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1 Notations and summary

ei ith vector of the canonical basis
{x0, ...,xn} latent variables
z∗(x) interpolated BRDF at latent point x
z∗(xi),zi input BRDF at latent point xi
K covariance matrix
κ(K) condition number of the covariance matrix
kᵀ

i ith line of matrix K
k∗(x) covariance vector with ith component c(x,xi)
δki(x) defined as the difference k∗(x)−ki
Z matrix of input BRDF data, with lines zi
‖x‖ L2 norm of vector x
‖Z‖ Frobenius norm of matrix Z

We study the krigging value of the Gaussian Process defined by:

z∗(x) = kᵀ
∗ (x)K

−1Z (1)

and prove the following two theorems:

Theorem 1. For every point x in the latent space, we have

∀x ∃β(x) ∈ {1, ...,n} ‖z∗(x)− zβ(x)‖ ≤ κ(K)‖Z‖min
i
‖δki(x)‖. (2)

This bound expresses that the value of f at any x in between the latent variables stays in
the vicinity of the value zi for at least one latent point xi. In practice this point is the
data point in the latent space that is closest to x.

Theorem 2. Supposing that the covariance function c is a Gaussian with variance `
defined by

c(x,y) = e−‖x−y‖/`2
,

the bound in theorem 1 becomes

‖z∗(x)− zβ(x)‖ ≤ κ(K)‖Z‖
√

2n
`

e−1/2‖x−xβ(x)‖. (3)
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2 Derivation of inequality 2
We examine the behavior of the interpolant defined by Equation 1 in the region around
a particular training data point xi. In order to derive an argument for stability, we study
how much k∗(x)K−1 depends on x = xi +δx around xi.

Following the definition of K we have

k∗(xi) = ki.

And consequently

z∗(xi +δx)− z∗(xi) = kᵀ
∗ (xi +δx)K−1Z−k∗(xi)K−1Z

= (kᵀ
∗ (xi +δx)−kᵀ

∗ (xi))K−1Z (4)

We denote the perturbation δk of k∗(xi) around ki, that is defined by

k∗(xi +δx) = ki +δk.

Since kᵀ
i K−1 = ei, we define δe as:

(δk+ki)
ᵀK−1 = δe+ ei (5)

We use the following theorem:

Theorem 3 (Atkinson’1989). Let x be the solution to a non degenerate linear system
Ax = b. The solution of the perturbated linear system (A+ δA)(x+ δx) = (b+ δb)
verifies:

‖δx‖
‖x‖

≤ κ(A)

1−κ(A) ‖δA‖
‖A‖

(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
where κ(A) is the condition number of A induced by the norm ‖.‖, and defined by
κ(A) = ‖A‖‖A−1‖.

Applying this theorem to Equation 5, taking A = K,b = ki,δb = δki,x = ei and
δx = δe, we have:

‖δe‖
‖ei‖

≤ κ(K)
‖δki‖
‖ki‖

Using this in Equation 4, we use the fact that K−1Z is a vector, and that ‖ei‖= 1, in
order to get:

|z∗(xi +δx)− z∗(xi)| ≤ ‖(kᵀ
∗ (xi +δx)−kᵀ

∗ (xi))K−1︸ ︷︷ ︸
δe

‖‖Z‖

≤ κ(K)
‖δki‖
‖ki‖

‖Z‖
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Now if we consider a point x in the latent space and denote xβ(x) the training point
for which the right member is the smallest (in practice, this is likely to happen for the
point xi that is closest to x), we have

|z∗(x)− z∗(xβ(x))| ≤ κ(K)‖Z‖min
i

‖δki(x)‖
‖ki‖

.

Combining this with the fact that ‖ki‖ ≥ 1, and noting that z∗(xβ(x)) = zβ(x), completes
the proof.

3 Derivation of inequality 3
Using the continuity of the interpolant, if we bound the first derivative of δki(x) over
the entire domain, we obtain

‖δki(x)‖ ≤ ‖x−xi‖sup
x
‖∇k∗(x)‖.

Similarly, if we can bound the second derivative of δki(x) over the entire domain, we
obtain

‖δki(x)‖ ≤ ‖x−xi‖∇k∗(xi)‖+‖x−xi‖2 sup
x
‖tr(H(k∗)(x))‖,

where H is the Heassian of k∗. Since the covariance c is defined using a Gaussian as

c(x,y) = g(‖x−y‖) with g(x) = e−x2/`2
,

the first and second derivatives of g are bounded over the entire domain by:

−
√

2
`

e−1/2 ≤ g′(x)≤
√

2
`

e−1/2 and − 2
`2 ≤ g′′(x)≤ 4

`2 e−3/2

We have consequently for all i

‖δki(x)‖ ≤
√

2n
1
`

e−1/2‖x−xi‖, (6)

which completes the proof. Similarly we can use the bound over the second derivative
to obtain a much tighter bound, that necessitates to compute ‖∇k∗(xi)‖:

‖δki(x)‖ ≤ ‖x−xi‖‖∇k∗(xi)‖+
4
`2 e−3/2‖x−xi‖2. (7)
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