăucean

et al. [2015] used a recurrent long short term memory block in the

bottleneck of the autoencoder to improve temporal stability. While

in super-resolution the (potential) temporal �ickering is very limited

spatially, in our applications it can a�ect large, variable-size areas

in the images, and thus we choose to build on the general solution

of hierarchical RNNs.

3 PATH TRACING
Despite the availability of advanced light transport methods, e.g. bi-

directional path tracing and Metropolis light transport [Veach 1998],

many industrial renderers continue to rely on optimized unidirecti-

onal path tracers [Hill et al. 2014]: they are simple to implement

and, compared to bidirectional methods, generate a single (noisy)

path integral estimate more quickly. We target interactive rendering,

and so a 1-sample unidirectionally path-traced estimate is the most

e�cient way of generating the input to our technique.

We detail our path tracing implementation below, including the

measures we take to reduce the variance of our estimate without

incurring any substantial additional cost. Afterwards, we discuss the

interaction between our renderer and our reconstruction algorithm.

3.1 Interactive Path Tracer
We use an optimized path tracer to produce our noisy input images.

Traditional path tracers [Kajiya 1986] shoot rays through each pixel,

stochastically scattering according to the pro�le of the intersected

object’s re�ectance, and continuing recursively until striking a light

source. We employ next event estimation to improve convergence

by deterministically connecting each path vertex to a light.

To accelerate visible surface determination, we leverage GPUs to

rasterize (instead of ray tracing) the �rst hit point from the camera

and store its associated shading attributes in a G-Bu�er [Deering

et al. 1988]: we store the hit mesh id, mesh primitive id, triangle

intersection barycentric coordinates, material id, world-space posi-

tion and shading normal, di�use and specular albedo, and motion

vectors. After this rasterization pass, we continue tracing the path

using an NVIDIA OptiX-based GPU ray tracer [Parker et al. 2010].

We choose to not consider depth of �eld and motion blur during

path tracing, since these e�ects can be e�ciently implemented as

post-processes, and moreover, they introduce noise in the G-Bu�er.

We use low-discrepancy Halton sequences [Halton 1964] when

sampling the light source and scattering directions, and apply path

space regularization to glossy and specular materials after scatte-

ring [Kaplanyan and Dachsbacher 2013]. This signi�cantly reduces

the number of sparse high-intensity outliers in glossy re�ections, at

the cost of a small bias.

We limit the number of indirect bounces to one for practical inte-

ractivity. As such, our path tracer generates up to one direct lighting

path (camera-surface-light) and one indirect path (camera-surface-

surface-light) at each pixel. The total input generation cost per pixel

comprises rasterization, three rays, two material evaluations, and

one material sampling. Throughout the paper, we call it a one-sample
image to emphasize that we trace one path, even though it has two

next event estimations along its way.
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3.2 Auxiliary Inputs for Reconstruction
Our G-Bu�er contains rich information about geometry, materials,

and light sources of the scene. We make a subset of this available

to the reconstruction by exporting a deep image, which consists

of multiple bu�ers. In addition to the noisy, high-dynamic range

RGB image, we export the following set of G-Bu�er features from

the rasterization pass to the reconstruction algorithm: view-space

shading normals (a 2D vector), depth, and the material’s roughness.

In total the input to the reconstruction algorithm thus consists of

3 + 4 = 7 scalar values per pixel.

The color values are stored in linear space as 16-bit half precision

�oating point (FP16) values to retain high dynamic range (HDR).

We linearize the depth values for higher accuracy and store them as

FP16. The remaining 3 channels are stored with 8 bits per channel.

We calculate the view space shading normal using the camera’s

projection matrix and store its x and y components.

We further simplify the input by demodulating the noisy RGB

image by the albedo of the directly visible material. By storing this

untextured illumination we remove most of the texture complexity

from the noisy image, signi�cantly facilitating training and reducing

the required network capacity. After the untextured illumination

has been reconstructed, we re-modulate by the albedo in order to

include the texture detail in the �nal rendering.

As we sample directly visible surfaces only once at each pixel,

all of the aforementioned inputs are prone to image-space aliasing.

Antialiasing these inputs would necessitate a higher sampling rate,

precluding interactive rendering. We found, however, that applying

a readily available screen-space antialiasing technique to the re-

constructed output image instead resolved remaining aliasing at a

negligible added cost (see Section 5 for details).

4 IMAGE SEQUENCE RECONSTRUCTION WITH
RECURRENT DENOISING AUTOENCODER

Our image reconstruction algorithm is a data-driven method that

learns a mapping from noisy input image sequences to noise-free

output image sequences based on a large number of training pairs,

each consisting of an example input sequence and the desired output

sequence (i.e. training target).

We base our reconstruction method on the recent, very general

work on image restoration using a convolutional network with

hierarchical skip connections [Mao et al. 2016]. Their network is

a simple CNN where each layer has 128 kernels with a 3 × 3-pixel

spatial support. The best performing variant has 30 layers, each

operating on the same spatial resolution. A skip connection is added

from every second layer to the corresponding layer at the end of

the network, i.e., �rst layer is connected to the last layer, third layer

to last minus two, and so on. While their network removes additive

Gaussian noise very well from individual images, it has various

weaknesses considering our application. It is too slow because each

layer operates on a full-resolution image and it has problems dealing

with spatially very sparse samples that are common in Monte Carlo

renderings. Perhaps most signi�cantly, the results are not temporally

stable because each frame is denoised in isolation.

We address these weaknesses by modifying the architecture to

include subsampling and upsampling stages as well as recurrent

connections (Sections 4.1 and 4.2). We then continue by discussing

the preparation of training data (Section 4.3) and the exact loss

function we optimize during training (Section 4.4).

4.1 Denoising Autoencoder with Skip Connections
As depicted in Figure 2, our network architecture includes distinct

encoder and decoder stages that operate on decreasing and increasing

spatial resolutions, respectively. This makes it similar to the Flownet

[Fischer et al. 2015] and U-Net [Ronneberger et al. 2015] architec-

tures that give good results in optical �ow estimation and image

segmentation, respectively, and also emphasizes the connection

to denoising autoencoders [Vincent et al. 2008]. Autoencoders are

networks that learn to reconstruct their inputs from some internal

representation, and denoising autoencoders also learn to remove

noise from the inputs. We use the term denoising autoencoder be-

cause we reconstruct from noisy inputs.

Since the layers that operate on the highest spatial resolutions are

generally the most time consuming, this design leads to approxima-

tely an order of magnitude faster execution compared to Mao et al.

[2016], with negligible decrease in quality (for Gaussian noise). The

receptive �eld of all the deeper layers is also several times larger in

the input image, allowing us to consider larger pixel neighborhoods

and therefore better deal with very sparse inputs.

Because the network learns a mapping from inputs to outputs, it

has the desirable property that any number of auxiliary inputs can

be provided in addition to the color data. The optimization during

training considers all these inputs and automatically �nds the best

way to use them to disambiguate the color data.

4.2 Recurrent Denoising Autoencoder for Temporal
Denoising

Recurrent neural networks (RNN) are used for processing arbitrarily

long input sequences. An RNN has feedback loops that connect

the output of the previous hidden states to the current ones, thus

retaining important information between inputs (Figure 2 right).

This makes it a good �t to our application for two reasons. First, in

order to denoise a continuous stream of images, we need to achieve

temporally stable results. Second, because our inputs are very sparse,

the recurrent connections also gather more information about the

illumination over time.

In order to retain temporal features at multiple scales, we intro-

duce fully convolutional recurrent blocks after every encoding stage.

Related designs have been recently used for video super-resolution

[Huang et al. 2015], but we are not aware of earlier applications in

the context of an autoencoder with skip connections. It is important

that the entire architecture, including the recurrent connections

remains fully convolutional. It allows us to train the network with

small �xed-size crops (e.g., 128 × 128 pixels) and later apply it to

sequences of arbitrary resolution and length. If there was even a

single resolution-speci�c layer, the property would be lost.

Similarly to Shi et al. [2016], we have found it more e�cient to

place the recurrent blocks in the encoder part as opposed to the

decoder. The reasoning is that the signal is sparser in the encoder.

We started with a single recurrent block in the bottleneck of the

autoencoder (last layer of the encoder), similar to the design of
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Fig. 2. Architecture of our recurrent autoencoder. The input is 7 scalar values per pixel (noisy RGB, normal vector, depth, roughness). Each encoder stage has
a convolution and 2 × 2 max pooling. A decoder stage applies a 2 × 2 nearest neighbor upsampling, concatenates the per-pixel feature maps from a skip
connection (the spatial resolutions agree), and applies two sets of convolution and pooling. All convolutions have a 3 × 3-pixel spatial support. On the right
we visualize the internal structure of the recurrent RCNN connections. I is the new input and h refers to the hidden, recurrent state that persists between
animation frames.

Pătrăucean et al. [2015], but found it insu�cient. A lot of information

�ows through the skip connections, which causes skipping the

recurrent block altogether. Therefore, we place a recurrent block at

every encoding stage (Figure 2), right before max pooling.

Each recurrent block consists of three convolution layers with a

3 × 3-pixel spatial support. One layer processes the input features

from the previous layer of the encoder. It then concatenates the

results with the features from the previous hidden state, and passes

it through two remaining convolution layers. The result becomes

both the new hidden state and the output of the recurrent block.

This provides a su�cient temporal receptive �eld and, together with

the multi-scale cascade of such recurrent blocks, allows to e�ciently

track and retain image features temporally at multiple scales. The

convolution layers in a recurrent block operate on the same input

resolution and the same number of features as the encoding stage it

is attached to.

Formally, the output and the hidden state can be represented

using a recurrent equation:

hi = Oi = C3×3 (C3×3 (C3×3(Ii )
_hi−1)) ,

where C3×3 is a convolution kernel with a 3×3-pixel spatial support

as de�ned in Eq. 1, Oi is the output, Ii is the current input, hi is the

hidden state for the input i , and
_

is a concatenation operator.

As a precursor to the RNN design, we experimented with training

the network with three-frame window sequences as input and target.

While this reduced temporal �ickering, it still was clearly visible in

sequences longer than the training window.

4.3 Training
We will now describe the preparation of training data. We start with

a smooth camera �y-through animation with e.g. 1000 frames for

each scene available for training. For every frame, we generate 10

di�erent noisy images at 1 sample per pixel, the auxiliary features,

and the target image for training. By having multiple noisy images,

we can ask that each of these instances of Monte Carlo noise lead to

the same reconstructed image. This increases the number of training

pairs tenfold at a negligible cost compared to creating additional

target images. Note that the noisy images share the auxiliary features

because primary rays are rasterized (Section 3.2).

We generate 1024 × 1024 images during rendering, while the trai-

ning is performed using smaller 128 × 128 crops that are randomly

selected for each training sequence. We use sequences of 7 conse-

cutive frames to provide enough temporal context during training.

We also randomly select the scene �y-through sequence, as well

as the beginning of a training subsequence within the selected �y-

through sequence. We randomly alternate between forward and

backward playback in order to train the network on various camera

movements. We have also found useful to randomly stop the camera

when forming the training sequence. For that, instead of advancing

the camera to the next frame, we keep the camera and the target

image at the current frame of animation, while advancing the noisy

image to a di�erent random seed.

In addition, we use randomly picked rotation of the training

sequence by 90/180/270 degrees to train on more movement directi-

ons. We also pick a random modulation in the range [0, 2] separately

to each color channel, and apply them to the entire sequence. It for-

ces the network to better learn the linear input–target color relation,

as well as the independence of the channels.

4.4 Loss Function
A loss function de�nes how the error between network outputs and

training targets is computed during training. The most commonly

used loss function in image restoration is L2, which is the mean

squared error between the predicted image P and the target imageT .

However, it is also known that using L1 loss instead of L2 can reduce

the splotchy artifacts from reconstructed images [Zhao et al. 2016].

Our �rst loss term is a spatial L1 loss, denoted as Ls for a single

image in the temporal training sequence:

Ls =
1

N

N∑
i
|Pi −Ti |,

where Pi and Ti are the ith pixel of the predicted and target image

correspondingly. We have also found it useful to �atten the image

by raising all color channels to the power γ before computing the

loss. A value of 1/2.2 would be close to the perceptual gamma

correction, however, we found that a more aggressive value of 0.2

allows to penalize the error in the dark regions of the image even
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more e�ciently. Our implementation raises both the input and target

images into power 0.2 as a preprocess.

The L1 spatial loss provides a good overall image metric that is

tolerant to outliers. In order to further penalize the di�erences in

�ne details, such as edges, we also use a gradient-domain L1 loss

Lg =
1

N

N∑
i
|∇Pi − ∇Ti | ,

where each gradient ∇(·) is computed using a High Frequency Er-
ror Norm (HFEN), an image comparison metric from medical ima-

ging [Ravishankar and Bresler 2011]. The metric uses a Laplacian of

Gaussian kernel for edge-detection. The Laplacian works to detect

edges, but is sensitive to noise, so the image is pre-smoothed with a

Gaussian �lter �rst to make edge-detection work better. We used

the recommended parameter of σ = 1.5 for Gaussian kernel size.

These losses minimize the error for each image in isolation. Ho-

wever, they do not penalize temporal incoherence (e.g., �ickering

between frames), and neither do they encourage the optimizer to

train the recurrent connections to pass more data across frames.

Therefore, we introduce a temporal L1 loss Lt

Lt =
1

N

N∑
i

(���� ∂Pi∂t − ∂Ti∂t ����) ,
where a temporal derivative ∂Pi/∂t for an ith image pixel is com-

puted using �nite di�erencing in time between the ith pixels of the

current and the previous image in the temporal training sequence.

We use a weighted combination of these three losses as the �nal

training loss

L = ws Ls +wg Lg +wt Lt,

where ws/g/t are the adjustable weights that control the contribu-

tion of each loss. We picked ws/g/t = 0.8/0.1/0.1 to approximately

equalize the scales, which improved convergence.

We have also found it important to assign higher weight to the

loss functions of frames later in the sequence to amplify temporal

gradients, and thus incentivize the temporal training of RNN blocks.

We use a Gaussian curve to modulate ws/g/t: for a sequence of 7

images we use (0.011, 0.044, 0.135, 0.325, 0.607, 0.882, 1).

To verify that the combined loss leads to an improvement over the

spatial-only loss Ls, we measured the structural similarity metric

(SSIM) [Wang et al. 2004] on a validation sequence in SponzaDif-

fuse after 100 epochs of training. SSIM showed an improvement

from 0.9335 for Ls to 0.9417 for the combined loss.

5 IMPLEMENTATION AND RESULTS
We will now describe the design parameters and study the conver-

gence properties of our network. Then we will detail the practical

aspects of training and using the network for interactive recon-

struction. Finally we will focus on the performance measurements

and compare the resulting quality against the state-of-the-art.

5.1 Network Design Analysis
We study the convergence behavior of our network by varying its

layer count and the set of auxiliary input features. Also, when a trai-

ned network is applied to an image, it acts as a reconstruction �lter.

Epochs100 101 102 103
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10-4

10-3

Color only
Untextured color
Untextured + depth

Untextured + normal + depth
Untextured + normal

Untextured + normal + depth + roughness

5·
10-3

Fig. 3. The convergence of average training loss as a function of epochs for
our network trained with and without auxiliary features.

Therefore, we demonstrate its qualitative properties by arti�cially

applying the network repeatedly to the same image.

Network Size. Figure 4 shows the convergence behavior for a

varying number of encoder and decoder stages, as well as for a

di�erent number of feature maps. We observe that after a certain

design point the training loss decreases only marginally while the

computational cost keeps increasing. We select the smallest con�-

guration that gives good results, highlighted in yellow on the left.

In total there are 36 convolution layers in our network: 18 in the

feedforward path (7 in encoder, 10 in decoder and one output layer,

see Figure 4a) and 3 in each of the 6 RCNN blocks (Figure 2, right).

We set the output feature count to 32 per pixel in the �rst stage

of the encoder, and then multiply the number by 4/3 after every

subsampling operation. This leads to a �xed-rate compression by a

factor of 4/(4/3) = 3 after every subsampling. Therefore, informa-

tion is generally lost at every stage, but it gets reintroduced through

the skip connections. The decoder part then ampli�es the amount

of data by 3× after every upsampling.

Auxiliary Features. Figure 3 shows a convergence plot for training

loss averaged over 10 experiments using the SponzaDiffuse scene

(Figure 6). We start by switching to the untextured color, and then

gradually grow the set of auxiliary features to observe the network’s

training characteristics.

We observe that untextured lighting—demodulating the image

with the albedo at a primary hit—signi�cantly improves the conver-

gence speed. Another big improvement is obtained by introducing

normals as an auxiliary feature. Normals help the network to de-

tect silhouettes of objects and to better detect discontinuities in

shading. Additional, smaller improvements are obtained from depth

and roughness. In general, the auxiliary features help to disambi-

guate the colors by providing information about the contours and

silhouettes of the scene objects, as well as about di�erent materials.

Reconstruction Filter’s Properties. In order to demonstrate the qua-

litative behavior of the proposed reconstruction �lter, we arti�cially

applied it to an input image multiple times recursively. That is, we

�rst take a noisy color image and the auxiliary features, perform

ACM Transactions on Graphics, Vol. 36, No. 4, Article 98. Publication date: July 2017.



Recurrent Autoencoder for Interactive Reconstruction • 98:7

AE 
smallest

AE 
small AE AE

large
AE feat
 small AE feat AE feat

 large
conv-32,32 conv-32,32 conv-32,32 conv-32,32 conv-24,24 conv-32,32 conv-48,48

conv-43 conv-43 conv-43 conv-43 conv-36 conv-43 conv-58

conv-57 conv-57 conv-57 conv-57 conv-54 conv-57 conv-69

conv-57 conv-76 conv-76 conv-76 conv-81 conv-76 conv-83

conv-76 conv-101 conv-101 conv-122 conv-101 conv-100

conv-101 conv-135 conv-122 conv-101 conv-100

conv-135 conv-81*2 conv-76*2 conv-83*2

conv-101*2 conv-54*2 conv-57*2 conv-69*2

conv-76*2 conv-76*2 conv-36*2 conv-43*2 conv-58*2

conv-57*2 conv-57*2 conv-57*2 conv-24*2 conv-32*2 conv-48*2

conv-43*2 conv-43*2 conv-43*2 conv-43*2 conv-128,64 conv-128,64 conv-128,64

conv-32*2 conv-32*2 conv-32*2 conv-32*2

conv-64 conv-128,64 conv-128,64 conv-128,64
0.7310 100

Large Medium

Small Smallest

0.90

Epochs

Tr
ai

ni
ng

 lo
ss

0.4
10 100

Large
Medium
Small

Epochs

Tr
ai

ni
ng

 lo
ss

0.6

0.5

a) b) c) d)
Fig. 4. Ablation study of our network design. Parameter sweeps on a) the number of layers and b) the number of features. Here conv-N means a convolution
layer with N output features, and ∗2 indicates that there are two such layers back-to-back. Additionally, there is an output layer with 3 output features
(R,G,B). The highlighted columns show the best trade-o� between size and training loss. c) Training loss convergence plots for networks trained with di�erent
number of layers from a). d) Training loss convergence plots for networks trained with di�erent number of output features from b).

Fig. 5. We perform a qualitative analysis of the reconstruction filter’s pro-
perties by applying the filter to the input image recursively for 1/2/5/10
iterations. The filter acts as an edge-preserving smoothing filter in some
regions, while acting as a contrast or unsharp masking filter in others.

the inference once, then take the result and use it as a “noisy” color

image for another inference (features stay unchanged), and so on.

Figure 5 shows the qualitative analysis of the �lter by applying the

�lter recursively 1/2/5/10 times to a frame from SponzaDiffuse.

The middle row shows an inset with a subtle trim shadow on top,

which is gradually spread around the whole region after multiple

iterations, with a �ag pole being a stop for the �lter. This means

that the �lter behaves as an edge-preserving kernel, i.e., it tries to

spread around the noisy samples, while preserving the edges. On

the other hand, the �lter also tries to preserve the local contrast.

For example, in the bottom row in Figure 5, even after 10 iterations,

the illumination is mostly blurred, however, the �lter still tries to

preserve the initial contrast along the edge of the far corner.

SponzaDiffuse SponzaGlossy Classroom

Fig. 6. We train the network using fly-throughs of these 3 scenes.

5.2 Training Data vs. Generalization
Our network has a total of 3.2 million trainable parameters, and even

though convolutional networks are naturally tolerant to over�tting,

we need to make sure that our training set is su�ciently large. We

know from earlier image restoration results (e.g. [Mao et al. 2016])

that our training set should contain at least hundreds of image

sequences that o�er considerable variety if we want the trained

network to work well in all scenes.

While �y-throughs of 3D scenes o�er a convenient way of gather-

ing arbitrary amounts of training data, variation can be a concern.

The network learns to reconstruct the kind of features it sees during

training, and if the training set does not, for example, have any

high-frequency features such as vegetation, its ability to reconstruct

such (unseen) features can remain limited. Ideally, we could thus

train the network with dozens of very di�erent scene geometries,

lighting setups, and camera motions.

We experiment with this setup by using the three scenes shown

in Figure 6 (SponzaDiffuse, SponzaGlossy and Classroom) for

training the network, and then use it for reconstructing �y-throughs

of other scenes as well. All results in this paper and in the accom-
panying video were reconstructed using this training setup, unless
explicitly stated otherwise. SponzaDiffuse is the Crytek Sponza

scene with the default set of materials and a large area light source

on top of it. For SponzaGlossy we further modify the materials by

replacing the di�use BRDF with a glossy GGX BRDF with roughness

α = 0.06; the same textures are reused for the specular color. The

light source moves slowly along the long axis of the scene during the

ACM Transactions on Graphics, Vol. 36, No. 4, Article 98. Publication date: July 2017.



98:8 • Alla Chaitanya et al.

Our reconstruction result MC Input AAF EAW SBF Our Reference

C
o
r
n
e
l
l
B
o
x

S
p
o
n
z
a

G
l
o
s
s
y
S
p
o
n
z
a

S
a
n
M
i
g
u
e
l

C
l
a
s
s
r
o
o
m

Fig. 7. Closeups of 1-bounce global illumination results for 1 spp input (MC), axis-aligned filter (AAF), À-Trous wavelet filter (EAW), SURE-based filter (SBF),
and our result. Statistics are in Figure 8. Please consult the supplemental material for full resolution images and video sequences.

�y-through to provide changes in illumination. Classroom has one

directional light source, sky illumination, and a rich set of textures,

thin geometric shapes, and layered materials. The target images are

rendered with 2000 spp for SponzaDiffuse, and with 4000 for the

other scenes.

An alternative solution that would sidestep the concern of su�-

cient scene variety in the training set is to train a network speci�-

cally for a single scene (or a small set of scenes). This could be an

attractive solution for example for a game level; the training would

become a part of the “baking” step and the network would work well
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Filter

CornellBox Sponza GlossySponza SanMiguel Classroom

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM

AAF 0.018 0.978 0.029 0.869 0.069 0.664 0.079 0.774 0.064 0.786

EAW 0.019 0.978 0.043 0.902 0.089 0.586 0.088 0.768 0.059 0.841

SBF 0.044 0.818 0.060 0.502 0.057 0.649 0.087 0.575 0.072 0.610

Our 0.014 0.984 0.016 0.953 0.034 0.843 0.055 0.844 0.040 0.909

Fig. 8. Error statistics for still images from Figure 7.

for arbitrary image sequences of that one scene—but possibly poorly

for any other content. We demonstrate the ability of the network to

specialize on a particular data set by performing a separate training

on SanMiguel using 600 input frames and 2000 spp target images

that we generated speci�cally for this experiment. The supplemen-

tary material shows the inference results on the same scene with

di�erent camera motion. All other images and videos, including the

SanMiguel results, do not include this training set.

5.3 Implementation of Training
We implemented the training of our network using Lasagne [Die-

leman et al. 2015] and Theano [2016], and used NVIDIA DGX-1

for training. The recurrent blocks are trained by back propagating

through time [Werbos 1988], where the feed-forward subparts of

the RNN are replicated to unroll the recurrence loops. The training

time for 500 epochs is approximately 16 hours on a single GPU, of

which 1 hour goes into preprocessing the dataset so that random

crops can be e�ciently fetched using memmap.

We train for 500 epochs using Adam [Kingma and Ba 2014] with

learning rate 0.001 and decay rates β1 = 0.9 and β2 = 0.99. The lear-

ning rate is ramped up tenfold using a geometric progression during

the �rst 10 training epochs, and then decreased according to 1/
√
t

schedule. We use a minibatch size of 4 sequences, and each epoch

randomizes the order of training data. All parameters are initialized

following He et al. [2015b], and leaky ReLU activation [Maas et al.

2013] with α = 0.1 is used in all layers except the last one, which

uses linear activation. Max pooling is used for subsampling and

nearest neighbor �ltering for upsampling. The exact choice of these

various parameters tends to a�ect the results only slightly; we refer

an interested reader to a recent survey [Mishkin et al. 2016].

5.4 Reconstruction �ality with Low Sample Counts
In order to compare with the prior work, we have implemented mul-

tiple state-of-the-art algorithms including axis-aligned �lter (AAF)

for both soft shadows [Mehta et al. 2012] and indirect illumination

[Mehta et al. 2013], edge-avoiding À-Trous wavelet �lter (EAW)

[Dammertz et al. 2010], SURE-based �lter (SBF) [Li et al. 2012], and

learning based �lter (LBF) [Kalantari et al. 2015].

Since our ray budget allows for only one shadow ray per pixel,

for axis aligned shadow �lter [Mehta et al. 2012] we gather the mini-

mum and maximum occlusion distance within a 7× 7-pixel window

to estimate the minimum and maximum slopes in the light �eld

frequency spectrum. In our implementation of Li et al. [2012], we do

not perform any adaptive sampling. We have only one sample/pixel,

and thus we estimate the color variance using a 2 × 2-pixel spatial

window. Thanks to a noise-free G-bu�er, we also skip the normali-

zation by variance (Eq.6 in the paper) for the auxiliary features.

Our reconstruction result LBF Our Reference

Fig. 9. Comparison at 4 samples/pixel. Learning-based filter trained on
4/8/16/32 spp (le�, SSIM: 0.8280) and recurrent autoencoder trained on 1
spp (right, SSIM: 0.9074). Our network was not trained on this scene.

Temporal antialiasing (TAA) provides pixel-scale antialiasing at

a negligible cost and also reduces the �ickering of small features

at a cost of subtle blur [Karis 2014]. Most of the prior methods are

not temporally stable at a single sample/pixel, and in order to do

fair comparisons, we apply TAA as a supplemental post-process

pass to all methods. Our method also bene�ts from TAA because

the recurrent loops at �ner resolutions have insu�cient temporal

receptive �eld to reproject the high-frequency features. The video

o�ers an evaluation of temporal stability between the methods.

Figure 7 shows the main results and closeups from the �ve scenes.

CornellBox demonstrates the ability of our network to preserve

the hard features, such as contact shadows and edges while hand-

ling the scant and �at appearance. SponzaDiffuse, SponzaGlossy

and Classroom scenes were used for training, albeit with di�erent

camera �y-throughs and Classroom also had a di�erent lighting

setup during training. This demonstrates the ability of the network

to adapt to arbitrary viewpoints and di�erent lighting setups. San-

Miguel scene was never presented to the network prior to the

inference. This demonstrates the network’s ability to generalize to

completely new data, where the illumination, materials, and scene

geometry di�er from what the network was trained on. For example,

none of our training sets contain foliage, which is usually challen-

ging to �lter. The video also shows that our network generalizes

convincingly to SponzaSpecular that has specular materials, even

though pure specularities were not present in the training set. It

is therefore somewhat surprising that it works as well as it does,

and a training-theoretical argument can be made that further qua-

lity improvements should be possible through more varied training.

Figure 8 provides root-mean-square error (RMSE) and structural

similarity metric (SSIM) measurements for the results in Figure 7.

Figure 10 demonstrates that our method is agnostic to the input

and can also �lter other challenging situations, such as complex soft

and hard contact shadows, at a reasonable quality.

Higher Sample Count and Number of Bounces. The learning based

�lter (LBF) was trained on 20 scenes that simulated a wide variety

of Monte Carlo e�ects at 4, 8, 16, 32, and 64 samples/pixel. In order

to perform a fair comparison, we run LBF and our �lter using a 4

spp input (Figure 9). Even though our network was trained only

with 1 spp inputs, we can see that it generalizes well to inputs with

4 samples per pixel, and the result quality surpasses LBF.

In Figure 11 we have also demonstrated that the autoencoder

trained on 1spp scenario can generalize to signi�cantly higher sam-

ple count as well as to a higher number of bounces. We generated

images using path tracing with up to three bounces and 256 samples
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Fig. 10. Closeups for shadow filtering for 1 spp input (MC), axis-aligned filter (AAF), À-Trous wavelet filter (EAW), SURE-based filter (SBF), and our result.

per pixel. We also provide a comparison with the state-of-the-art

o�ine denoiser using Nonlinearly-weighted First Order Regression

(NFOR) [Bitterli et al. 2016]. We have found that even when trai-

ned with 1spp, our method can generalize to the input with higher

sample count and higher number of bounces, providing reasonable

denoising quality within its performance ballpark (Figure 12).

Failure cases. If the training data is insu�cient, or the samples

are too sparse to disambiguate important output features, the result

will lack detail and can produce splotchy-looking results. Visually,

this results in over-smoothed images with approximately correct

colors (often also with edge preservation) and sometimes painted

appearance, as can be seen in the crop with thin shadows on the �oor

in Sponza row in Figure 7. If there are not enough samples, some

features (e.g., a small specular highlight) can be also missing, like the

glossy re�ections on the lamp �xture in the crop of the Classroom

row. On the other hand, the tendency of the network to produce

an average answer often provides a suboptimal solution. Figure 11

shows that the network trained with 1spp can provide good overall

results even on a 256spp input, however, o�ine methods speci�cally

crafted for this noise level perform systematically better than ours

when using quantitative error metrics (Figure 12).

5.5 Reconstruction Performance
We implemented the inference (i.e. runtime reconstruction) using

fused CUDA kernels and cuDNN 5.1
1

convolution routines with

Winograd optimization.

We were able to achieve highly interactive performance on the

latest GPUs. For a 720p image (1280×720 pixels), the reconstruction

time was 54.9ms on NVIDIA (Pascal) Titan X. The execution time

scales linearly with the number of pixels.

1
https://developer.nvidia.com/cudnn

The performance of the comparison methods varies considerably.

EAW (10.3ms) is fast, while SBF (74.2ms), AAF (211ms), and LBF

(1550ms) are slower than our method (54.9ms). The NFOR method

has a runtime of 107–121s on Intel i7-7700HQ CPU. Our comparisons

are based on the image quality obtainable from a �xed number of

input samples, disregarding the performance di�erences. That said,

the performance of our OptiX-based path tracer varies from 70ms

in SponzaGlossy to 260ms in SanMiguel for 1 sample/pixel. Thus

in this context, until the path tracer becomes substantially faster, it

would be more expensive to take another sample/pixel than it is to

reconstruct the image using our method.

Furthermore, our method is a convolutional network, and there is

a strong evidence that the inference of such networks can be accele-

rated considerably by building custom reduced-precision hardware

units for it, e.g., over 100× [Han et al. 2016]. In such a scenario, our

method would move from highly interactive speeds to the realtime

domain.

6 CONCLUSIONS AND FUTURE WORK
We presented the �rst application of recurrent denoising autoenco-

ders, and deep convolutional networks in general, to the problem of

light transport reconstruction, producing noise-free and temporally

coherent animation sequences with global illumination. We can see

several interesting avenues of future work for this approach.

In this work, we demonstrated state-of-the-art quality in inte-

ractive reconstruction. Looking ahead, we would like to study how

much the results can be improved by introducing more varied trai-

ning material. In addition, it could be bene�cial to specialize (and

possibly simplify) the design to target lower-dimensional distri-

bution e�ects, such as motion blur and depth of �eld. It is likely

possible to extend our method to handle these e�ects by providing

lens and time coordinates as inputs to the network. It will also be

interesting to apply these ideas to the high-sample rate regime of
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Fig. 11. Generalization example: Autoencoder trained on 1spp data was applied to 256spp MC input images. Closeups of 2-bounce global illumination input,
À-Trous wavelet filter (EAW), SURE-based filter (SBF), Nonlinearly-weighted First Order Regression (NFOR), and our result.

Filter

Bathroom Horse Room Living Room Frame

time
RMSE SSIM RMSE SSIM RMSE SSIM

EAW 0.127 0.840 0.094 0.831 0.071 0.870 10.3ms

SBF 0.044 0.902 0.040 0.939 0.042 0.931 74.2ms

NFOR 0.009 0.990 0.018 0.984 0.012 0.984 110s (CPU)

Our 0.041 0.944 0.034 0.945 0.029 0.942 54.9ms

Fig. 12. Errors for images with high sample count (256 spp) from Figure 11.

�lm-quality rendering, where a much smaller amount of noise re-

mains in input images but the geometry (e.g. hair) is also orders of

magnitude more detailed.
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