Stability of BRDFs Gaussian Process Kriging

Cyril Soler

February 1, 2018

1 Notations and summary

\mathbf{e}_{i}	<i>i</i> th vector of the canonical basis
$\{\mathbf{x}_0,,\mathbf{x}_n\}$	latent variables
$\mathbf{z}_*(\mathbf{x})$	interpolated BRDF at latent point x
$\mathbf{z}_*(\mathbf{x}_i), \mathbf{z}_i$	input BRDF at latent point \mathbf{x}_i
K	covariance matrix
$\kappa(\mathbf{K})$	condition number of the covariance matrix
\mathbf{k}_{i}^{\dagger}	i^{th} line of matrix K
$\mathbf{k}_{*}(\mathbf{x})$	covariance vector with i^{th} component $c(\mathbf{x}, \mathbf{x}_i)$
$\delta \mathbf{k}_i(\mathbf{x})$	defined as the difference $\mathbf{k}_*(\mathbf{x}) - \mathbf{k}_i$
Z	matrix of input BRDF data, with lines \mathbf{z}_i
$ \mathbf{x} $	L_2 norm of vector x
$ \ \mathbf{Z}\ $	Frobenius norm of matrix Z

We study the krigging value of the Gaussian Process defined by:

$$\mathbf{z}_*(\mathbf{x}) = \mathbf{k}_*^{\mathsf{T}}(\mathbf{x})\mathbf{K}^{-1}\mathbf{Z} \tag{1}$$

and prove the following two theorems:

Theorem 1. For every point x in the latent space, we have

$$\forall \mathbf{x} \ \exists \beta(\mathbf{x}) \in \{1,...,n\} \ \|\mathbf{z}_{*}(\mathbf{x}) - \mathbf{z}_{\beta(\mathbf{x})}\| \le \kappa(\mathbf{K}) \|\mathbf{Z}\| \min_{i} \|\delta \mathbf{k}_{i}(\mathbf{x})\|. \tag{2}$$

This bound expresses that the value of f at any x in between the latent variables stays in the vicinity of the value \mathbf{z}_i for at least one latent point \mathbf{x}_i . In practice this point is the data point in the latent space that is closest to \mathbf{x} .

Theorem 2. Supposing that the covariance function c is a Gaussian with variance ℓ defined by

$$c(\mathbf{x}, \mathbf{y}) = e^{-\|\mathbf{x} - \mathbf{y}\|/\ell^2},$$

the bound in theorem 1 becomes

$$\|\mathbf{z}_{*}(\mathbf{x}) - \mathbf{z}_{\beta(\mathbf{x})}\| \le \kappa(\mathbf{K}) \|\mathbf{Z}\| \frac{\sqrt{2n}}{\ell} e^{-1/2} \|\mathbf{x} - \mathbf{x}_{\beta(\mathbf{x})}\|.$$
 (3)

2 Derivation of inequality 2

We examine the behavior of the interpolant defined by Equation 1 in the region around a particular training data point \mathbf{x}_i . In order to derive an argument for stability, we study how much $\mathbf{k}_*(\mathbf{x})\mathbf{K}^{-1}$ depends on $\mathbf{x} = \mathbf{x}_i + \delta \mathbf{x}$ around \mathbf{x}_i .

Following the definition of \mathbf{K} we have

$$\mathbf{k}_*(\mathbf{x}_i) = \mathbf{k}_i$$
.

And consequently

$$\mathbf{z}_{*}(\mathbf{x}_{i} + \delta \mathbf{x}) - \mathbf{z}_{*}(\mathbf{x}_{i}) = \mathbf{k}_{*}^{\mathsf{T}}(\mathbf{x}_{i} + \delta \mathbf{x})\mathbf{K}^{-1}\mathbf{Z} - \mathbf{k}_{*}(\mathbf{x}_{i})\mathbf{K}^{-1}\mathbf{Z}$$
$$= (\mathbf{k}_{*}^{\mathsf{T}}(\mathbf{x}_{i} + \delta \mathbf{x}) - \mathbf{k}_{*}^{\mathsf{T}}(\mathbf{x}_{i}))\mathbf{K}^{-1}\mathbf{Z}$$
(4)

We denote the perturbation $\delta \mathbf{k}$ of $\mathbf{k}_*(\mathbf{x}_i)$ around k_i , that is defined by

$$\mathbf{k}_*(\mathbf{x}_i + \delta \mathbf{x}) = \mathbf{k}_i + \delta \mathbf{k}.$$

Since $\mathbf{k}_{i}^{\mathsf{T}}\mathbf{K}^{-1} = \mathbf{e}_{i}$, we define $\delta \mathbf{e}$ as:

$$(\delta \mathbf{k} + \mathbf{k}_i)^\mathsf{T} \mathbf{K}^{-1} = \delta \mathbf{e} + \mathbf{e}_i \tag{5}$$

We use the following theorem:

Theorem 3 (Atkinson'1989). Let \mathbf{x} be the solution to a non degenerate linear system $\mathbf{A}\mathbf{x} = b$. The solution of the perturbated linear system $(\mathbf{A} + \delta \mathbf{A})(\mathbf{x} + \delta \mathbf{x}) = (\mathbf{b} + \delta b)$ verifies:

$$\frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa(A)}{1-\kappa(A)\frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|b\|}\right)$$

where $\kappa(\mathbf{A})$ is the condition number of \mathbf{A} induced by the norm $\|.\|$, and defined by $\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$.

Applying this theorem to Equation 5, taking $\mathbf{A} = \mathbf{K}, b = \mathbf{k}_i, \delta b = \delta \mathbf{k}_i, \mathbf{x} = \mathbf{e}_i$ and $\delta \mathbf{x} = \delta \mathbf{e}$, we have:

$$\frac{\|\delta e\|}{\|e_i\|} \leq \kappa(K) \frac{\|\delta k_i\|}{\|k_i\|}$$

Using this in Equation 4, we use the fact that $\mathbf{K}^{-1}\mathbf{Z}$ is a vector, and that $\|\mathbf{e}_i\| = 1$, in order to get:

$$\begin{aligned} |\mathbf{z}_*(\mathbf{x}_i + \delta \mathbf{x}) - \mathbf{z}_*(\mathbf{x}_i)| &\leq & \|\underbrace{(\mathbf{k}_*^\mathsf{T}(\mathbf{x}_i + \delta \mathbf{x}) - \mathbf{k}_*^\mathsf{T}(\mathbf{x}_i)) \, \mathbf{K}^{-1}}_{\delta \mathbf{e}} \| \|\mathbf{Z}\| \\ &\leq & \kappa(\mathbf{K}) \frac{\|\delta \mathbf{k}_i\|}{\|\mathbf{k}_i\|} \|\mathbf{Z}\| \end{aligned}$$

Now if we consider a point \mathbf{x} in the latent space and denote $\mathbf{x}_{\beta(\mathbf{x})}$ the training point for which the right member is the smallest (in practice, this is likely to happen for the point \mathbf{x}_i that is closest to \mathbf{x}), we have

$$|z_*(x)-z_*(x_{\beta(x)})| \leq \kappa(K) \|Z\| \min_i \frac{\|\delta k_i(x)\|}{\|k_i\|}.$$

Combining this with the fact that $\|\mathbf{k}_i\| \ge 1$, and noting that $\mathbf{z}_*(\mathbf{x}_{\beta(\mathbf{x})}) = \mathbf{z}_{\beta(\mathbf{x})}$, completes the proof.

3 Derivation of inequality 3

Using the continuity of the interpolant, if we bound the first derivative of $\delta \mathbf{k}_i(x)$ over the entire domain, we obtain

$$\|\delta \mathbf{k}_i(x)\| \le \|\mathbf{x} - \mathbf{x}_i\| \sup_{\mathbf{x}} \|\nabla \mathbf{k}_*(\mathbf{x})\|.$$

Similarly, if we can bound the second derivative of $\delta \mathbf{k}_i(x)$ over the entire domain, we obtain

$$\|\delta \mathbf{k}_i(x)\| \le \|\mathbf{x} - \mathbf{x}_i\|\nabla \mathbf{k}_*(\mathbf{x}_i)\| + \|\mathbf{x} - \mathbf{x}_i\|^2 \sup_{\mathbf{x}} \|\operatorname{tr}(H(\mathbf{k}_*)(\mathbf{x}))\|,$$

where H is the Heassian of \mathbf{k}_* . Since the covariance c is defined using a Gaussian as

$$c(\mathbf{x}, \mathbf{y}) = g(\|\mathbf{x} - \mathbf{y}\|)$$
 with $g(x) = e^{-x^2/\ell^2}$,

the first and second derivatives of g are bounded over the entire domain by:

$$-\frac{\sqrt{2}}{\ell}e^{-1/2} \le g'(x) \le \frac{\sqrt{2}}{\ell}e^{-1/2} \quad \text{ and } \quad -\frac{2}{\ell^2} \le g''(x) \le \frac{4}{\ell^2}e^{-3/2}$$

We have consequently for all i

$$\|\delta \mathbf{k}_i(\mathbf{x})\| \le \sqrt{2n} \frac{1}{\ell} e^{-1/2} \|\mathbf{x} - \mathbf{x}_i\|,\tag{6}$$

which completes the proof. Similarly we can use the bound over the second derivative to obtain a much tighter bound, that necessitates to compute $\|\nabla \mathbf{k}_*(\mathbf{x}_i)\|$:

$$\|\delta \mathbf{k}_i(\mathbf{x})\| \le \|\mathbf{x} - \mathbf{x}_i\| \|\nabla \mathbf{k}_*(\mathbf{x}_i)\| + \frac{4}{\ell^2} e^{-3/2} \|\mathbf{x} - \mathbf{x}_i\|^2.$$
 (7)