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Figure 1: We are able to accurately vectorize raster images (“Input”) by automatically tracing a sparse set of multi-scale diffusion curves to
a broad class of images, including vector art (i.e., diffusion curve images), fluid simulations with turbulent flows, and natural images.

Abstract

Diffusion curve primitives are a compact and powerful representa-
tion for vector images. While several vector image authoring tools
leverage these representations, automatically and accurately vector-
izing arbitrary raster images using diffusion curves remains a dif-
ficult problem. We automatically generate sparse diffusion curve
vectorizations of raster images by fitting curves in the Laplacian
domain. Our approach is fast, combines Laplacian and bilaplacian
diffusion curve representations, and generates a hierarchical rep-
resentation that accurately reconstructs both vector art and natural
images. The key idea of our method is to trace curves in the Lapla-
cian domain, which captures both sharp and smooth image features,
across scales, more robustly than previous image- and gradient-
domain fitting strategies. The sparse set of curves generated by our
method accurately reconstructs images and often closely matches
tediously hand-authored curve data. Also, our hierarchical curves
are readily usable in all existing editing frameworks. We validate
our method on a broad class of images, including natural images,
synthesized images with turbulent multi-scale details, and tradi-
tional vector-art, as well as illustrating simple multi-scale abstrac-
tion and color editing results.
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1 Introduction

Diffusion curve images (DCI) [Orzan et al. 2008], and their recent
freeform vector graphics (FFG) extension [Finch et al. 2011], are
an expressive tool for vector image authoring. Artists sketch curves
and set color constraints, and a solver “diffuses” colors perpendicu-

larly to the curves, respecting their boundaries, to create an image.

Image vectorization is a fundamental problem in content creation
for computer graphics. As such, automatically extracting feature-
aware diffusion curves (and their color constraints) from raster
images is integral to an end-to-end vector authoring and editing
pipeline that supports the DCI and FFG representations. This
is challenging, in part, because many images break the funda-
mental assumption of current diffusion-based image representa-
tions: namely, that non-zero Laplacian and/or bilaplacian regions
in images align along sparse, localized, and well-connected curves,
while Laplacians/bilaplacians in other regions of images are zero.

Previous approaches use edge detection to place curves along sharp
image features, relying on the assumption that regions with high
Laplacian magnitude will overlap intensity discontinuities in the
image domain. We show that, although this assumption is valid
for sharp edges, it does not hold in general. Specifically, for blurred
edges or bumps, the image edges do not overlap the Laplacian max-
ima (e.g, Fig. 3). We observe this behavior in both natural images
and computer synthesized imagery resulting e.g. from a turbulent
fluid simulation.

We formulate image vectorization as a Laplacian (and/or bilapla-
cian) reconstruction problem, and seek to fit sparse and connected
curves to directly approximate the image Laplacian/bilaplacian. We
avoid traditional edge detection in favor of extracting curves in the



Laplacian and/or bilaplacian domains of an image. A trivial solu-
tion can easily be generated by scattering short curves with high
density throughout the image Laplacian/bilaplacian; this solution
is both computationally inefficient and generates an over-complete
“curve soup” output that is not amenable to any after-the-fact edit-
ing. Instead, we fit curves and determine their color profiles hier-
archically, where the coarse structure of an image is resolved us-
ing fewer longer curves. Fitting is fully-automatic, and the final
curve output is organized in a progressive multi-scale level-of-detail
scheme. Curves are associated with a scale index, allowing artists
to edit the resulting vector image in a multi-resolution fashion.

Compared with previous diffusion curve vectorization methods, the
output of our approach differs in the structure of the curves and
the quality of the results it generates. Our curves align with im-
portant image features, resulting in an intuitive representation for
artists. Our automatically generated curves are also strikingly sim-
ilar in structure to manually-authored curves (see Fig. 8). To our
knowledge, ours is the first fully-automatic curve fitting technique
to combine Laplacian and bilaplacian diffusion curves.

2 Related Work

Vector representations have a long-standing history in graphics, and
vectorization remains an important problem. For non-photographic
images (i.e., vector art and cartoons) [Chang and Yan 1998; Zou and
Yan 2001; Hilaire and Tombre 2006], where clear image boundaries
are combined with smooth image gradients, vectorization using line
and contour tracing approaches are typically sufficient. Vector rep-
resentations for more complex images, such as imagery with turbu-
lent details or digital photographs, typically demand a more expres-
sive and flexible set of vector primitives to handle unstructured im-
age regions and non-linear color variations. Recent diffusion curve
representations, discussed in more detail below, combine flexibility
in the types of image variations they can capture with compactness
in their final form. We will focus primarily on recent work most rel-
evant to our technique on mesh- and curve-based image vectoriza-
tion primitives, where applications to vector art and photographic
image content are considered.

Lecot and Levy [2006] decompose images into a set of regions de-
limited by cubic splines, each with their own precomputed color
gradients. Swaminarayan and Prasad [2006] placed triangle prim-
itives along edges in images and sampled the triangle colors from
the original image, resulting in an artistic abstraction of the input.
Demaret et al. [2006] combined an adaptive triangulation with a
first-order spline in order to more accurately preserve input image
details, specifically for image compression. Xia et al. [2009] gener-
alized triangle-based approach with a patch-based image represen-
tation, allowing more flexible color variations. Liao et al. [2012]
improved this method with piecewise smooth subdivision surfaces
to avoid boundary discontinuities and support multiple levels of
editing and abstraction. All these methods require a large number of
primitives to accurately capture complex image structures which, in
part, is why the earlier works favored stylized vector abstractions.

Moving from triangles and patches to connected mesh-like primi-
tives, Sun et al. [2007] introduced the gradient mesh representation
for vectorized images, which used a semi-automatic user-assisted
procedure to fit the representation to raster images. Given sparse
guide-strokes sketched by a user, their method generated the gra-
dient mesh using an optimization procedure. Lai et al. [2009] pro-
posed topology-preserving gradient meshes to represent arbitrary
image regions, including those with binary alpha masks (i.e., holes),
using a single mesh. While their output meshes are typically much
more dense than the original gradient mesh results, the fitting strat-
egy they propose is completely automatic. Our approach is also
fully-automatic and can generate partially-connected (multi-scale)

curves that tend to align with important image features. However,
our method vectorizes the raster images as diffusion curves, which
can capture non-linear image variation more compactly than gradi-
ent meshes.

Elder [1999] used edges as a near-complete and nature primitive
to encode images with most color variations. Orzan et al. [2007]
vectorized input image with a hierarchy of gradient-carrying edge
structures. Later, Orzan et al. [2008] proposed diffusion curves,
where colors along the curves are “diffused” outwards along the
curve’s normal direction in order to reconstruct an output image.
They also proposed a method to automatically extract diffusion
curves from an input bitmap by extracting edges in gradient space;
once extracted, the curves’ properties are determined by solving a
constrained Poisson equation. Although this vectorization scheme
works well for “vector-art-like” raster images, it is not capable of
capturing all forms of color variation present in natural images.
Jeschke et al. [2011] extended diffusion curves with more gen-
eral color and texture functions, as well as leveraging an alternative
formulation of the problem as a solution to 2D Laplace equations
with Dirichlet boundary conditions. Finch et al. [2011] employed
higher-order profile functions based on thin-plate splines with user-
specifiable discontinuities. Sun et al. [2012] proposed Green’s
functions based representation for diffusion curves that support fast
reconstruction. Ilbery et al. [2013] extend Green’s functions to
Finch et al.’s biharmonic curve formulation to broaden its flexi-
bility and improve final image reconstruction performance. Sun
et al. [2014] introduced a fast multipole representation for render-
ing diffusion curve images in real-time. Our method automatically
extracts multi-scale diffusion curves in Laplacian domain, which
is more robust and accurate for reconstructing a broad class of im-
ages, including vector-art/abstracted non-photographic images, nat-
ural images, and synthesized imagery with details across scales. We
also use Green’s functions based representation for diffusion curve
fitting and reconstruction.

Many approaches perform edge detection in multi-scale. Perona
and Malik [1990] used an anisotropic scale-space to preserve strong
edges. Lindeberg [1998] proposed a mechanism for automatic se-
lection of scale levels to precisely detect edges. While previous
approaches apply edge detection at a Gaussian scale-space in the
image or gradient domain in order to extract curves, we generate
multi-scale image stack via structure-preserving multi-scale bilat-
eral filters [Fattal et al. 2007] and then follow the aforementioned
observation to extract curves in Laplacian and bilaplacian domain.

3 Overview

Problem Formulation. Given a raster color image u[p] defined
at discrete pixel locations p, our goal is to automatically extract a
set of diffusion curves from u[p] in order to accurately reconstruct a
vectorized form of the image. A diffusion curve [Orzan et al. 2008]
is defined using a curve primitive with colors set on both sides of
it. These boundary conditions are equivalent to enforcing non-zero
Laplacian values on the curve itself and zero Laplacian values else-
where. We thus extract Laplacian diffusion curves directly from
the Laplacian transform of the image ∆u[p], and we may extract
additional bilaplacian diffusion curves using the bilaplacian of the
image ∆2u[p] in order to capture higher-order variations in smooth
images regions. To this end, we present a multi-scale curve ex-
traction scheme to efficiently trace and chain curves together across
image scales. Once extracted, we can reconstruct the final image by
solving a partial differential equation (PDE) with boundary condi-
tions defined by our curves. We will present a unified formulation
(Eq. (2)), based on Green’s functions [Sun et al. 2012; Ilbery et al.
2013], for reconstructing a continuous image signal u(x) from both
Laplacian and bilaplacian diffusion curves.
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Figure 2: 1D comparison of gradient and Laplacian fitting ap-
proaches.

Key Observations and Motivation. We will motivate our choice
for fitting curves in the Laplacian and bilaplacian domains, compar-
ing against gradient domain alternatives using a simple but repre-
sentative 1D example shown in Fig. 2 (a). Our fundamental obser-
vation is that many images not only include sharp edges (around A
in Fig. 2 (a)), but also include blurred edges (around B in Fig. 2 (a))
and regions with variations (around C in Fig. 2 (a)). All of these
image features can lead to large Laplacian magnitudes (A, B, and C
in Fig. 2 (d)) where diffusion curves should be placed for accurate
reconstruction.

Previous diffusion curve fitting approaches [Orzan et al. 2008]
extract curves in the image domain using edge detection [Canny
1986], effectively fitting curve structures to local maxima in the gra-
dient domain. As shown in Fig. 2 (b), for sharp edges, significant
Laplacian magnitudes overlap large gradient magnitudes. There-
fore, in this case, gradient domain methods accurately detect and
place curves in meaningful regions. However, for blurred edges,
maxima in the gradient domain do not overlap with regions of sig-
nificant Laplacian magnitude. As a result, gradient domain meth-
ods end up placing curves far away from regions with significant
Laplacian magnitudes. Without accurate curve placement in these
regions, the resulting diffusion curve image reconstruction cannot
properly capture these smooth image variations (shown in Fig. 2
(c)). Indeed, Orzan and colleagues note that accurately detecting
regions of smooth image variation, or with very blurred edges, in
the gradient domain is very difficult. Our Laplacian domain algo-
rithm, on the other hand, directly detects these regions with signif-
icant Laplacian values, including those associated with both sharp
edges and blurred edges, as well as the types of variations illustrated
in Fig. 2 (d). With accurately placed curves, our method faithfully
reconstructs the input image (see Fig. 2 (e)).

Fig. 3 illustrates another simple, representative example of the
aforementioned limitations of gradient-domain curve fitting, this
time in 2D. The source image Fig. 3 (a) contains both a sharp cir-
cular edge and a blurred edge defined along an “S”-shaped fall-off
profile. While the circular edge is clearly identified by a gradient
domain edge detector Fig. 3 (b), only the Laplacian transform is
capable of identifying the large Laplacian magnitudes Fig. 3 (c)
of both features. Our Laplacian domain approach successfully ex-
tracts these features and sets the appropriate diffusion curve profile
function values in order to achieve a more accurate reconstruction
Fig. 3 (h,i) than the results Fig. 3 (e,f) generated by the gradient

(a) Curves/Image (b) Gradient (64×) (c) Laplacian (32×)

(d) Canny curves (e) Recon. (f) Diff. (16×)

(g) Our curves (h) Recon. (i) Diff. (16×)
Figure 3: Comparing curve extraction and reconstruction from
gradient (Canny) and Laplacian (our) domains; (e) is reconstructed
using curves (d) from our approach.

domain approach.

While these two examples are (purposefully) simple, we will show
that the same principles extend to general vector art and more com-
plex natural images, including those with turbulent details (see e.g.,
Fig. 11 and Fig. 1 in the supplemental material). One notewor-
thy concern is that natural images may be stored in bitmap for-
mats with compression artifacts, leading to artificial fine-scale im-
age structures that would skew our Laplacian domain fits and result
e.g. in the creation of many shorter superfluous curves; to address
this issue, we apply an structure-preserving multi-scale bilateral fil-
ter [Fattal et al. 2007] to natural images in compressed formats in
order to reduce the impact of these artifacts while preserving im-
portant small- and large-scale features. Moreover, our hierarchical
curve fitting (Section 4) extracts and links curves across scales of
the filtered images. An added benefit of such a multi-scale curve
representation is that it allows us to perform simple editing oper-
ations, such as automatic vectorized image abstraction and scale-
dependent color and structure editing.

Image Vectorization. We will outline a procedure to fit diffusion
curves that are fully described by their curve-geometry and a com-
pact set of endpoint weights, and our approach comprises two main
steps. First, we determine the position and shape of the curves with
hierarchical extraction in the Laplacian domain (Section 4). Next,
for these extracted curves, we efficiently solve for the Laplacian
diffusion endpoint weights using a Green’s function formulation
(Section 5).

Earlier, we motivated the use of the Laplacian of an image as a pow-
erful image feature identifier, since regions of significant Laplacian
magnitude correlate to local intensity variations, and the distribu-
tion of the Laplacian’s local maxima almost fully describes im-
portant image regions such as hard edges and localized smooth
color variation. Images with many fine-scale features, as well as
smoother images, are often sparse in the Laplacian domain. In Sec-
tion 4, we detail how to extract multi-scale curves that align to the



(a) Input curve (b) DCI (c) Bilap. (512×)

(d) Bilap. curves (e) Bilap. recon. (f) Diff. (16×)
Figure 4: Curves extracted from the image Bilaplacian domain.

spatially-coherent local maxima in the Laplacian domain. These
regions correspond to important (and sometimes low-contrast) fea-
tures in the image that are difficult to robustly identify in either the
image or gradient domains (see Fig. 3).

We extract curves in a hierarchical fashion, according to the scale
of image features, and our final curve representation is also explic-
itly hierarchical in scale-space. Our multi-scale representation is
both amenable to image reconstruction with user-controllable error
thresholds, as well as after-the-fact manual editing, like multi-scale
abstraction. We extract long connected curves to reconstruct large-
scale image features, and shorter curves to resolve smaller-scale
features. Our hierarchical extraction allows us, among other things,
to carefully control the distribution of large and short curves.

After extracting (multi-scale) curves, we must solve for the end-
point values that define the influence of the curves on the final
(reconstructed) image. Section 5 will detail this process, high-
lighting three fundamental differences between our representation
and previous DCI fitting schemes [Orzan et al. 2008]. First, we
use a Green’s function formulation to represent Laplacian diffusion
curves, which has two terms (see Eq. (2)): a color and an additional
normal derivative of color. The normal derivative term permits a ad-
ditional powerful degree of expressiveness and allows us to better
capture smooth variations without any post-processing (i.e., blur-
ring). This flexibility is especially useful for smooth images. Sec-
ond, we progressively fit all curves up to a given hierarchy level to
the image based Green’s functions, exploiting the hierarchical na-
ture of our curves. Third and lastly, we can dynamically reconstruct
variations of the image by editing the color term, without needing
to refit the curve weights.

We extend our diffusion curve representation to support bilaplacian
diffusion curves [Ilbery et al. 2013]. Bilaplacian (or biharmonic)
diffusion curves have been shown to be a very powerful repre-
sentation, capable of capturing sharp boundaries and higher-order
smooth image variations, such as those caused by a smooth interpo-
lation of color constraints along a curve. These types of image fea-
tures often appear in natural images and turbulent phenomena such
as fluid simulations. However, no existing approach can automati-
cally extract bilaplacian diffusion curves from a raster color image,
for the same reasons that automatic Laplacian curve extraction re-
mains an open problem: since bilaplacian curves represent smooth
image variation without pronounced boundaries, typical gradient-
domain fitting strategies will always fail to correctly extract them.
As such, we will extend our Laplacian curve fitting technique to bi-
laplacian curve extraction by similarly tracing local maxima in the
image bilaplacian domain.

Although the representational capability of bilaplacian curves sub-
sume that of Laplacian curves, we have found that Laplacian
curves are often sufficient to represent many of the sharp bound-
aries and smooth image variations that we are interested in. From
their Green’s function formulation (Eq. (2)), we note that Lapla-
cian curves require only two unknown terms to be resolved during
weight computation, instead of the four terms needed for bilapla-
cian curves, and so we are able to more quickly compute the curve
weights, and reconstruct the final image, with a Laplacian-only rep-
resentation compared with a bilaplacian representation. And so,
for sharp boundaries, we prefer Laplacian curves. After extract-
ing curves, however, we use a voting scheme to optionally classify
each curve as a Laplacian or bilaplacian curve, depending on the
type and scale of the features we want to represent. Performing this
two-step fitting and classification allows us to significantly improve
the fitting and reconstruction performance of our approach, with-
out any loss in image quality when compared with exclusive fitting
(and reconstruction) of the more costly bilaplacian curves.

4 Hierarchical Curve Construction

We will introduce our multi-scale Laplacian diffusion curves fitting
approach in this section before discussing its extension to bilapla-
cian diffusion curves in the next section. Prior to computing the im-
age Laplacian, we first create a multi-scale detail-preserving filtered
image stack to filter out features that will not be reconstructed by
the curves of a specific scale, for each scale (Section 4.1). Curves
are extracted, at each scale, by first identifying and then connect-
ing candidate (Laplacian) pixels (Section 4.2). Finally, in order to
preserve large-scale features, a coarse-to-fine pass ensures that the
features captured at coarser scales are properly included at the finer
scales (Section 4.3).

4.1 Structure-preserving Image Prefiltering

When extracting curves at a given scale, it is important to filter out
all image features that will not be reconstructed by curves at that
scale, eliminating their influence on curve placement. To do so, we
apply a structure-preserving bilateral filter with a blur kernel set ac-
cording to the scale. Specifically, we adapt a multi-scale bilateral
decomposition [Fattal et al. 2007]: we blur the input image u into
a stack of filtered images uj , substituting the standard grayscale
luminance distance with a CIE-Lab distance metric that preserves
sharp color variation across iso-luminance contours in the image,
and using a modified range filter better suited to our feature isola-
tion. We do not fit separate curves per color channel. Our robust
weight solving solution (Section 5) is powerful enough to capture
all color variation using a single set of curves per image.

By defining the finest scale image u0 = u, we can express the
bilateral filtering operation iteratively as:

u
j+1

[p] = 1/k
∑

q∈Ωj

gσs,j
(∥q∥) gσr,j

(
u
j
[p + q] − u

j
[p]
)
u
j
[p + q]

where gσ (x) = exp(−∥x∥2 /σ2), ∥·∥ denotes Euclidean distance
and color distance is computed in the CIE-Lab color space, σs,j

and σr,j are the spatial and range widths of the filter, q iterates
over surrounding pixels in the spatial filter’s support Ωj , and k is a
normalization term:

k =
∑

q∈Ωj

gσs,j
(∥q∥) gσr,j

(
u
j
[p + q] − u

j
[p]
)

.

We double the spatial filter width σs,j at each scale, so σs,j+1 =
2 × σs,j and σs,j = 2j × σs,0, where we define the finest scale’s
spatial width as σs,0 = σs. In the case of the range filter width,
we halve its size across scales, and so we similarly arrive at σr,j =



(a) Input image (b) Laplacian (8×) (c) n⊥ direction (d) Curve pixels (e) Extracted curves (f) Our reconstruction
Figure 5: Curve extraction (Section 4): we locate curve pixels (d) and trace curves (e) along the local maxima of the Laplacian (b).

σr/2j and define the finest scale σr,0 = σr . All the results in our
paper use σs = 2, σr = R/10, where R is the intensity range of the
image.

4.2 Curve Extraction in the Laplacian Domain

Once our filtered image stack is prepared, we proceed to extract
curves in the image Laplacian domain ∆u by first identifying pix-
els that should lie on curves, and then connecting them to form
discretized curves (which we later vectorize).

Identifying candidate curve pixels in the Laplacian image ∆u is
a challenging problem for two reasons: first, the Laplacian is not
sparse to begin with (unlike our final Laplacian curves, which serve
to “sparsify” the Laplacian); secondly, the dynamic range of the
Laplacian values can be very large, yet we are interested in placing
curves in both low- and high-intensity Laplacian regions in order
to capture large- and fine-scale details. Given these constraints, we
choose to identify curve pixels according to the local Laplacian
contrast and not the global Laplacian value. Specifically, we will
extract (discrete) curve pixels by locating, and tracing along, the lo-
cal maxima of the image Laplacian. We later convert these discrete
“curves” into a continuous vector representation (Section 5).

We will extract curves, for each filtered image uj , in its (filtered)
image Laplacian ∆uj using a simple two-step approach. We begin
by setting the absolute value of the Laplacian as the image Lapla-
cian and identifying curve pixels along the local maxima in the im-
age Laplacian using a non-maximal suppression detector [Canny
1986]. We first compute an estimate of curve directions locally
at each image pixel by approximating the second partial derivatives
vx,x, vy,y , and vx,y of the image Laplacian. To obtain these second-
order approximations, we convolve the image with a discrete two
dimensional second partial derivative kernel of a Gaussian. The es-
timated direction n, in which the second directional derivative takes
on its maximum absolute value, can be determined by calculating
the eigenvalues and eigenvectors of the resulting Hessian matrix:

H[x, y] =

(
vx,x vx,y

vx,y vy,y

)
. (1)

Then, by applying the non-maximal suppression kernel to this di-
rection field, we can compute the local maxima of the Laplacian
magnitude. The resulting maxima form our candidate curve pixels
set. Pixels from this set that satisfy the following two conditions are
marked as curve points: first, the Laplacian value at the pixel should
be the maxima in its neighborhood along the direction n (Fig. 5b);
and, second, the value should be larger than a user defined thresh-
old. The threshold is usually set as 0.01. If the Laplacian value is
smaller than the threshold, it cannot be a candidate point to form
curves.

Once we identify the curve pixels (Fig. 5d), we can proceed to link
them into discrete curves along the direction perpendicular to n,
n⊥ (Fig. 5c).
We first select a random curve pixel p and compare its perpendicular
direction n⊥[p] with the perpendicular direction n⊥[q] of the pixels
q in its 1-ring (8-pixel) neighborhood Ωp; of these neighbors, we

select the pixel q∗ as a connecting point (for the curve starting at
p) if its direction aligns most with p’s direction and if it is within a
user-defined threshold ϵc (usually set

√
2/2):

n⊥[p] · n⊥[q
∗
] > n⊥[p] · n⊥[q], ∀q ∈ Ωp and n⊥[p] · n⊥[q

∗
] > ϵc .

If no suitable connecting curve point q∗ is identified, we increase
the search region to a 2-ring (16-pixel) neighborhood Ωp+ and re-
peat the procedure. If, when searching in Ωp+ we find a valid con-
necting curve point q∗+, we additionally mark the pixel (in Ωp) be-
tween p and q∗+ as a connecting curve point. Then, we find valid
connecting curve points from the opposite perpendicular direction
−n⊥[p] to form a longer curve. Meanwhile, we remove curves
whose length is less than 3 pixels as they are likely caused by resid-
ual noise in the image.

Merging Double Curves. In some cases, nearly identical curves
can appear right next to each other (in a 1-pixel neighborhood).
While retaining these “double curves” does not affect the final im-
age quality, they remain redundant and incur an unnecessary recon-
struction cost. As such, we detect and merge double curves into
a single curve as follows: after extracting all the curves, we sort
them according to the length of curves and, starting with the short-
est curves, trace along each curve and test to see if another curve
lies within a 1-pixel distance along the curve’s n direction. As we
step along the curve, we flag the neighboring curve index until we
either reach the end of the curve we are tracing along. At this point,
we clip the neighboring curve at the endpoint of the traced curve
and merge them into a single curve, averaging the positions of the
curve points.

Our overall tracing procedure has several favorable side-effects: it
not only (locally) ignores non-maximal points, but also aligns the
connected curve points along coherent local structures in the image
Laplacian (and, thus, coherent color variation in the image domain).

4.3 Hierarchical Curve Consistency

When extracting curves across image scales (Section 4.2), we ex-
ploit the curve location and connectivity information gathered at
coarser scales when extracting curves at finer scales. If we did
not use this information and, for instance, directly extracted curves
from each image scale independently, curves extracted at finer
scales would become increasingly disconnected and less sparse
(more and more short curves), and would risk overlapping exist-
ing (coarser) curve (sub-)segments [Lindeberg 1994]. We will de-
tail how we leverage the multi-scale image stack created in Sec-
tion 4.1 to impose a level-of-detail structure over the curves ex-
tracted across scales, so as to avoid the aforementioned problems.
The final multi-scale structure will resolve large-scale image fea-
tures with longer curves (that are extracted at coarser scales), and
only then add smaller details with (fewer) shorter curves extracted
at finer scales (see Fig. 6 (d,e,f)).

To preserve large-scale image features, curves are extracted from
coarser scales first. When extracting curves at a finer level, we
proceed as described in Section 4.2. However, before accepting



a newly extracted curve, we perform an additional test to verify
whether a connected curve (extracted at the finer scale) overlaps
with a curve extracted at any of the coarser scales. The main diffi-
culty when performing this additional test is that, due to the nature
of the bilateral filtering, similar curve structures may not perfectly
overlap across scales. As such, we first define a 5 × 5 “overlap
region” Ω∩ and extract all possible curves (instead of just the op-
timal p-to-q∗-connected curve) within this region; we remove ev-
ery one of these curves that overlaps with a curve from any of the
coarser scales. The motivation for the size of Ω∩, and the rejection-
sampling that we apply to curves extracted within it, is that while
the bilateral filter preserves edges, finer details may slightly shift
when moving from uj to uj+1; the 5 × 5 coverage roughly cor-
responds to the increased footprint size between σs,j and σs,j+1.
Only the finer scale curves, extracted in Ω∩, that were not rejected
due to overlap in coarser scales are used when extracting curves in
the finer scale. This allows finer scale curves to exclusively resolve
finer-scale details.

At the coarsest scale, we additionally attempt to link the connected
curves into longer (ideally closed) curves. Given two endpoints
of a connected curve, qa and qb, we search for other connected
curve endpoints within a user-defined search length dlink (all our
results use dlink = 5 pixels), along the perpendicular directions
n⊥[qa] and n⊥[qb]. If another connected curve’s endpoint qc is lo-
cated within the region (without loss of generality, when searching
from qb), then the pixels between qb and qc are set as connecting
curve points, forming a longer linked curve. It is not uncommon
for closed structures to naturally form when applying this proce-
dure from both endpoints.

5 Solving for Multi-scale Curve Weights

We can also extract bilaplacian diffusion curves in the image bi-
laplacian domain by using the extraction algorithm in Section 4.
Given the multi-scale extracted curves, we need to solve for end-
point weights in order to complete our diffusion curve representa-
tion. These weights vary depending on the type of diffusion curve
we employ. We consider both Laplacian and bilaplacian diffusion
curves and will discuss them in more detail below. At a high-level,
during final image reconstruction, each pixel value is reconstructed
as the sum of weighted Green’s functions along all the extracted
curves. Given an input image, and the curves we have extracted,
we must first solve for these unknown weights (see Eq. (2)).

5.1 Laplacian and Bilaplacian Diffusion Curves

Our representation combines Laplacian and bilaplacian diffusion
curves in a manner that leverages the advantages of each represen-
tation: Laplacian diffusion curves are more effective at resolving
sharp and low order smooth regions, whereas bilaplacian diffusion
curves are able to better resolve high order smooth regions in the
images. Ilbery et al. [2013] show that Laplacian diffusion curves
can be interpreted as a subset of bilaplacian diffusion curves, re-
quiring only two weights at each curve endpoint (that are interpo-
lated along continuous positions x in the vector image along the
curve): the color along the curve boundary, u(x), and the normal
derivative along the curve boundary, ∂u(x)/∂n(x). In contrast, bi-
laplacian diffusion curves require two additional (continuously in-
terpolated) weights to be solved for: the Laplacian value along the
curve boundary, v(x), and the normal derivative of the Laplacian
along the curve boundary, ∂v(x)/∂n(x). Note the graduation from a
discrete image notation u[p] to a continuous one u(x).

Since bilaplacian diffusion curves subsume Laplacian diffusion
curves, a naı̈ve approach to determine whether one of our extracted
curves in the image bilaplacian domain should be classified as a

(a) Input image (b) Curves 0+2 (c) Scale 0+2

(d) Curves 2 (e) Curves 1+2 (f) Curves 0+1+2

(g) Scale 2 (h) Scale 1+2 (i) Scale 0+1+2
Figure 6: Hierarchical curve extraction and reconstruction.
Longer curves (d) reconstruct larger-scale image features (g) than
their shorter counterparts (f). Curves at finer scales encompass all
coarser-scale curves, providing a level-of-detail.

Laplacian or bilaplacian diffusion curve (for the purposes of re-
construction) would begin by solving for its four unknowns, and
then testing for whether the Laplacian and normal derivative of
the Laplacian along the curve have negligible magnitude; if so, the
curve can reconstruct the same color profile as a Laplacian diffusion
curve, without requiring the additional reconstruction (and fitting)
cost of a bilaplacian representation. Unfortunately, this naı̈ve classi-
fication scheme demands that the more costly bilaplacian diffusion
curve solver be applied to every curve. We instead show how to ac-
curately classify curves without solving for the bilaplacian weights.
Afterwards, we can apply the appropriate solver depending on our
classification, reducing computation cost.

There is no guarantee that curves extracted exclusively in the Lapla-
cian domain will be less sparse than those extracted exclusively
from the bilaplacian domain, and vice-versa: indeed, there may be
regions in an image where fewer curves would be traced from the
Laplacian domain than from the bilaplacian domain, and regions
where the opposite holds. We observe that regions in the Lapla-
cian domain that exhibit sharper (Laplacian) intensity fall-off can
be very well represented using Laplacian curves, whereas regions
in the Laplacian domain that have smoother fall-off behavior are
better represented using bilaplacian curves. As such, after extract-
ing curves in the Laplacian domain, we use a voting scheme to clas-
sify each curve as a Laplacian or bilaplacian curve: for each point
of each curve, we step along Laplacian values in the direction n on
the left side of the curve until we reach a minimum Laplacian mag-
nitude threshold (we use a threshold of 0.002); if the traced width
is less than a classification threshold (3 pixels for all our exam-
ples), we increment the curves Laplacian classification vote by 1,
otherwise we increment its bilaplacian classification vote by 1. We
repeat the process by tracing along the right side of the curve and,
after we have traced through the entire curve, we only classify it
as a Laplacian curve if the ratio between the Laplacian and bilapla-
cian votes is greater than 0.5 (Fig. 7 (d)). Note that we only classify
Laplacian curves with this strategy; to identify bilaplacian curves,
we first extract curves in the bilaplacian domain (Fig. 7 (e)) and cull
all bilaplacian curves that overlap with our Laplacian curves (using
the algorithm in Section 4.3). The remaining bilaplacian curves are
combined with our previously classified Laplacian curves to form
our final set of diffusion curves (Fig. 7 (f)).



(a) Input image (b) Laplacian (32×) (c) Bilaplacian (32×)

(d) Lap. curves (e) Bilap. curves (f) Lap. + bilap.

(g) Lap. only (h) Bilap. only (i) Lap. + bilap.
Figure 7: Determining Laplacian and bilaplacian diffusion
curves and reconstruction comparison among Laplacian curves,
bilaplacian-only curves and Laplacian + bilaplacian curves.

We can apply this classification and merging routine to automati-
cally choose Laplacian and bilaplacian diffusion curves during vec-
torization, however we observe the following behavior: synthe-
sized images with multi-scale details, such as fluid simulations of
smoke or fire, often have large smooth regions and require a mix
of Laplacian and bilaplacian diffusion curves; however, DCIs and
natural images can typically be reconstructed with high-accuracy
using only Laplacian diffusion curves.

We compare reconstruction results with Laplacian diffusion curves,
bilaplacian-only diffusion curves, and their combination, in Fig. 7.
Note that, in Fig. 7g, the color discontinuity along the curves
presents a very high color variation; if we apply bilaplacian-only
diffusion curves, instead of Laplacian curves, the discontinuity dis-
appears. In general, we found that automatically combining both
types of diffusion curves is a conservative solution: Fig. 7h,i show
similar reconstruction results using bilaplacian-only and combined
Laplacian and bilaplacian diffusion curves.

5.2 Solving for Laplacian and Bilaplacian Weights

After extracting our discrete curves (Section 4), we generate Bezier
curves (similar to Orzan et al. [2008]) from the pixel chains. Mean-
while, we subdivide long curves to shorter curves, making sure the
length of each Bezier curve is not larger than a threshold (usually
set to 25 pixels). We connect Bezier curve segments with preserv-
ing C2 continuity. Then, inspired by Sun et al. [2012] and Ilbery
et al. [2013], we employ a Green’s function formulation to express
both the final reconstructed image, and the weight-fitting equation.
Our choice here is motivated by the fact that Green’s functions com-
bine boundary values and boundary normal derivatives along the
curves. This scheme is more accurate than Orzan et al.’s [2008] ap-
proach where only the boundary values are directly solved for. We
will demonstrate that our reconstruction results are more accurate
than DCI [Orzan et al. 2008].
For our Laplacian or bilaplacian diffusion curves, we propose a uni-
fied formulation for the contribution of a single curve to the final

(continuous) image color u (x) as:
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where, GL (x,y) is the Laplacian Green’s function and GB (x,y)
the bilaplacian Green’s function, and we employ the same notation
as Ilbery et al. [2013].
As discussed earlier, for those curves classified as Laplacian dif-
fusion curves, only the first line in Eq. (2) is relevant. In order to
reconstruct the original image accurately, we solve for the weights
(color u (x′), normal derivatives of color ∂u(x′)/∂n(x′), the image
Laplacian v (x′), and the normal derivative of the image Laplacian
∂v(x′)/∂n(x′)) of the Green’s functions Eq. (2) by sampling col-
ors u (x) throughout the image and applying a least-squares solver
to our fitting equation Eq. (3). We modify the solver proposed by
Sun et al. [2012] and uniformly discretize C diffusion curves at N
points {x′

i} and solve for the weights in the following linear equa-
tion (for a single color channel):
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where li is the arc length of a curve between sampling points x′
i

and x′
i−1, the right hand side of the equation is the vector of in-

put image u(x) with M pixels, and each row of the matrix is the
contributions of the kernels (evaluated at the sampling points) to a
pixel u(xj). The equation (for three color channels, Ax = b) has
dimensions [M × 4N ] × [4N × 3] = [M × 3]. Directly solv-
ing this linear system for all sampling points and all image pixels
is heavily time consuming, even impossible for large image sizes.
We employ four strategies to reduce the size of the problem: first,
we assume that the weights vary smoothly along curves and can be
linearly interpolated by the weights defined at the endpoints. So
we replace w(x′) = t ws(x

′) + (1 − t) we(x
′), where ws(x)

and we(x) are kernel weights (all four terms in Eq. (2)) at curve
endpoints and t is the parametric variable of the Bezier curve. We
replace all w(x′) values in the linear system with these interpo-
lated values. Thus the [M × 4N ] matrix reduces to [M × 8C];
secondly, since C << M , we multiply both sides of the equa-
tion by the transpose of the [M × 8C] matrix, resulting in a final
matrix equation (that scales with C instead of M ) with dimension
[8C×8C]× [8C×3] = [8C×3] (similar to Jeschke et al. [2011]);
thirdly, if we only use Laplacian curves, all the 8C’s above fur-
ther reduce to 4C; lastly, due to connected Bezier curves having
shared endpoints, we use shared endpoints to interpolate two con-
nected Bezier curves and furthermore reduce the matrix dimension.
Through these strategies, we reduce the number of unknowns and
highly accelerate the computation.



FFG curves & result Our curves & result
Figure 8: We automatically generate curves similar to manually-
authored curves, matching the quality of [Finch et al. 2011].

We need to solve for the weights in a manner that permits the level-
of-detail reconstruction scheme detailed earlier: namely, for all L
scales, that image reconstruction at a fixed scale l should employ all
curves at that scale l and all those coarser than it, {l+1, . . . , L−1}.
In other words, scale L includes only curves at the coarsest scale,
while scale 0 includes all curves at all scales. In order to recon-
struct the image at a given scale, we solve a simultaneous set of
functions Eq. (2) to fit all the required scales to the original image
using Eq. (4), generating the same weights across scales for each
curve by enforcing a constraint in the solver. If, instead, we fit
the weights independently at each scale, a curve’s Green’s function
weights would differ across scales. Solving for the weights across
scales results in a representation that is suitable for multi-scale edit-
ing (e.g., adding/removing features at a specific scale) without re-
fitting the weights of curves (see Fig. 6)

{AL−1xL−1 = b, . . . , A0x0 = b} subject to: xli
(k) = xlj

(k) (4)

As with the closed-form integral of the Laplacian over a rectangu-
lar domain presented in Sun et al. [2012], we show that a closed-
form solution exists for the integral of the Bilaplacian GB (x,x′)

(and its normal derivatives GB
n (x,x′) = ∂GB(x,x′)/∂n(x′)) over a

rectangular domain: the closed-form integrals FGB and FGB
n

are:
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(
x̂
2
+ ŷ
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(x̂, ŷ, nx, ny)

=
1

48π

(
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where R = {x ∈ (x0, x1) , y ∈ (y0, y1)}, x = (x, y), x′ =
(x′, y′), n (x′) = (nx, ny), and (x̂, ŷ) = x− x′. Detailed deriva-
tions are provided in the supplemental material and we us our an-
alytic integration to perform efficient pixel anti-aliasing. Our inte-
gral is robust to the singularity present when a boundary point falls
exactly atop a pixel center.

Input image Our curves & result
Figure 9: We automatically generate curves from cartoon images.
The eye part of right image is close-up view.

Editing. We can readily perform multi-scale color editing based
on our Green’s function formulation by simply fixing the values
of the curve color profile u (x′) = −ul (x

′) + ur (x
′) in Eq. (4),

where ul and ur are the left-side and right-side color constraints for
a curve. Interestingly, any editing constraints we impose improve
the curve weight fitting procedure since we reduce the number of
unknown terms during the weight solving process.

6 Results and Discussion

Performance. Results were generated on an Intel Core i7-3770K
3.50 GHz CPU and an Nvidia Quadro 6000 graphics card, with
fitting executed on the CPU with 8 threads and reconstruction ex-
ecuted on the GPU. Table 1 lists the statistics and performance for
all images. As shown in the table, multi-scale curve pixel identifi-
cation and extraction takes between 2ms and 123ms. Then, using
four scales (the setting used for most results), the remainder of the
algorithm depends on the resolution of input images and the dis-
tribution of local maxima in the image Laplacian and/or bilapla-
cian. The fitting and reconstruction cost grows linearly with the
number of curves. Fitting time is between 0.25s and 11 mins. Af-
ter additionally adapting the curve culling and adaptive sampling
schemes in [Sun et al. 2012] based on the parallel characteristics
over pixels and curves, all of our reconstruction results can be inter-
actively computed in 1.9ms and 623ms by using the integral form
of Green’s functions for anti-aliasing. Evaluating Green’s function
kernels forms our computation bottleneck.

Figure
Image Number Storage Extract Fitting Recon.

resolution of curves (KB) (ms) (s) (ms)
Fig. 1a 256×256 1183 95 8 47.6 92.3
Fig. 1b 600×600 4526 363 99 581.6 591.2
Fig. 1c 440×440 700 56 12 37.6 103.8
Fig. 1d 512×512 1999 160 35 47.2 162.6
Fig. 6 462×358 2446 320 33 348.1 401.4
Fig. 7 128×128 42 4 2 0.25 1.9
Fig. 9 880×907 446 36 41 28.9 93.5
Fig. 8 440×440 708 86 13 48.1 172.8

Fig. 11a 484×369 3285 263 47 301.2 392.5
Fig. 11j 946×633 3722 298 123 660.2 622.7
Fig. 12 800×800 1636 131 40 122.6 349.2
Fig. 14 268×400 1488 119 19 21.9 59.2
Fig. 15 553×707 643 51 10 39.1 138.1
Fig. 16a 600×450 3567 286 71 360.2 405.9
Fig. 16b 640×480 4327 347 82 451.8 491.5
Fig. 16c 578×566 2983 239 51 254.1 379.2
Fig. 16d 222×222 970 78 7 22.8 40.8
Fig. 16e 420×315 1996 160 24 42.9 148.2

Table 1: Statistics and performance for the images shown in this
paper.



(a) Input image (b) Canny curves (c) Our curves

(d) Canny recon. (e) Lap. recon. (f) Bilap. recon.

(g) Diff. (8×) (h) Diff. (8×) (i) Diff. (8×)
Figure 10: Comparing reconstruction with curves extracted from
the gradient (Canny), Laplacian and bilaplacian domains.

Comparison. We validate our automatically generated curves
(and reconstruction) with manually authored DCIs [Orzan et al.
2008] and thin-plate splines [Finch et al. 2011] by fitting our curves
directly to their authored results. In Fig. 1 (c), our curves are al-
most identical to the given DCI curves in [Orzan et al. 2008]. In
Fig. 8, we automatically fit curves to a (manually authored) FFG
reconstruction [Finch et al. 2011]. Our curves bear a striking re-
semblance to Finch et al.’s sketched curves and our reconstruction
retains both the sharp image edges and the smooth color variations
by using Laplacian and bilaplacian diffusion curves. We can also
extract curves from cartoon images in Fig. 9. Fig. 10 compares
curve extraction and reconstruction in the gradient, Laplacian and
bilaplacian domains.

Unlike the automatic extraction method of Orzan et al. [2008], we
can resolve intricate image features (Fig. 11 (i)). We note our
improved reconstruction of the detailed texture on the butterfly’s
wings and pink flower, as well as on the (out-of-focus) leaf. Our re-
construction error is lower in Fig. 11 (c), while more dense curves
(Fig. 11 (e)) do not reduce the error significantly (Fig. 11b) for
[Orzan et al. 2008]. Meanwhile, we compare the extracted curves
and reconstruction results in Fig. 11 (o). Here, the input natural
image (Fig. 11 (j)) is taken from [Orzan et al. 2008]. We recon-
struct a smoother result that is closer to the original image, while
the method in [Orzan et al. 2008] reconstructs sharp boundaries
(Fig. 11 (m)) without blurring. In order to generate smoother re-
sults, the method in [Orzan et al. 2008] needs to use apply a costly
expensive post-processing blur.

Given a set of existing Bezier curves, Jeschke et al. [2011] also use a
global optimization to solve the diffusion curve coloring problem,
including positioning color points and fitting color values, which
can well reconstruct image features of given curves. We use an-
other different fitting algorithm. Given the same curves, we can re-
construct a similar result (Fig. 12 (e)). We only compare the repre-
sentation ability of curves without post-processing (adding blur and
textures). However, our method proposes a unified framework, in-
cluding extracting curves and fitting/reconstructing images. Curves

(a) Input image (b) Diff. (8×) (c) Diff. (8×)

(d) Orzan’s curves (e) Orzan’s curves (f) Our curves

(g) Orzan’s recon. (h) Orzan’s recon. (i) Our recon.

(j) Input image (k) Orzan’s curves (l) Our curves

(m) Orzan w/o blur (n) Orzan w/ blur (o) Our result
Figure 11: Comparing our results with automatically extracted
curves and reconstruction results from [Orzan et al. 2008]. (d)
and (e) are extracted with different initial Gaussian scales, (m) is
reconstructed without any post-processing (blurring). And (g), (h)
and (n) are reconstructed after applying a post-processing blur; (i)
and (o) are reconstructed by our method with our curves (f) and (l),
and (b) and (c) are the differences of (h) and (i) with (a).

of some features which are difficult to manually extract can be au-
tomatically extracted by our method, like the tail and dorsal fin of
the fish in Fig. 12 (f).

We also compare our method with gradient meshes methods: both
techniques capture image features with smooth variations and sharp
edges, and we illustrate results generated by both methods in
Fig. 13.

Results. While image editing is not an explicit goal of our work,
we can immediately leverage our hierarchical representation to per-
form simple but powerful image manipulations, including detail re-
moval and multi-scale shape abstraction. Fig. 6 (g,h,i) illustrates
different levels of detail for an image, allowing a simple multi-scale
abstraction. By removing mid-scale curves (Scale 1) in Fig. 6 (b),
we can generate a different result without refitting the weights of
curves. Fig. 14 illustrates how our multi-scale curves can readily
be used for (vectorized) image abstraction: the coarsest scale re-
construction preserves large-scale features (e.g., the silhouette of
the head and jacket), while finer scales progressively re-introduce
the small-scale details.

Fig. 15 illustrates a simple editing result: given an input image
(Fig. 15 (a)), we first extract Laplacian diffusion curves and color
profiles to reconstruct the original image (Fig. 15 (c)) before mod-
ifying the normal derivate weights in order to generate the edited



(a) Input image (b) Jeschke’s curves (c) Our Curves

(d) Jeschke’s result (e) Our result (f) Our result

(g) Close-up (h) Close-up (i) Close-up
Figure 12: Comparing our results with the method in [Jeschke et al.
2011]: (e) is reconstructed using our method with the curves from
Jeschke et al.’s [2011] curves (b); (g), (h), and (i) are close-up views
of (d), (e) and (f).

Gradient meshes & result Our curves & result
Figure 13: Comparing reconstruction with optimized gradient
meshes [Sun et al. 2007] and our method.

result in Fig. 15 (d).

Fig. 16 illustrates our multi-scale curves and reconstruction re-
sults for complex natural images and a turbulent computer synthe-
sized fire simulation result. Our results clearly reconstruct both the
coarse- and fine-scale details of these challenging images.

Limitations. Although our method works well across a large
class of images, it still has several limitations: the multi-scale bilat-
eral filter may remove image features with low contrast and, when
vectorizing noisy natural images with small initial spatial filter
widths, our algorithm can sometimes generate many short curves.

7 Conclusion

We present a robust and fully-automatic method to vectorize im-
ages using a hybrid, sparse diffusion curve representation based on

(a) Input image (b) Filtered 0 (c) Filtered 1 (d) Filtered 2

(e) Curves 0+1+2 (f) Curves 1+2 (g) Curves 2

(h) Recon. 0+1+2 (i) Recon. 1+2 (j) Recon. 2
Figure 14: Hierarchical curve extraction and reconstruction.

(a) Input image (b) Curves

(c) Recon. (d) Edited & recon.
Figure 15: Color editing: (d) is generated without any refitting.

DCIs and FFG. We leverage a fundamental observation that extract-
ing curves in the Laplacian domain, along local maxima, serves to
directly sample these primitives where they will have the most im-
pact on image reconstruction. Our approach is robust to a broad
class of input, as illustrated in our results, and we compare favor-
ably with previous manual-authoring approaches. We classify our
extracted curves as Laplacian or bilaplacian diffusion curves using a
simple but robust scheme, yielding improved reconstruction quality



(a)

(b)

(c)

(d)

(e)
Input images Multi-scale curves Reconstruction

Figure 16: Auto-vectorization of natural and simulated images.

with a measured increase in computation. Our hierarchical fitting
and multi-scale representation present a level-of-detail that permits
both vectorized abstractions and intuitive curve structures.

Two interesting related avenues of future work include an extension
to 3D volume/density vectorization and vectorization of animation
sequences, where we hope to exploit inter-frame coherence by ex-
tracting “curves” in a higher-dimensional space (e.g., space-time).
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