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1 Notations and summary

€; ith vector of the canonical basis
{X0,...,X,} latent variables

z.(x) interpolated BRDF at latent point x
z.(X;),Z; input BRDF at latent point x;

K covariance matrix

k(K) condition number of the covariance matrix
'Y i'" line of matrix K

k. (x) covariance vector with i/ component c(x, x;)
3k (x) defined as the difference k. (x) — k;

y/ matrix of input BRDF data, with lines z;
Il L, norm of vector x

IIZ]| Frobenius norm of matrix Z

We study the krigging value of the Gaussian Process defined by:
z.(x) = kT (x)K~'Z (1)
and prove the following two theorems:

Theorem 1. For every point X in the latent space, we have
¥x 3B(X) € {1,0n} [2.(%) ~ zg0ol| < K(K)[Z]min [Bki(x). @)

This bound expresses that the value of f at any x in between the latent variables stays in
the vicinity of the value z; for at least one latent point X;. In practice this point is the
data point in the latent space that is closest to Xx.

Theorem 2. Supposing that the covariance function c is a Gaussian with variance {
defined by

c(x,y) = eIy,
the bound in theorem 1 becomes

Van
2 () = 200 | < 6(K) |1 ZI| ==/ [x — xpx 3)



2 Derivation of inequality 2

We examine the behavior of the interpolant defined by Equation 1 in the region around
a particular training data point x;. In order to derive an argument for stability, we study
how much k. (x)K~! depends on x = x; + 8x around x;.

Following the definition of K we have

k* (X,) = ki.
And consequently
z.(x;+0x) —z.,(x) = KkI(x;+x)K 'Z—k.(x;))K 'Z
= (KI(x;+8x) — kI (x;)K'Z )

We denote the perturbation 8k of k., (x;) around k;, that is defined by
k. (x; + 0x) = k; + Ok.
Since k] K~! = e;, we define Je as:
(Ok+k)TK ™! =8e+e (5)
We use the following theorem:

Theorem 3 (Atkinson’1989). Let x be the solution to a non degenerate linear system
Ax = b. The solution of the perturbated linear system (A + 8A)(x+ 0x) = (b + &b)

verifies:
[x] _  x(A) <||5A| ||5b||)
X = 1) B\ AT b

Y]

where K(A) is the condition number of A induced by the norm ||.
K(A) = [A[[A7"]).

, and defined by

Applying this theorem to Equation 5, taking A = K, b = k;,8b = dk;,x = e; and
ox = de, we have:

15| |13k |
< x(K)
e ki
Using this in Equation 4, we use the fact that K~!Z is a vector, and that ||e;|| = 1, in

order to get:

(% +8%) —z.(x;)] < | (KT (x; +8%) — kI (x) K™ [|||Z]]

de

|18k |

<) ]

1Z]



Now if we consider a point X in the latent space and denote Xg(y) the training point
for which the right member is the smallest (in practice, this is likely to happen for the
point x; that is closest to x), we have

. Sk,‘ X
2 (%) — 2, (Xp(x))| < K(K)lemgnﬂlill)'.

Combining this with the fact that |[k;|| > 1, and noting that z.(xg(x)) = 2g(x), completes
the proof.

3 Derivation of inequality 3

Using the continuity of the interpolant, if we bound the first derivative of dk;(x) over
the entire domain, we obtain

[18k; (x) || < []x — x| sup || VE. (x) |
X

Similarly, if we can bound the second derivative of 0k;(x) over the entire domain, we
obtain
18; (o) | < {1 — x| Ve () [+ [1x — x> sup [Jer (B (K. ) (x)
X

where H is the Heassian of k... Since the covariance c is defined using a Gaussian as

cxy)=g(lx—yl) with g(x)=e /",

the first and second derivatives of g are bounded over the entire domain by:

2 2 2 4
_%e—l/z <dx) < %e—l/Z and - <g'(x) < ?26—3/2
We have consequently for all i
1
I8k < V2 e 2 x—xi, ©)

which completes the proof. Similarly we can use the bound over the second derivative
to obtain a much tighter bound, that necessitates to compute || VK, (x;)||:

4 _
I18k; (x) | < [[x —xil|[[ VI (xi) | + 77e 2 x—xil|. Q)



