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ABSTRACT 
We present a method for browsing videos by directly drag-
ging their content. This method brings the benefits of direct 
manipulation to an activity typically mediated by widgets. 
We support this new type of interactivity by: 1) automati-
cally extracting motion data from videos; and 2) a new 
technique called relative flow dragging that lets users con-
trol video playback by moving objects of interest along 
their visual trajectory. We show that this method can out-
perform the traditional seeker bar in video browsing tasks 
that focus on visual content rather than time. 
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. - Graphical user interfaces. 

INTRODUCTION 
Despite its many advantages [6, 15, 30], direct manipula-
tion has not been adopted consistently across all computer 
applications, and there remain tasks that could benefit from 
a better application of its principles. For example, video 
players provide a seeker bar for linearly browsing through 
the video’s timeline. While effective, like many GUI wid-
gets, it is only an intermediary between the user and the 
object of interest to be manipulated [6]. Often this object is 
in the video image itself, and it might be beneficial for 
users to directly manipulate it. For example, a video analyst 
studying a pool shoot might want to directly drag a ball to 
find the precise moment when it hits another ball (Figure 
1). Although it does not change the video content, this 
interaction technique belongs to the category of direct ma-
nipulation techniques because it maintains a close match 
between user input and the system's output. 
In addition to providing users with a fulfilling sense of 
control [15], direct manipulation can also be very efficient. 
Whereas a seeker bar is excellent for time-centric browsing 
tasks, direct manipulation might more efficiently support 
accurate space-centric browsing. As such, both techniques 
should be viewed not as rivals but more as complementary 
tools. This paper makes several contributions by identifying 
new classes of direct manipulation techniques, illustrating 
their use and implementation in a media player, and pre-
senting a study showing that they can yield remarkable 
gains in performance for space-centric browsing tasks.  

 
Figure 1: The Direct Manipulation Video Player used to 

scrutinize a pool ball’s motion by directly dragging the ball to 
the point where it hits another ball. 

Directly interacting with video content raises several re-
search challenges. From a technical perspective, one needs 
be able to extract relevant motion data from videos. From 
an HCI perspective, dragging video content is fundamental-
ly different from dragging traditional GUI entities. Firstly, 
the content to be manipulated is not clearly segmented 
spatially and involves arbitrary deformations. Secondly, 
this content is constrained to predefined motions. Thirdly, 
dragging an object also animates the rest of the visual 
scene, which can produce illusory or “induced” motions 
affecting motor tasks. We explore solutions to all these 
challenges. We also outline the differences of our approach 
from a recent paper [18] exploring similar ideas that were 
brought to our attention during the review process. 

RELATIVE FLOW DRAGGING 
Our video navigation interface uses a new technique we 
call relative flow dragging – a general solution to the con-
trol of moving imagery through direct manipulation. It 
decomposes arbitrary 2D motions into individual pixel 
trajectories, and allows scrubbing over these trajectories in 
a way that accounts for the phenomenon of induced motion, 
such as those produced by dynamic backgrounds. We now 
describe the technique in detail, including how it follows 
direct manipulation principles, and illustrate its benefits.  

Directness 
Hutchins et al. [15] argue that the directness of a user inter-
face depends on factors such as how responsive and unob-
trusive the system is, and how closely the input language of 
the user interface matches its output language. For exam-
ple, dragging an object on the GUI is highly direct because 
the output it generates (the object’s motion) is very similar 
to the input (the user’s hand movement). 
Beaudouin-Lafon [6] categorized common sources of indi-
rectness in interfaces. These include spatial and/or temporal 
separation between the user’s action and the system 

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. 
CHI 2008,   April 5–10, 2008, Florence, Italy. 
Copyright 2008 ACM  978-1-60558-011-1/08/04…$5.00. 

 



 

response (high degree of indirection) and dissimilarities 
between action and response (low degree of compatibility). 
For example, panning with scrollbars suffers from these 
two types of indirectness, as opposed to directly dragging a 
document. A third type of indirectness is present in tasks 
requiring more degrees of freedom than the available user’s 
input (low degree of integration). 

Matching Gestures with Motions 
Designing an interaction technique often involves deciding 
how the user’s input will be interpreted into changes in the 
system. Following direct manipulation principles, this 
should be decided according to the characteristics of the 
system’s outputs, rather than the system’s internals. For 
example, consider an internal variable whose variations 
cause a motion on screen, such as current time moving a 
clock’s hands. Regardless of this variable’s nature, the most 
direct way for users to control it visually is by specifying 
the expected motion, i.e., dragging the clock’s hand [11]. 
We argue that designing for direct manipulation involves 
matching user’s gestures with the observed visual motion. 
This is straightforward when the possible gestures allow us 
to express all possible visual movements – i.e., when the 
gesture space matches the motion space, e.g., using a 2D 
device to pan a map. However, incompatibilities between 
motion and gesture spaces are common. Adjusting the input 
device to the task [9] is an effective but often impractical 
solution. As a result, a number of techniques have been 
designed to map a limited 2D gesture language to a wide 
range of visual motions while preserving an illusion of 
direct manipulation. Examples are scaling objects, rotating 
objects [7, 11] and 3D manipulations [32] using a mouse. 
The control of high-dimensional motion spaces is a well-
recognized problem, especially in the field of 3D GUIs. In 
comparison, little attention has been paid to the control of 
low-dimensional spaces. Here we address the issues related 
to the direct control of motions having only one degree of 
freedom. Our solution, relative flow dragging, is related to 
three simpler families of direct manipulation techniques: 
curvilinear dragging, flow dragging and relative dragging.  

Curvilinear Dragging 
Curvilinear dragging consists of moving a point con-
strained to a 2D curve using a 2D pointing device (Figure 
2a). Examples of curvilinear dragging abound in current 
GUIs but they mostly involve straight lines. For example, 
scrollbars, sliders and menus project 2D mouse movements 
onto a 1D axis [6]. Cascading and flow menus are not di-
rect manipulation techniques per se, but involve steering, 
an action similar to that of following a curve [1, 13]. 
Curvilinear dragging on arbitrary curves has also been used 
in specific applications. The 3D modeling tool Maya allows 
points to be moved along 3D curves [2]. The Cabri-
Géomètre learning environment [14] allows studying geo-
metric figures by dragging construction points on curves. 
Baudel et al. [4] proposed a curvilinear drawing technique 
based on a French curve metaphor.  Ngo et al.’s [23] sys-
tem lets its users animate parameterized graphics by drag-
ging objects along their trajectories. 

 
Figure 2: Three classes of constrained direct manipulation 

techniques: (a) curvilinear dragging; (b) flow dragging; (c, d) 
relative flow dragging compensates for moving backgrounds. 

Flow Dragging 
Flow dragging is a generalization of curvilinear dragging. 
It involves direct manipulation of arbitrary motions having 
only one degree of freedom. By "arbitrary" we mean that 
besides translations, the motions can include any visual 
transformation, such as the deformations of a bouncing 
ball. By "one degree of freedom" we mean that the whole 
motion can be mapped to a scalar variable, such as time. 
Supporting flow dragging simply requires supporting curvi-
linear dragging on a family of curves: since the motion has 
only one degree of freedom, each point of the image has a 
well-defined trajectory which can be invoked upon a button 
press (Figure 2b). 

Relative Dragging 
We see the design of direct manipulation techniques as a 
problem of matching gestures with observed visual mo-
tions. The observed motion of an object is influenced by 
the motion of its surroundings, a phenomenon known as 
induced motion or the Duncker illusion [26, 41]. Research 
suggests that induced motion also affects motor tasks [28]. 
This phenomenon tells us that people perceive relative 
rather than absolute motion, thus we call direct manipula-
tion techniques focusing on the control of relative motions 
relative dragging techniques. For example, one can com-
bine pointer and background motion so that their relative 
movement matches a user’s hand movement. This can be 
achieved by moving background objects in the opposite 
direction of the hand’s motion. Such an approach is very 
common in scrolling-based 2D arcade games. 
Since complex moving imagery is likely to produce in-
duced motions, flow dragging is best combined with a 
relative dragging approach. For example, suppose that the 
deformation of a rubber ball occurs with a background 
motion (Figure 2c). Dragging on actual trajectories might 
be difficult because they are different from the motions the 
user sees. Manipulation can be facilitated by subtracting 
background motion from these trajectories (Figure 2d). We 
call this method relative flow dragging. 

Challenges 
There are two key challenges in the design and implemen-
tation of relative flow dragging. First is the extraction of 
trajectories and computation of relative motions. Second is 
the design of curvilinear dragging: although anecdotal 
examples of curvilinear dragging exist, they do not behave 
well on arbitrary curves. In the following sections, we 
present a system that supports relative flow dragging, and 
then discuss in detail how we addressed these two issues. 

 



 

 

THE DIRECT MANIPULATION VIDEO PLAYER 
We implemented and tested relative flow dragging in an 
interactive video player prototype that we call DimP (for 
Direct manipulation Player). In addition to providing all 
the standard controls of a traditional movie player (Figure 
1), DimP allows users to go back and forth through the 
video’s timeline by directly manipulating the video content, 
in a way similar to Kimber et al.’s system [18]. DimP can 
be downloaded at www.aviz.fr/dimp 
When DimP loads a video, it first checks if the video is 
already accompanied with motion data. If it is not, this 
information is automatically extracted then saved as a sepa-
rate file. We believe that it is reasonable to expect motion 
information to be created and potentially authored off-line. 
The loaded video is then fully uncompressed into memory 
to allow immediate access to any video frame. 
Figures 1, 3 and 4 illustrate DimP in action. Via three sce-
narios, we show how DimP can provide a radically differ-
ent way to navigate video streams as well as transcend 
some inherent limitations of the traditional seeker bar. 
Scenario 1: A surveillance video shows a car that has been 
parked in a particular spot all night (Figure 3). We might 
want to access the point in the video where the car is in the 
process of parking. On a traditional video player we have to 
carefully drag the seeker bar’s handle until we visually 
detect the frame of interest. With DimP, we can detach the 
parked car (Figure 3a) directly out of the parking spot. This 
action immediately takes us to a point in the video just 
moments away from when the car has finished parking 
(Figure 3b). From that point onwards (or backwards) we 
can use the traditional seeker bar as a complementary tool 
to find out, for example, who is leaving the car (Figure 3c). 
Scenario 2: A video of a scene on a busy street, where 
many cars and people are buzzing about, is being watched 
(Figure 4). Cars in the scene regularly accelerate, slow 
down or stop. Let us suppose that we wish to advance 
frames so that a particular car arrives at a particular loca-
tion. This is difficult to achieve using the seeker bar, since 
not only is the mapping between the bar’s handle and the 
car’s movement unknown to the user, but it is also not 

linear in time and space. A smooth controlled dragging on 
the seeker bar can result in an erratic non-uniform move-
ment of the car. This disparity stems from the indirectness 
of the seeker bar and is addressed by letting users simply 
drag the car over the video scene at the rate they see fit.  
Scenario 3: DimP can be useful in scenarios where a user is 
interested in analyzing a particular video scene. For exam-
ple a sports coach is interested in studying a spring board 
diver’s performance or a physics student wants to follow 
the intricacies of a complex pool shoot. Using direct mani-
pulation, the coach has access to the many complicated 
movements involved in throwing a ball or twisting one’s 
body in mid-air. Likewise we can also imagine the student 
switching his/her attention between different key points of 
 

  
Figure 3: DimP can help find a particular event in a video. a) 

The user clicks on a parked car, its trajectory is shown. b) The 
user detaches the car from its parking location, which takes 

the player to the point where the car was parking. c) The user 
drags the seeker bar to temporally browse around this point 

in space to find the person exiting the car. 

 
Figure 4: Background stabilization on a scene where the camera pans upwards. (a) The actual motion of a car is hard to perceive 
by users. (b) Background stabilization presents users with a motion path close to the car’s perceived motion. (c) When the car is 

dragged, background stabilization shifts the video frames and leaves a trail of previously displayed frames. 

http://www.lri.fr/%7Edragice/dimp/


 

the scene, such as the point where a ball is hit by the cue, or 
when it impacts another one. All these operations can be 
performed by direct manipulation in the video viewport, 
without having to resort to the seeker bar (Figure 1). Hint 
paths are useful in these scenarios because motion trails are 
known to help animation and motion analysis [37]. 

Trajectory Visualization 
One of the biggest challenges we faced in the design of the 
visual feedback in DimP is the trade-off between providing 
the illusion of direct manipulation and guiding users when 
they stray from a particular motion path. It is important to 
provide a trajectory visualization that is unobtrusive and at 
the same time helpful when necessary. 

Preview 
We change the appearance of the pointer’s cursor from an 
arrow to the shape of a hand whenever the pointer is hover-
ing above a region of the video frame where the motion is 
significant. Users can then engage in direct manipulation 
by simply clicking and dragging over the video’s frame. As 
a user clicks over the video frame, the system displays a 
hint path corresponding to the estimated trajectory of the 
point located under the mouse cursor (Figures 3 to 5). The 
hint path has been made very subtle in order to reinforce 
the metaphor of direct manipulation.  

Emphasizing 
Since objects in a video scene follow prescribed trajecto-
ries, users cannot drag them to arbitrary locations. DimP 
however maps mouse movements to object motions in a 
very conservative way, so that users do not have to careful-
ly follow their path. For feedback purposes, we emphasize 
the hint path as the user’s dragging path diverges from an 
object’s motion (Figure 5). If a user drags the pointer far 
away from the hint path for more than 2 seconds, we play a 
“snapping” sound and terminate the interaction.  

Position Feedback 
We display a red cursor over the hint path that indicates the 
position over the trajectory curve corresponding to the 
pointer’s location. If the pointer perfectly follows the path, 
the cursor is located under the pointer. As the pointer’s path 
diverges from the object’s motion path, the cursor provides 
extra feedback as to the effects of the dragging operation 
(Figure 5b). This feedback also allows for video navigation 
with sub-frame accuracy. 

Background Stabilization 
Pilot user testing sessions suggested that camera pans could 
make video manipulation very difficult, an issue that can be 
addressed with relative dragging. DimP supports relative 
dragging by compensating for background motion.  
Figure 4 illustrates how background stabilization helps to 
match the user’s gesture with object’s perceived motion. In 
this example, an upward camera pan makes a car’s motion 
a downwards one, even though the car is seen moving up 
the street (Figure 4a). It is difficult for users to perceive or 
reproduce this absolute motion. Figure 4b shows the result 
of subtracting the global motion from the real motion: an 
upwards path closer to the car’s perceived motion.  

 
Figure 5: As the pointer drifts from horse’s trajectory, the 

curve’s style changes from (a) subtle to (b) emphasized. 

Our background stabilization technique shifts video frames 
within the player’s window as a user drags a particular 
object. Video frames leave a trail of blurred grayscale im-
ages which aid in putting the currently displayed video 
frame in context with the video scene (Figure 4c). This is 
similar to stitched panoramas or video mosaic techniques 
[12, 16]. Once the direct manipulation ends, the current 
frame springs back to fill the player’s window frame. 

TRAJECTORY EXTRACTION FROM VIDEOS 
Supporting relative flow dragging in a video player requires 
knowledge of the motions occurring in the video – i.e., 
having a function that maps any point in any video frame to 
a curve representing its trajectory over time. We considered 
three approaches for obtaining this information: 
Manual Annotation. We initially collected user reactions to 
relative flow dragging with a Java prototype that requires 
specifying the motion of points of interest across video 
frames. Manual annotation is a reasonable approach in the 
context of multimedia authoring [25] and can be comple-
mented with automatic techniques. Still, fully automatic 
solutions are needed for video consumers to be able to 
experience direct manipulation on arbitrary video files.  
Metadata Extraction. Most video formats already contain 
motion information used for decoding purposes [35, 39]. At 
this point we have no control as to the quality of this meta-
data, but this strategy is worth exploring in the future. 
Automatic Estimation. Motions can be estimated with ac-
ceptable accuracy using video processing and computer 
vision techniques. This is the approach we used in DimP. 

Computer Vision Approaches 
Automatically estimating motions from an image sequence 
is a classical computer vision problem that is still actively 
investigated [5, 17, 31, 33, 35, 39, 40]. Thus, instead of 
proposing a new method, we aim to use well-established 
vision techniques to demonstrate the feasibility of built-in 
support for the direct manipulation of video. We group 
motion estimation approaches into two categories: 
Object Tracking: tracking involves following the motion of 
one or several objects of interest over a video sequence. 
Applications include motion capture and surveillance [40]. 
Optical Flow: optical flow computation estimates pixel 
velocities between adjacent video frames, without enforc-

 



 

ing time consistency. Applications include video compres-
sion, 3D reconstruction and robot servo control [5]. 
Both approaches have pros and cons. Tracking algorithms 
are efficient at following objects over long periods of time 
[17]. Using a tracking approach, Kimber et al. [18] extract 
moving objects and try to maintain their identity in the 
presence of discontinuities due to merging, splitting or 
occlusion. However, such techniques are very sophisticated 
and never 100% reliable. In contrast, optical flow ap-
proaches do not extract objects and hence do not handle 
merging or occlusion. But they can track a wide range of 
motions, such as the movements of a fluid. 
In light of these tradeoffs, we believe that a sparse estima-
tion of optical flows is an adequate first step for a general-
purpose video player. 

Extraction of Feature Flows 
Our implementation uses a feature-based optical flow esti-
mation scheme [20], where one interpolates the motion of 
salient feature points between frames. We reused Nowo-
zin’s C# implementation of SIFT (Scale-Invariant Feature 
Transforms) [24, 20], a robust feature extraction method 
that can match photos with different viewing angles or 
lighting conditions. SIFT has been used successfully in 
applications ranging from panorama creation [24], 3D 
reconstruction [34] and video tracking [33].  
Feature flows are computed by detecting and matching 
SIFT feature points on two consecutive frames. Each match 
gives a motion vector. Unmatched features are discarded. A 
complete absence of matches is a good estimator for scene 
cuts. Once all of the video’s feature flows are found, trajec-
tory curves can be generated on-the-fly. 

Construction of Trajectory Curves 
Optical flows are inferred from feature flows by nearest-
neighbor interpolation. The trajectory curve going through 
a given pixel of a particular video frame is then built by 
adding up flows forward and backwards in time. Since 
SIFT feature points have sub-pixel accuracy, cumulative 
errors are negligible. The process stops as soon as an un-
known flow (scene cut) is encountered.  
Finally, each of the vertices of a trajectory curve is tagged 
with the frame number it corresponds to. The floating-point 
video frame number of an arbitrary point on the curve is 
obtained by linear interpolation.  

Estimation of Background Motion 
We implemented a greedy screen-space binary partitioning 
scheme to find the most dense motion region in the space 
of feature motions. This algorithm yields the dominant or 
“most representative” feature displacement on a given pair 
of frames, which is identified with background translation 
and subtracted from the feature flow. 
Our binary partitioning scheme is computationally cheap 
and has produced results that received positive response 
from early users of our system. More advanced tools such 
as K-means or Mean-Shift clustering algorithms can be 
used to detect multiple coherent motions and refine the 
computation of relative motion [10].  

Current Limitations 
Pilot user testing sessions revealed that the trajectories 
generated by our system match users’ expectations fairly 
well, especially for videos involving large continuous mo-
tions. However, some limitations remain:  

Speed: feature extraction & matching can be costly. While 
our implementation takes about 5s per frame on a typical 
desktop computer, research suggests that feature detection 
and matching can be faster, if not real-time [20, 33].  

Sensitivity: in order to keep computation times acceptable, 
we sub-sample video frames to 128×128 grayscale pixels 
before processing. As a result, small objects are not 
tracked. Faster feature extraction algorithms could work on 
higher resolution images, thus improving sensitivity. 

Discontinuous Motions: our implementation does not re-
member features which have been briefly occluded or 
moved outside the camera view. This issue is intrinsic to 
the optical flow paradigm and can be partly addressed by 
the integration of tracking techniques [40, 18]. 

Induced Motion: while straightforward, our background 
extraction method makes several simplifying assumptions 
about induced motion, e.g., it does not detect multiple co-
herent motions, nor does it account for non-translational 
induced motions [26]. 

Scalability: At this time, DimP works best for relatively 
short video clips. In addition to processing time, current 
scalability issues concern memory (videos are wholly un-
compressed to support fast browsing) and lags produced by 
the construction of very long trajectory curves. 

The trajectory curves we produce hold all the information 
we need for the direct manipulation of video. With this 
information, we can reflect a point’s motion over a trajecto-
ry curve back into changes on the video frame number. In 
the next section, we elaborate on how users control these 
curvilinear motions using 2D mouse movements.  

CURVILINEAR DRAGGING DESIGN 
Flow dragging requires supporting curvilinear dragging on 
multiple curves. We assume a simple model where no dy-
namic transition between curves occurs, thus we only con-
sider the case where curves remain fixed once they have 
been invoked by a mouse press. We also assume back-
ground motion has been subtracted from trajectory curves, 
and focus on the curvilinear dragging problem. 

Requirements 
There are different ways of mapping dragging gestures to 
curvilinear motions, i.e., moving a point along a 2D curve 
using a 2D input device. While the “correct” behavior for a 
curvilinear dragging method is subjective to users’ expecta-
tions, we can postulate five basic requirements: 

Multi-Scale: users should be able to perform both slow/fine 
dragging as well as fast/coarse dragging. If a curve has 
small high-frequency and large low-frequency components, 
the user should be able to explore it locally, but also rapidly 
transition to other regions of the curve (Figure 6a). 

 



 

Arc-Length Continuity: it is desirable to favor continuity in 
terms of arc-length variation, e.g., if the user follows a loop 
and goes through its intersection, the algorithm should not 
jump to a different part of the curve (Figure 6b). 
Directional Continuity: variations that preserve the arc-
length direction of motion are favorable, e.g., users follow-
ing a cusp should not go back to where they came from 
(Figure 6c). This allows for navigating through the whole 
curve with a single gesture, even if the curve has U-turns. 
Proximity: a curvilinear dragging method should minimize 
spatial indirection [6], e.g., when the pointer is still, the 
offset between its current position and the corresponding 
point on the curve should be minimized. 
Responsiveness: the method should also minimize temporal 
indirection [6], i.e., pointer motions should rapidly reflect 
on the curve, without noticeable delays in the interaction. 

 
Figure 6: Three requirements for a curvilinear dragging 

technique: (a) multi-scale navigation, (b) arc-length 
continuity, and (c) directional continuity. 

Existing Solutions 
Current applications use simple solutions to the problem of 
curvilinear dragging. While straightforward, these solutions 
do not fully satisfy our proposed set of requirements. Pro-
jecting the pointer's location onto a line, for example, is 
effective but only applies to linear trajectories, e.g., sliders. 
Another approach involves constraining the pointer’s mo-
tion to a tunnel around the curve, i.e., a steering [1] solu-
tion. This steering method supports fine dragging and, to 
some extent, arc-length continuity and responsiveness. 
However, because users cannot deviate from the tunnel, 
support for proximity and coarse exploration is limited.  
Using a “closest point” algorithm for curvilinear dragging 
is another simple solution [3]. This method meets the prox-
imity and responsiveness criteria; however it does not meet 
the arc-length continuity and directional continuity criteria. 
At the same time, while this method supports coarse drag-
ging, it does not allow for fine dragging on curves with 
small high-frequency components. 
A better approach is to restrict the search for the closest 
point to a small neighborhood of the previous closest point 
[4]. This method supports arc-length continuity and fine 
dragging. However, support for coarse dragging is limited 
by the fact that the dragged point can remain stuck into 
local minima such as the left loop in Figure 6a.   
We suggest a different extension of the closest point tech-
nique and show how it meets our proposed requirements. 

The 3D Distance Method 
We build on the closest point algorithm in order to benefit 
from its high responsiveness, its ability to enforce proximi-
ty and support for coarse exploration. We enforce continui-
ty by taking arc-length distance into account when search-
ing for the closest point. This is similar to Kimber et al’s 
method [18], which however uses key frame distance and is 
hence sensitive to the way the curve is sampled. 

Algorithm 
The 3D distance method consists of expressing the curve in 
(x, y, z) coordinates instead of (x, y). We do this by map-
ping a point’s z-coordinate to its arc-length distance from 
the curve’s origin. This mapping takes the form of a linear 
function )( parclenkpz ⋅= , where k ≥ 0 is a scale factor. 
The curve's x and y coordinates are left unchanged. 
The pointer’s coordinates are also expressed in 3D space 
with x, y unchanged and z mapped to the z-coordinate of the 
currently active (dragged) point on the curve. 
If Ca is the location of the currently active point on the 
curve, the 3D distance between the pointer p and any point 
C on the curve is obtained by the following equation: 

222 )()()( CCkCpCpD ayyxx ⋅+−+−=    (1) 

where px and py are the coordinates of the pointer p on the 
screen, Cx and Cy are the coordinates of the point C on the 
2D curve, and CC a

 is the arc-length distance between Ca 
and C on the 2D curve. Notice that this algorithm reduces 
to the standard 2D closest point when k = 0. 
The initial active point Ca is obtained using a standard 2D 
closest-point search. Then, on each drag event, the new Ca 
is the point C which minimizes equation (1). 

Jumps 
Although our 3D distance algorithm preserves continuity at 
intersection neighborhoods, a jump will occur if users "in-
sist" on dragging away from the current region. The jump-
ing threshold depends on the value of the z-scaling constant 
k. k ≈ 1 yields good results for video navigation and allows 
for both local dragging gestures that follow a curve loosely 
and ballistic motions between distant points of a curve. 
Since the 3D distance method tries to preserve continuity, 
jumps occur less frequently than when using a closest point 
approach. However, jumps that occur are naturally larger. 
This is a result of the combined support for arc-length con-
tinuity and coarse exploration. The fact that jumps are both 
larger and more difficult to produce yields a natural interac-
tion style by which local dragging can be bypassed using 
"pull gestures". Large jumps can be smoothed visually 
using animations, provided that these animations are fast 
enough to meet the responsiveness criterion. 

Adding Support for Directional Continuity 
As stated, the 3D distance method addresses the problem of 
arc-length continuity but not directional continuity. We add 
this support by adding a term kD > 0 to the right member of 
equation (1) whenever CC a and aa

CC t )1( − have opposite 

 



 

signs. This will move the already visited region further 
away when searching for the closest point and thus pre-
serve directional continuity on cusps. As a result, it will be 
slightly more difficult to reverse the arc-length direction of 
motion on the curve, kD being the travel distance required 
to go back (kD ≈ 5 yields good results for video navigation). 
Kimber et al [18] use a similar scheme except that kD and k 
decrease with time when no drag event occurs.  

Maintaining Interactive Rates 
The 3D distance method requires computing the distance 
between P and each of the curve segments. When curves 
have a large number of vertices, an optimization technique 
is desirable to ensure interactive system response. 
Although we could have used a data structure to optimize 
our search [21], our distance metric allows a simpler ap-
proach. Since the absolute value of the z-component of our 
distance metric CCkd az ⋅=  increases monotonically as the 
candidate point C moves away from Ca, it can be used as a 
lower bound on the total distance between C and Ca.  
This leads to the following algorithm: we search forward 
and backward along the curve beginning from the initial 
active point Ca. Each branch of the search halts when the 
distance dz is greater than the candidate minimum distance 
or when the end of the curve is reached.  

Curve Filtering 
Curves can contain very small high-frequency components 
that are above the display capabilities and/or the pointing 
accuracy of the input device. In the case of video trajectory 
curves, noise can result from motion estimation artifacts, 
such as feature mismatches. Removing these components 
will likely improve curvilinear manipulations. 
We use Taubin’s smoothing algorithm [36] which behaves 
like a low-pass filter and does not significantly modify 
curves. This efficiently removes variations too small to be 
followed, while preserving most of the curve’s features, 
thus still agreeing with the proximity criterion. 

Limits of Curvilinear Dragging 
The 3D distance method nicely supports curvilinear drag-
ging on moderately complex curves. However, there is a 
limit to that complexity. For example, we processed a 5 
minute uncut video of a couple dancing tango and obtained 
cluttered curves going back-and-forth many times on the 
screen. Such curves are difficult to visualize clearly and are 
naturally difficult to follow. We are currently looking into 
overcoming this issue by clipping very long curves to a 
neighborhood of predefined arc-length.  

USER STUDY 
We argue that, in addition to the feel of direct manipulation 
it can provide, relative flow dragging can outperform the 
traditional seeker bar in media browsing tasks that involve 
targeting in the image space. Targeting in the image space 
means that the user wants to reach a specific visual event or 
a frame having specific visual characteristics. This is in 
contrast to targeting in the time space, in which one wants 
to, e.g., reach a particular point in time within the video. 

We test this hypothesis on DimP through a study that 
presents users with video navigation tasks requiring them to 
think in terms of space instead of time. 

Apparatus & Participants 
We used a Dell Precision system running windows XP at 
3.2GHz, 2 GB of RAM, a 1280×1024 LCD display, and a 
mouse. Six males and ten females, 18-44 years old, partici-
pated in the study and were recruited through e-mail post-
ing at our university. No compensation was provided. 

Task and Stimuli 
The study used synthetic videos made by screen-capturing 
objects moving on a 2D canvas. The videos were 227 to 
917 frames long and had a 640×480 resolution. We pre-
sented users with two types of task, ladybug and car: 
Ladybug (Figure 7, left): This task involved video clips 
showing a ladybug flying over four markers, in an unpre-
dictable order with non-uniform speed. Users were in-
structed to “find the moment in the video when the ladybug 
passes over marker X”. 
Car (Figure 7, right): This task involved video clips show-
ing three cars of different shape and colors moving one 
after the other, at unpredictable times. Each car moved only 
once and most of the video contained no movement. Users 
were instructed to “find the moment in the video when  car 
X starts moving”. 

 
Figure 7: Examples of the ladybug (left) and car tasks (right). 

The dashed curves illustrate the objects’ trajectory on the 
video and did not appear like this in the trials. 

At the beginning of each trial, the video player (DimP) 
loaded a new video clip into memory then paused on the 
first frame. The player included a standard seeker bar of 
554×16 pixels and also supported the direct manipulation 
technique described in the previous sections. All videos 
have been pre-processed for the latter technique. VCR 
buttons were also available but they were not needed for 
the tasks and none of the participants used them. 

Procedure and Design 
We used a 2 technique (seeker bar, relative flow dragging) 
× 2 task (ladybug, car) within-participant design. We pre-
sented three instances of each task that involved a different 
variant of the same video and a different target frame, i.e., 
frame to reach in the video stream. Target frames were 
chosen before, during and after the halfway-point of the 
video’s length. They were given to users in a non-explicit 
way, i.e., through the description of visual events defined 
by either a marker number (ladybug) or a car color (car).  

 



 

The dependent variables were trial time and error. We 
computed trial time as the time between the first Mouse-
Down and the last Mouse-Up events of a trial. We com-
puted error as the absolute difference between the number 
of the target frame and the number of the frame reached by 
the user divided by the total number of frames. The condi-
tions’ order of presentation was counter-balanced across 
participants. In summary, the experiment consisted of:  
16 users × 2 techniques × 2 tasks × 3 instances = 192 trials. 
Prior to the study, the experimenter explained the task to 
the users. Before each technique, users practiced with it 
using a warm-up video different from those used in the 
trials. Users were told to do the trials as quickly and accu-
rately as possible. Users advanced to the next trial after 
declaring a task was completed.  

Quantitative Results 
The study averaged half an hour per user. We conducted a 
2 (technique) × 2 (task) repeated measures analysis of va-
riance (RM-ANOVA) on the logarithmically transformed 
trial time and on the error. The logarithm transform corrects 
for the skewing present in human time response data, and 
removes the influence of outliers. 
We found a main effect for technique on time: relative flow 
dragging was at least 250% faster than using the seeker bar 
(F1,12=69.762, p<0.0001) (Figure 8). 

 
Figure 8: Mean time per task 

Users were accurate with both techniques (<1% error). 
Although they seemed to be more precise with relative flow 
dragging than the seeker bar, this difference was not statis-
tically significant (F1,12=2.848, p=0.117). There was a main 
effect for task on error (F1,12=13.982, p<0.005) (Figure 9). 
This result suggests that while conceptually similar, the two 
tasks demanded different resources from users. 

 
Figure 9: Mean error per task. 

Qualitative Results  
We asked users to rank their preferences using a Likert 
scale ranging from 1 (strongly disagree/very dissatisfied) to 
7 (strongly agree/very satisfied). Users’ preference for 

relative flow dragging over the seeker bar is consistent with 
our quantitative results (Table 1). 
Users voiced their preference for relative flow dragging: it 
was “clean, easy to use”, produced “immediate results with 
a high level of precision”, “allowed me to interact with the 
video elements I was interested in, not just video as a 
whole”. A user of 3D systems thought that “for visual con-
straints this technique is incredibly helpful”. One user ex-
pressed some disorientation: “it was easier” but “confusing 
when the object did not move along the same path as the 
cursor”. This expectation was probably reinforced by the 
synthetic look of the videos. 

Technique Question Score  Standard Error

Relative 
Flow Dragging 

Tasks were easy  6.38  0.24 

Tasks were fast  6.56  0.16 

Satisfaction  6.13  0.26 

Seeker Bar 

Tasks were easy  5.06  0.36 

Tasks were fast  4.31  0.42 

Satisfaction  4.69  0.33 

Table 1: Summary of qualitative results. 

PREVIOUS WORK ON VIDEO BROWSING 
Despite advances in computing hardware, watching a video 
using regular software remains similar to the way we expe-
rience videos on analog video cassette recorders (VCR) 
[18]. Software video players mostly use traditional VCR 
controls, enabling playback at different rates. The only 
significant advance is the seeker bar, allowing partial ran-
dom access and continuous navigation in the video time-
line. Other innovations in browsing include non-linear 
navigation, visual summaries, content-based video retriev-
al, and advanced widgets. 

Non-Linear Video Browsing 
Videos often contain meaningful events, some of which can 
be extracted automatically, e.g., scene cuts, to support 
intelligent skip mechanisms [18]. Videos also have seg-
ments of different importance, and static scenes that can be 
detected and used to speed-up video playback [18, 38]. 
Different levels of importance can be inferred by estimating 
motion activity. Such information can be used to support 
adaptive fast-forward, i.e., changing the playback rate so as 
to maintain a constant “visual pace” [27, 38]. 
Adaptive fast-forward approaches are related to our tech-
nique because they use actual motions in the image space to 
facilitate video browsing. However, they show their limits 
in the presence of concurrent motions. For example, if a 
video has objects moving at very different speeds (e.g., cars 
and pedestrians), it is not clear which of them should be 
taken into account. Relative flow dragging addresses this 
by allowing the user to specify the motion of interest: click-
ing on a slow pedestrian will provide coarse grain access to 
a big time segment, whereas clicking on a fast car will 
provide finer access to a smaller time segment. 

Visual Summaries 
Combining video content analysis with visualization has 
been a popular method for supporting searching tasks in 
long videos. A representative approach for this method 
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consists of extracting relevant key-frames and organizing 
them into mosaics or interactive storyboards [38]. Key-
frames can be also laid out on the seeker bar to provide an 
overview of the video [29].  
A recent system from Goldman et al. [12] generates sche-
matic storyboards to facilitate video editing tasks. Schemat-
ic arrows are generated from the motion of objects of inter-
est specified by the user. These arrows act like sliders, 
allowing navigation through the video timeline. While this 
system shares similar ideas with ours, it does not support 
true direct manipulation, i.e., the video is manipulated 
through a static storyboard displayed in a separate window.  

Content-Based Video Retrieval 
Several research efforts have explored the use of images 
and visual trajectories for indexing and searching video 
[31, 35]. While some of these tools provide sketch-based 
GUIs, they all use a conversational interaction paradigm: 
the user makes a query, and then waits for the results. This 
is significantly different from our direct manipulation ap-
proach, which allows local browsing and exploration. 

Advanced Widgets 
Video players could also be improved by using sliders that 
support simultaneous control of position and velocity [29] 
or position and accuracy [2, 22]. This would increase the 
seeker bar's resolution, a common limitation of current 
video players. 
In-place widgets can also be used to facilitate video brows-
ing. For example, we could design pop-up seeker bars that 
adapt to the instantaneous motion of objects of interest. 
Such widgets would not require the user to follow trajecto-
ries but would share some advantages with relative flow 
dragging, such as its small degree of spatial indirection. 
Although such approaches are worth exploring as an alter-
native to the seeker bar, we believe that only direct manipu-
lation can support fast targeting in the image space, such as 
bringing a moving object to a location of interest. We in-
tend to assess this claim in future user studies. 

Similar Systems 
The idea of annotating video clips to support direct mani-
pulation has been previously used in the Dragri multimedia 
authoring system [25]. A fully automated solution by 
Kimber et al. has also been recently published and brought 
to our attention during the review process [18]. These two 
parallel attempts at solving a similar problem undoubtedly 
led to some very similar solutions, although significant 
differences in the motion extraction and curvilinear drag-
ging algorithms have been outlined throughout this paper. 
Kimber and al.’s work also mainly focuses on surveillance 
systems and explores ideas such as tracking across multiple 
calibrated cameras and manipulating floor plan projections 
[18]. In contrast, we elaborate on a general technical and 
conceptual framework for supporting direct manipulation 
of moving imagery. We also describe the issue of induced 
motion and show how it can be addressed by background 
stabilization. Finally, we provide a first assessment of the 
usability of the technique by the means of a user study. 

CONCLUSION AND FUTURE WORK 
We presented a new way of browsing videos, which brings 
the benefits of direct manipulation to an activity previously 
experienced through indirect means. Commercial media 
players could potentially benefit from our approach by 
exploiting motion metadata present in video files [35, 39]. 
This is especially appealing with the emergence of touch-
input handheld multimedia devices.  
In addition to the potential benefits to the overall subjective 
user experience, we showed how direct manipulation can 
improve user performance on space-centric video naviga-
tion tasks. The videos we used in our evaluation have been 
chosen for illustrative purposes and a more ecological 
comparison of video browsing techniques is still needed. In 
particular, it would be beneficial to assess the relative oc-
currence of space-centric video browsing tasks, as well as 
the applicability of flow dragging to long video clips. 
Our contributions go beyond the implementation of an 
interactive system and address research challenges such as 
identifying new classes of direct manipulation techniques, 
designing a reusable curvilinear dragging method that 
meets a number of desirable properties, and adding to our 
understanding of the concept of direct manipulation. 
By introducing the concept of relative flow dragging, we 
also suggest a general mechanism that can bring a new type 
of interactivity to a variety of graphical applications in 
which interaction is traditionally mediated by widgets. 
These include information visualization tools, interactive 
learning environments [14], GUI revisitation [8], as well as 
2D and 3D animation authoring tools [3, 23] where clicking 
and dragging objects on the canvas can be sometimes more 
practical than “scrubbing” a timeline. 
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