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The facial performance of an individual is inherently rich in subtle defor-
mation and timing details. Although these subtleties make the performance
realistic and compelling, they often elude both motion capture and hand ani-
mation. We present a technique for adding fine-scale details and expressive-
ness to low-resolution art-directed facial performances, such as those cre-
ated manually using a rig, via marker-based capture, by fitting a morphable
model to a video, or through Kinect reconstruction using recent faceshift
technology. We employ a high-resolution facial performance capture sys-
tem to acquire a representative performance of an individual in which he or
she explores the full range of facial expressiveness. From the captured data,
our system extracts an expressiveness model that encodes subtle spatial and
temporal deformation details specific to that particular individual. Once this
model has been built, these details can be transferred to low-resolution art-
directed performances. We demonstrate results on various forms of input;
after our enhancement, the resulting animations exhibit the same nuances
and fine spatial details as the captured performance, with optional temporal
enhancement to match the dynamics of the actor. Finally, we show that our
technique outperforms the current state-of-the-art in example-based facial
animation.
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1. INTRODUCTION

Facial expression plays a critical role in almost all aspects of human
interaction and face-to-face communication. As such, realistic face
modeling has long been considered a grand challenge in the field
of computer graphics. Overcoming this challenge is especially dif-
ficult since human faces can accommodate such a large range of
expressiveness, from the most subtle hint of emotion to exagger-
ated exclamations. In real-life communication, subtle changes in
facial deformation and dynamics can have a significant impact on
the perceived expression and meaning conveyed by an individual.
For example, a genuine smile may differ from a forced smile only
in the slight tensing of one’s cheeks. These subtle changes also con-
tribute to the individuality that makes any particular person’s face
unique. Two different individuals may have a vastly different range
and style of facial expressiveness.

A great deal of progress has been made toward solving this grand
challenge, including sophisticated facial rigs, skin rendering al-
gorithms, facial motion capture devices, and animation interfaces.
However, despite these significant research contributions, creating
synthetic facial performances that are as compelling and as ex-
pressive as a real actor’s performance remains an elusive task. As
the desired level of realism increases, animators must spend in-
creasing amounts of time to incorporate the nuances of deforma-
tion that are characteristic of a particular actor’s performance. At
some point, the details become so subtle that they even elude the
most skilled animators. Facial motion capture techniques based on
marker-tracking, depth cameras like the Kinect, and fitting para-
metric models to video, also have a limited spatial and temporal
resolution. Fine-scale details may escape the fidelity of the capture
technology, especially when head-mounted devices are required.
These missing details contribute to an unfortunate result: many at-
tempts at realistic facial animation fall prey to the “uncanny valley”
effect and are perceived as eerie and lifeless.

Our work contributes to realistic facial animation by targeting the
subtle details of deformation and timing that escape both hand an-
imation and motion capture systems and render an individual’s fa-
cial performance unique and compelling. To this end, we propose
a novel data-driven technique to enhance the expressiveness of fa-
cial geometry and motion. We start by recording a highly-detailed
representative performance of an individual in which he or she ex-
plores the full range of facial expressiveness. From this data, our
system extracts a model of expressiveness that encodes the sub-
tleties of deformation specific to that individual. Once built, this
model is used to automatically transfer these subtleties to lower-
resolution facial animations that lack expressive details. The input
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animation will be augmented with the subtle deformations partic-
ular to the individual’s face, increasing the perceived expressive-
ness and realism. Our system also takes advantage of the timing
information in our database by enhancing facial keyframe inter-
polation so that the nonlinearities of expression formation exhib-
ited by the real actor’s performance are reflected in the interpo-
lated and enhanced result. We demonstrate the robustness of our
approach by enhancing a variety of input animations, including
hand-animated facial rigs, face models driven by low-resolution
motion capture data, morphable models animated using video data,
and performance reconstructions generated with a Kinect using re-
cent faceshift technology'. After our enhancement, the resulting an-
imations exhibit the nuances and fine details of the original perfor-
mance. Finally, we show that our algorithm outperforms the current
state-of-the-art approach for data-driven facial performance synthe-
sis [Ma et al. 2008].

In summary, our main contributions are:

—A framework for data-driven spatial enhancement of low-
resolution facial animations, using a compressed shape space.

—A novel method for enhancing facial keyframe interpolation of
temporal performances.

—Validation of our framework on four different types of input fa-
cial animations, with a direct comparison to state-of-the-art.

2. RELATED WORK

3D Face Scanning. There has been a lot of work on capturing the
geometry of human faces. Some methods focus on capturing high-
resolution static poses [Weyrich et al. 2006; Ma et al. 2007; Beeler
et al. 2010] that can then be animated with marker-based motion
capture data [Williams 1990]. Others use space-time stereo to cap-
ture low-resolution 3D models at interactive rates [Borshukov et al.
2003; Wang et al. 2004; Zhang et al. 2004; Zhang and Huang 2006].
Neither approach is capable of simultaneously capturing high-
resolution spatial and temporal details. Bickel et al. [2007] com-
bine high-resolution static geometry with motion capture data for
large-scale deformations and add medium-scale expression wrin-
kles tracked in video. Huang et al. [2011] leverage motion capture
and static 3D scanning for facial performance acquisition.

Recent approaches use high-speed cameras and photometric stereo
to capture performance geometry [Wenger et al. 2005; Jones
et al. 2006; Ma et al. 2008]. Some of these techniques use time-
multiplexed illumination patterns and consequently require an ac-
quisition rate that is a multiple of the final capture rate. Wilson et
al. [2010] introduce a temporal upsampling method to propagate
dense stereo correspondences between frames to reconstruct high-
resolution geometry for every captured frame. Bradley et al. [2010]
use a completely passive system with high-resolution cameras.
We use an extended version of the passive system by Beeler et
al. [2011] to capture dynamic high-resolution 3D geometry for our
expression database. The specifics of how this database is captured
are not important, and a number of alternative methods could be
used for this purpose.

Facial Animation. Facial animation has a long history that goes
back to the early *70s [Parke 1974]. Some methods use models
of facial anatomy [?; Terzopoulus and Waters 1993] that can be
combined with physical models of skin deformation [Wu et al.
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1996; Sifakis et al. 2005; Venkataraman et al. 2005; Zhang and
Sim 2005]. Another approach is to use deformable 3D face mod-
els [Blanz et al. 2003; Vlasic et al. 2005] and fitting them to video
data [Li et al. 1993; Essa et al. 1996; DeCarlo and Metaxas 1996;
Pighin et al. 1999; Dale et al. 2011]. Methods based on exam-
ple poses and shape interpolation (i.e., blendshapes) [Lewis et al.
2000; Chuang and Bregler 2002; Lewis et al. 2005; Seol et al.
2011] are especially popular in the entertainment industry because
of their intuitive and flexible controls and can even be driven in
real-time from video [Chai et al. 2003] or the Microsoft Kinect de-
vice [Weise et al. 2011]. Similar concepts can also be applied to
drive a set of hand-drawn faces for generating performance-driven,
”hand-drawn” animation in real-time [Buck et al. 2000]. None of
these approaches reach the quality of high-resolution performance-
driven facial animation from person-specific captured data, and an-
imation of subtle facial details and dynamics are still elusive. Our
approach tries to bridge the gap between traditional facial anima-
tion and high-quality 3D face scanning.

Deformation and Detail Transfer. Static geometry can be en-
hanced with details transferred from different models by means of
simple displacements (for small detail) or differential coordinates
(for substantial enhancements) [Sorkine et al. 2004; Takayama
et al. 2011]; With such methods, the transferred detail is ex-
plicitly given, rather than being a function of the low-resolution
pose. Deformation transfer techniques [Sumner and Popovi¢ 2004]
such as expression cloning [Noh and Neumann 2001; Pyun et al.
2003] transfer vertex displacements or deformation gradients from
a source face model to a target face model with possibly differ-
ent geometry. Similarly, data-driven approaches (e.g., based on
Canonical Correlation Analysis [Feng et al. 2008] or Gaussian
Process models [Ma et al. 2009]) learn and transfer facial styles.
These techniques are typically applied to low-resolution geome-
try or low-frequency deformations. Golovinskiy et al. [2006] add
static pore detail from a database of high-resolution face scans us-
ing texture synthesis. Huang et al. [2011] train a collection of map-
pings defined over regions locally in both the geometry and the
pose space for detailed hand animation. Bickel et al. [2008] use
radial basis functions to interpolate medium-scale wrinkles dur-
ing facial performance synthesis and transfer. Ma et al. [2008] add
high-resolution facial details to a new performance using a com-
pressed representation of vertex displacements. Notably, Alexander
et al. [2010] use high-resolution scans to generate a detailed blend-
shape rig. In contrast to these methods, we present a framework
that enables both spatial and temporal performance enhancement,
which can be applied to various forms of art-directed facial ani-
mation, augmenting the high-resolution details and matching the
dynamics of the particular individual’s face.

Temporal Performance Synthesis. The temporal aspects of fa-
cial performances are very important for synthesis of new facial
animations from speech [Bregler et al. 1997; Brand 1999; Ezzat
et al. 2002; Kshirsagar and Thalmann 2003; Cao et al. 2004; Ma
et al. 2004; Deng et al. 2005]. Most of these approaches record fa-
cial motion of speaking subjects and then recombine the recorded
facial motion from learned parametric models to synthesize new
facial motion. Chai and Hodgins [2007] learn a statistical dy-
namic model from motion capture data and generate animations
from user-dened constraints solving a trajectory optimization prob-
lem. However, none of these methods take high-resolution spatial
details into account. Instead of learning a model we use a simpler
and more general data-driven approach for performance synthesis
of temporal and spatial details. Note that we do not specifically tar-
get temporal enhancement of speech animation.
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Fig. 1. Our spatial enhancement approach takes as input a low-resolution animation and a high-resolution performance database, and enhances the input

animation with actor-specific facial details.

3. OVERVIEW

Our goal is to enhance low-resolution facial performances by
adding subtle facial features such as small wrinkles and pores,
and/or temporal re-timing to match the dynamics of a real actor.
The resulting animations should respect the underlying artistic con-
tent and enhance the expressiveness of the intended performance.
This is achieved through the use of a high-resolution temporally
coherent performance database, as illustrated in Figure 1.

Preprocessing. We intend to process low-resolution animation se-
quences that contain the creative intent of the animator or actor, but
lack facial expressiveness and fine-scale details. In order to enhance
the details, for a given actor, we build a dense performance cap-
ture database D, consisting of |D| ~ 1000 frames of facial geom-
etry with consistent connectivity, captured using a high-resolution
(e.g., pore-level detail) performance capture technique [Beeler et al.
2011]. The database D is encoded into a shape space, which en-
ables matching, projection and interpolation. This shape space is
defined using the polar decompositions of the deformation gradi-
ents [Sumner and Popovi¢ 2004] with respect to a neutral frame
dy, and thus effectively represents the stretching and rotation of
each triangle (Section 4).

Spatial Performance Enhancement. Given an input animation .4,
our enhancement algorithm (Section 5) combines its low-frequency
components with the high-frequency components of corresponding
frames from D. For performance enhancement, each input frame
is projected onto the shape space spanned by D, and the relevant
high-frequency components are interpolated. These high-frequency
details are then composed with their low-frequency counterparts,
originating from the input frame, to generate the augmented mesh.
The result is an upsampled version of the input animation, retain-
ing the art-directed performance but enhanced with actor-specific
expressiveness and details.

Temporal Performance Enhancement. Often, art-directed facial
animations are created by hand, for example using a facial rig. In
this case, it is common practice to represent the animation as a
set of key-frames and then interpolate the in-between frames. Un-
fortunately, this interpolation may not match the true dynamics of

the real actor, resulting in an unrealistic performance. As an added
benefit of our performance enhancement system, we can augment
the temporal component of the performance in a data-driven man-
ner (Section 6). Keeping the artist in the loop when defining key-
frames, we devise a new interpolation scheme to re-time the an-
imation according to the actor-specific dynamics encoded in the
database.

4. PREPROCESSING

Several preprocessing steps can be performed once per-actor. The
database must be constructed (Section 4.1), and encoded into our
shape space (Section 4.2), in a region-based manner (Section 4.3).

4.1 Performance Capture Database

We acquire a dense database of detailed facial geometry that in-
cludes pores, wrinkles and expressive deformations. The actor per-
forms a number of short but expressive sequences that are stored in
the database D. The high-resolution geometry must be in full cor-
respondence over time so that the motion and deformation of every
point on the face is known. The database can be acquired using any
high-resolution 3D facial performance capture method and we em-
ploy the passive approach of Beeler et al. [2011]. In this method,
multi-view video sequences are recorded and high-resolution per-
frame geometry is computed with the static reconstruction method
of Beeler at al. [2010] at approximately 40 frames per second. We
then temporally align multiple sequences using dense image-space
matching and per-frame geometry propagation, yielding a tempo-
rally consistent database of 24 expressive performances (in full ver-
tex correspondence). Figure 2 shows a subset of poses from the
database for each of our two actors.

4.2 Data Encoding

Frequency Separation. Once the database is captured, we separate
the low- and high-frequency components of D using a low-pass fil-
ter operation f(-). We create the dataset f(D), where f(M) for
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Fig. 2. Performance capture database samples for our two actors.

a set of meshes M denotes the set of all its filtered meshes, i.e.,
f(M) = {f(m)lm € M}. In our work, this separation is con-
ducted using implicit curvature flow [Desbrun et al. 1999], an iter-
ative approach where in each iteration we find new vertex positions
X"+ by solving the system:

(I = AtK)X™ = X™,

K, = —ﬁ(cota]- +cotf;) i#j (1
! =D i Kin t=7

where a; and 3; are the two angles opposite to the edge in the two
triangles having the edge e;; in common, A; is the sum of the areas
of the triangles having z; as a common vertex, and Adt was chosen
to be 125 in all our experiments. By using a large Adt, we require
only a single iteration to aggressively attenuate the high-frequency
components, while preserving roughly the same levels for the low
frequency part. During performance enhancement we will also sep-
arate the frequencies of the input animation (Section 5.1 and Fig-
ure 5), so this step creates a common ground for all different types
of inputs presented in this paper and enables an accurate matching
and enhancement process. Note that this process preserves the size
of input triangles, which might yield very small or nearly degener-
ated ones. To avoid the numerical instabilities caused by such trian-
gles, we also perform one iteration of uniform Laplacian smoothing
after the implicit fairing process.

Encoding. Finally, the database frames are encoded into the shape
space. For every database frame d € D, the deformation gradients
encoding the difference between the mesh and its low-frequency
counterpart f(d) € f(D) are encoded and saved, denoted by d".
These high frequencies will be used as details, and are transferred
onto the input animations during the spatial enhancement process
(Section 5.4).

For the projection, we encode the low-frequency component rel-
ative to the low frequency neutral pose f(do). Since the input is
fairly low resolution, the full shape space of the high-resolution
mesh contains redundant information. To reduce the runtime and
memory footprint, we encode into a compressed shape space.

Rather than encoding the deformation gradient per-triangle, we uni-
formly cluster the high-resolution mesh into patches and encode
only the average deformation gradient for each patch. Patches are
computed using a random seed-and-grow approach. In practice, we
found that patches of 100 vertices provided ample compression for
our high resolution meshes. The shape space vector size is thus re-
duced by a factor of 100. Figure 3 illustrates the clustering on one
of our datasets. We denote the set of all compressed shape space
vectors in our database as D. Note that alternative compression
schemes are possible, for example mesh simplification. However,
deformation gradients would have to be computed a second time on
the simplified mesh, and therefore we use the clustering approach.

Fig. 3. Triangle clustering for encoding into a compressed shape space.
We encode the average deformation gradient for each patch rather than per-
triangle deformation gradients.

4.3 Regions

Tena et al. [2011] show that region-based face models generalize
better than their holistic counterparts. Regions are a partition of the
mesh faces into what are usually groups with common function-
ality. The regions R we have chosen to use are based on Tena et
al.’s work, which clusters the vertices according to their correla-
tion in movement. While using the same clustering, we distinguish
between voluntary regions, controlled by the actor directly, and in-
voluntary regions. The latter are areas that deform indirectly, gov-
erned by the voluntary regions. As shown in Figure 4, out of the
total 13 regions described by Tena and colleagues, we classify four
as voluntary and use them in our matching process: left and right
halves of the mouth, and the left and right eyebrows. This clas-
sification enables us to detect asymmetrical expressions as well as
decoupling of the eyes and mouth. Note however, that as elaborated
in Section 5.3 and decipted in Figure 4, this is a soft-boundary de-
coupling - each mesh triangle is weighted according to its geodesic
distance from each of the regions. In Section 5.4, these regions will
be used both for matching and blending of the high-frequency de-
tails originating from several database meshes.

Fig. 4. The four voluntary regions that are used in the matching process.
The weights smoothly decrease from 1 (red) to O (blue).
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5. PERFORMANCE ENHANCEMENT MODEL

Our data-driven performance enhancement approach consists of
five steps for each frame. First, the frame is brought into corre-
spondence with the database geometry and we perform frequency
separation (Section 5.1). Next, the frame is encoded into the shape
space (Section 5.2). Then, we project it onto the shape space of
the database in a matching step (Section 5.3). Based on the match-
ing, we interpolate the relevant high-frequency details from the
database and compose them with the low-frequency input mesh
(Section 5.4). Finally, we reconstruct the resulting mesh, and as-
sign per vertex colors to it by linearly interpolating the colors from
the same database frames (Section 5.5).

5.1 Input Animation Pre-Processing

Input Sources. The input animations .4 can come from any source,
but in industry these are most often created using a manually-
controlled rig or driven by sparse marker-based motion capture. For
one of our experiments, we use a facial rig as input built from a set
of B = 40 blendshapes. These are based on static scans of an actor
according to the facial action coding system (FACS) [Ekman and
Friesen 1978]. This rig can be fully controlled manually, allowing
artists to create arbitrary animations. The rig only spans an approx-
imate subset of facial expressions, and there is a natural limit on
the accuracy and number of animation parameters an animator can
evolve over time. Some example snapshots from an animation cre-
ated using this facial rig are shown in Figure 10 (left column).

Additionally, we evaluate our algorithm on three other input
sources, including sparse marker-based motion capture data, a
low-resolution morphable model fit to a monocular video se-
quence [Dale et al. 2011], and a blendshape-based facial animation
driven by Kinect data using faceshift [Weise et al. 2011].

Registration and Frequency Separation. The input animation A
will have a different geometric structure than D (e.g. it could be
a lower resolution mesh or possibly just marker positions). In our
examples the actor is the same for .4 and D, although this need
not be the case. In theory, we could transfer facial details to differ-
ent actors, although in practice, the facial properties of the face in
the database D and the animation A should be similar to achieve
visually plausible results.

To be able to work in the same shape space and to provide a means
for detail transfer, we obtain a dense correspondence between a
database neutral frame dy and the neutral frame ay from our low
resolution input source. We start by aligning ag to dg using the
non-rigid registration method of Li et al. [2008]. This establishes
a correspondence between the database meshes and the input data
that we can propagate over the entire input. Naturally, the number
of vertices ng for a pose in D is much larger than the number of
vertices n,, for a pose in .A. For example, in the case of the face rig,
ng ~ 4000, whereas ng ~ 1.2M. We therefore employ a linear
deformation model to propagate the animation specified by A to
the registered high-resolution neutral pose [Bickel et al. 2008]. The
resulting animation A matches exactly the motion of A and is in
dense correspondence with our database D. We then separate the
low frequencies in A using the same procedure as with the database
(Section 4.2), to obtain f(.A). f(A) is now a standard form that is
similar to f(D), no matter the source of the original animation .A.
The results of this process are decipted in Figure 5.

Hand-animated
Face Rig

Motion-capture
Markers

Kinect-driven
Blendshapes

Monocular-video
Capture

Low Resolution In Correspondence High Frequencies

Input with Database Discarded

Fig. 5. Input frame pre-processing for all input sources (top to bottom):
Hand animated rig, tracked mocap markers, depth camera driven rig and
monocular video based capture. The input frame (left), drives a deformation
of the database neutral pose (middle) and is standardized using smoothing
(right).

5.2 Encoding

As mentioned in Section 3, our performance enhancement uses
deformation gradients [Sumner and Popovi¢ 2004]. In order to
achieve accurate matching, every smoothed input frame f(a) €
f(A) is first rigidly aligned to the database using the method of
Horn [1987], and only then is the frame encoded. The deforma-
tion gradients are encoded with respect to a smoothed version of
a database neutral pose, into a vector denoted a’. As explained in
Section 4.2, a compressed version a of the same vector is created to
be used in Section 5.3. The rotation R, and translation T', matri-
ces that are produced during the alignment operation are also stored
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along with the deformation gradients vector, and all are used for re-
construction in Section 5.5.

5.3 Matching

In order to transfer the subtleties of facial details recorded in our
database to a low-resolution input mesh we must locate the corre-
sponding high-frequency data in our database. This can be formu-
lated as a projection of the compressed shape space vector a of the
input frame onto the database. In other words, we represent the in-
put frame as a convex combination of weights w that represents a
point in the shape space, spanned by the database, that is closest to
the input frame, i.e.,

min [|(D - w) — )|, s.t. Y w;=1w; >0 )

w; EW

where each column ¢ in the matrix D represents the compressed
shape space vector of frame 7 in our database.

Previous works have restricted this matching to affine
weights [Baran et al. 2009]. However, in our experiments,
affine weights distorted fine features such as pores and we there-
fore enforce convex weights, solving the resulting minimization
problem using a QP solver. Note that the weights quickly fall off
to nearly zero outside the immediate neighborhood of a, yielding
only a small number of relevant shapes to interpolate. Furthermore,
in Section 4.3 we describe a partition of the face into voluntary
regions, R. This implies that throughout the matching process
each region of the face is treated independently. However, actual
facial expressions are not decoupled between regions, as a genuine
smile is shown on the eyes as well as on the mouth. Therefore, in
our method, each region is represented as a vector w,. of weights
per mesh triangle. The triangle weights are constant within the
region, and decay in a Gaussian way as the geodesic distance from
this area grows. This means that, with diminishing influence, areas
outside the region participate in the matching process, yielding a
subtle coupling effect. We incorporate these weights in a weighted
least squares manner, solving:

(D7 - diag(w,) - D)w" = DT - diag(w,) & 3)

Vr e R,

with the aforementioned convex constraints, where diag(v) is the
diagonal matrix with v on its diagonal. In order to save runtime
and memory consumption, the matrices (D7 - diag(w,) - D) are
precomputed per region, and only DT. diag(w,) - & are computed
during the matching process.

5.4 Interpolation

Having computed the weights per region, we are now able to gen-
erate the highly detailed augmented mesh. The high-frequency de-
tails of the database are linearly blended according to the computed
weights with respect to the region weights w,. Formally, given a
triangle ¢ and a component ¢ of its deformation gradient, the inter-
polation scheme is:

[R|

w.
b"=> "D} w' — " )
i R
r=0 Z‘p:‘o Wp,t

where D" consists of columns which are the high-frequency de-
tail vectors d”, DZ is the row in D" that corresponds to the 4-th
component of the deformation gradient of triangle ¢, and w, ; is the
t-th element in the vector w,.. Note that, per region r, the length of
the matched weights vector w” is |D| while the length of w,. is the
number of triangles in a mesh. As mentioned above, this interpola-
tion scheme blends the database within each region according to the
matched weights and provides a normalized interpolation between
regions. As a final step before reconstruction, the blended high-
frequency details b” are composed with the low-frequency defor-
mation gradients of the input animation a*. This is done by convert-
ing the stretching and rotation vectors of b” and a’ back to the de-
formation gradients’ matrices and multiplying them. This process
is equivalent to applying the blended deformation gradients repre-
senting the high-frequency details to the smoothed input animation
mesh, as a deformation transfer [Sumner and Popovié¢ 2004], only
without explicitly producing the intermediate low-frequency mesh.

5.5 Reconstruction

Having the final deformation gradients, we reconstruct the mesh
using a slightly modified version of the Laplace-Beltrami opera-
tor [Botsch et al. 2006]. First, in the interest of runtime perfor-
mance, the Laplace-Beltrami operator is considered to be similar
for all meshes, and so it is precomputed and pre-factored once
for the neutral pose. This assumption allows us to only use back-
substitutions during reconstruction and has proven to be reasonable
in all our experiments. Second, since the final deformation gradi-
ents are composed from several different ones, some artifacts tend
to appear along the mesh boundaries. To suppress this artifact, we
add a weighted regularization term to the reconstruction system of
equations: in addition to the Laplace-Beltrami operator, we mini-
mize the 1D Laplacian term along the mesh boundaries. In all our
experiments, a minimal weight factor of w = 0.05 was sufficient
to completely eliminate the artifacts.

After reconstructing the final mesh, we align it to the database us-
ing the method of Horn [1987] and we then apply the inverse trans-
formations R;! and T that were calculated during encoding, to
restore the mesh to its starting position.

As a final step, we perform the same interpolation scheme de-
scribed in Section 5.4 on the vertex colors of the database meshes,
and apply the result to the final mesh. An illustration of our en-
hancement technique is shown in Figure 6 for the forehead regions.
Since the given expression is not in the database, two database
frames are blended to create the closest match.

6. TEMPORAL PERFORMANCE ENHANCEMENT

In facial animation, the dynamic behavior of a performance greatly
affects its perceived realism. Often, correct dynamics can be dif-
ficult to achieve. For example, when an animator creates a facial
animation by rigging keyframes, the keyframes are interpolated lin-
early or with some hand adjusted ease-in/ease-out curves to create
the full animation. This simple interpolation is insufficient to cap-
ture the timing of a real performance, and affects realism. In this
section, we describe a method to automatically adjust the tempo-
ral behavior of the keyframe interpolation in a data-driven manner,
using the previously described capture database.

The core concept that enables the temporal performance enhance-
ment is the extension of the previously described frame projection
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Fig. 6. To create the desired forehead wrinkles on the left, which are not present in the database, our enhancement technique blends between two different

database frames.

to a sequence projection operator (Section 6.1). In short, given two
sequences, this operator determines how one of the sequences can
be approximated by the other, and how close the approximation is.

To start the process, the artist picks two keyframes they wish to
interpolate, as well as the length of the desired motion. These two
keyframes are then treated as a sequence of length two, and are pro-
jected onto our compressed shape space using the sequence projec-
tion operator to find the closest matching sequence. The temporal
behavior of the matched sequence is analyzed, and this information
is used to generate a well-timed interpolation of the input frames
(Section 6.2). The result is an animation that closely follows the
data-driven dynamic behavior while maintaining the user’s artistic
intent and spatial features. Note that the process is invoked by re-
quest of the artist, since temporal performance modification may
not be desired in every scenario.

6.1 Sequence Projection

Sequence projection is an extension of the single frame projection
operator described in Section 5.3. Given an input sequence, we
wish to find the closest sequence in the database. This is a non-
trivial task since the sequences in the database can have different
dynamics and temporal behavior, resulting in different timing. For
the sake of simplicity, we disregard the partitioning of the face into
regions in this explanation, although the method is applied to each
region independently.

As mentioned in Section 4.1, our capture database consists of se-
quences transitioning from the neutral pose to an extremity and
back. We consider each such sequence as a temporal continuum,
sampled uniformly at the sequence frames. The task of projecting
an input sequence, «, onto such a sequence in the database, £, is
simply one of finding a valid mapping between each frame of a to
the time-line defined by S. A valid mapping is one that preserves
the temporal order: a later frame in the input sequence o must be
projected onto a later point in the time-line defined by the database
sequence [3.

Given an input sequence «, consisting of m frames {ag...atp 1},
and a database sequence 3, consisting of n frames {3o...8,,-1}, we
start by projecting each frame a; onto each of the linear segments
{B;,B;j+1} C B, and store the resulting blend weights as a matrix
T, as well as the distance (or error) of the projected points from the
original ones as a matrix E:

Ti,j :Proj(ai,{ﬁj,ﬁj+1})o, OSZ<'I’I’l7 OS]<TL*1
Eij = lloi = (Ti;8; + (1 = T4 3)B41) |l

(5)
where Proj(v,S) is a vector of blend weights that represents

the static projection (Section 5.3) of vector v on the set S, and
Proj(v, S)y is the first element of this vector.

Next, we wish to identify the valid mapping P that yields the min-
imum error. This means that we search for a monotonic function
that assigns a segment {3;, 3,41} to every input frame ¢; in a valid
way, and minimizes the sum of projected distances. We solve for P
that minimizes the following objective:

m—1
min > B pey ©6)
=0

s.t. P(Zl) S P(’Lg) Vll < ig.

We solve this minimization problem using dynamic programming.
This process is performed for all the sequences in the database,
and the resulting projected sequence corresponding to the input
is chosen to be the one yielding the minimal error. Note that in
most cases the input sequence « is projected only to a part of the
chosen database sequence, which we refer to as the projected sub-
sequence.

6.2 Temporally Driven Interpolation

We now describe how we use the sequence projection operator
to interpolate the selected keyframes in a data-driven manner. As
mentioned earlier, the user selects the desired length of the result-
ing sequence, m, and two endpoint keyframes of the resulting se-
quence, g and o, 1. As a first step, the sequence (of length two)
{ag, am—1} is projected onto the database to find the closest sub-
sequence. In case the input matches only a portion of a database
sequence, the user may choose to extend the matched sub-sequence
to the full corresponding database motion.

The matched sequence 8 = {Sy...8,-1} has exactly the dynamics
we want, but typically contains a different number of frames n than
the desired m. To rectify this, we start by creating a new sequence
B = {Bo...m-1}, which is a uniform interpolation of the ends of
the selected subsequence {8q, 8,,_1 }- Then, to get the right dynam-
ics we wish to position each frame BZ on the continuous time-line
uniformly sampled by . This is accomplished by projecting B onto
B, again using the sequence projection operator. If a frame BZ is
mapped to the segment {5, 5,11} with blend weight ¢;, one could
deduce that ,631 is projected to the point 5+ (1—¢;) in the continuous
time-line. These time stamps are recorded for each frame.

As a final step, the two input keyframes «g, o, 1 are linearly in-
terpolated, creating the sequence & = {&g...Qp—1}. The frames

are assigned the previously computed time stamps t(Bi), forming
a non-uniformly sampled piecewise linear time curve. The curve
is then re-sampled using the shape space, in uniform intervals of
dt = n/m for the final animation. The result is a sequence com-
posed solely of the artistically generated keyframes, but with the
temporal behavior of the matched sequence of the database.
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Figure 7 illustrates the result of the re-timing process, performed on
arigged transition between the rest pose and a smile. In this figure,
we plot the time versus displacement of a vertex positioned on the
edge of the mouth. An input linear interpolation is shown in red,
and the closest matching database sequence is shown in dark blue.
The database sequence contains the non-linear dynamics of the ac-
tor, but it represents a larger smile, i.e. the amount of displacement
extends further than the input keyframe. The input sequence di-
rectly matches the first part of the database smile, where the motion
is fast and relatively linear. If we re-time the input sequence using
this direct match, we obtain the sub-sequence behavior shown in
cyan, which is not much of an enhancement. However, should the
artist choose to re-time the input after extending the matched sub-
sequence to the full database smile, we obtain temporal behavior
that matches the captured data as closely as possible, while main-
taining the artistic intent (shown in purple).

The accompanied video exhibits a rigged transition of two key-
frames, after being temporally and spatially enhanced. In order to
keep the full integrity of the artistic intent, we propose to perform
temporal enhancement before the spatial enhancement described
in Section 5 is applied, and to enhance between only two interpo-
lated keyframes at a time, although these are not constraints of the
method.

Displ

12

T

10

////
o=

—Closest matching database sequence
) A —-Result after extending the matched sequence
-Result according to directly matched sequence
o -=Linear interpolation of input
0 1 2 3 4 5 6 7 8 9 Time

Fig. 7. A transition between the rest pose and a smile is enhanced using
the temporal enhancement method. Here we show linear interpolation of
one vertex (red), temporally augmented interpolation according to the clos-
est matched sub-sequence (cyan), and temporally augmented interpolation
according to the extended full sequence (purple). The actual temporal be-
havior of the database expression is presented for reference (blue).

7. RESULTS

Our dynamic performance enhancement algorithm increases real-
ism in facial animations by adding fine-scale details and expres-
siveness to low-resolution performances. In order to validate our
technique, we captured a high-resolution performance of an actor
with the same reconstruction technique that we used to build the
expression database. The performance is then spatially downsam-
pled to mimic a typical input that we would expect, lacking ex-
pressive details. We then enhance the performance using our tech-
nique, yielding a result very similar in detail to the ground truth in-
put scans. Figure 8 shows a few frames of the resulting validation.
Minor differences between the ground truth and enhanced meshes
(for example, around the mouth) are only visible where the correct
shape is simply not in the database. For all examples in this sec-
tion, we invite the reader to refer to the accompanying video for
more results.

9
9

Fig. 8. Validation of our performance enhancement on a down-sampled
high-resolution performance. Left: select frames from the high-resolution
scan. Middle: downsampled inputs to the algorithm. Right: our enhanced
result very closely matches the original.

We demonstrate the robustness and flexibility of our enhancement
algorithm by augmenting facial performances generated using four
radically different facial animation techniques commonly used in
industry and research. First, in Figure 9, we enhance a traditional
marker-based motion capture animation. Approximately 250 mark-
ers are tracked and used to drive a low-resolution facial animation.
The traditional motion capture approach is to deform a face mesh
(e.g., using a linear shell model) with the marker positions as con-
straints. As a result, fine-scale details are clearly missing since they
cannot be reconstructed from such a sparse set of markers (Fig-
ure 9, third column). Our technique is able to enhance the result
with detailed wrinkles (Figure 9, fourth column), greatly adding
to the expressiveness of the performance. We also illustrate the re-
sult rendered with per-frame reconstructed textures (Figure 9, last
column). Note that we purposely do not target eye motion in the en-
hancement algorithm, and so we choose a single capture frame with
closed eyes and blend the eye-regions into all final results using our
interpolation framework.

Another common art-directable facial animation approach is a
hand-animated rig. An example rigged performance and our en-
hanced result is shown in Figure 10. Most rig animations also lack
fine-scale expression details, as it is time-consuming and difficult
for animators to author these subtle effects. Our enhancement ap-
proach successfully adds the high-frequency details automatically.
To illustrate the result of shape space matching, Figure 11 shows
some of the closest database poses that are used in the region-based
interpolation for one of the rig result frames.

A third mode of facial animation that lends itself to our enhance-
ment technique is monocular face tracking using a morphable
model [Blanz et al. 2003; Vlasic et al. 2005; Dale et al. 2011].
Here, a low-resolution face model is automatically fitted to a video
stream, which can be captured from a handheld camera in outdoor
and remote environments (see Figure 12, left). By upsampling this
type of animation (Figure 12, right), we demonstrate the ability to
achieve studio-quality facial performance capture, even on a mov-
ing train. We believe this technology is a large step towards on-set
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Fig. 9. Enhancing a marker-based motion captured performance. The columns from left to right: selected frames from the input sequence, tracked marker
positions, traditional mocap result using the tracked markers to deform the mesh with a linear shell (notice the missing expression wrinkles), our enhanced

geometry including expression details, final result rendered with texture.

S

S
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Fig. 10. Our method can enhance a rigged facial performance (left),
adding the subtle details of expression particular to an individual’s face
(shown as a surface and textured).

markerless facial motion capture, which can benefit the visual ef-
fects industry.

Fig. 11. Illustrating the shape space matching for one frame of the face rig
result from Figure 10. Here we see four of the database poses that are used
for interpolation.

Finally, we show that our algorithm can enhance facial anima-
tions captured using a Kinect depth sensor. Our input is generated
from recent technology designed by faceshift, based on real-time
performance-based facial animation [Weise et al. 2011]. An actor’s
facial motions drive a low-resolution blendshape model, which we
then sparsely sample at 40 locations (see Figure 5) and enhance
with our technique. Since the blendshape model is only an approx-
imation of the performance, this result demonstrates the robustness
of our approach to handle inaccurately tracked face motion.

The processing time of our algorithm is approximately 30 seconds
per frame for our female actress with a mesh resolution of 500K
vertices and 55 seconds for the male actor with a mesh resolution
of 850K vertices, measured on an i7 desktop machine with 12GB of
memory. We use the MOSEK [Andersen and Andersen 2000] library
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Fig. 12. Result on a morphable model fit to a monocular video sequence
[Dale et al. 2011]. From left to right: selected frames from the video, the
low-resolution fit model in gray, our enhanced geometry, and our final result
rendered with texture.

Fig. 13. Enhancement result on Kinect-driven input animations produced
by faceshift [Weise et al. 2011]. From left to right: reference image from the
Kinect, blendshape result of the faceshift software, our enhanced geometry,
and our final result rendered with texture.

to solve the QP problem (Equation 2), and process all four face
regions in parallel. Realistic face renders are created using DAZ
Studio with the Elite Human Surface Shader*.

Comparison to Ma et al. [2008] Our work is most similar to
the polynomial displacement map (PDM) technique of Ma et
al. [2008], however our method contains some important benefits.
The PDM technique is designed for real-time performance on well-
tracked input sequences that lie inside the convex hull of a small
training set. In that situation, our respective algorithms will pro-

2www.daz3d.com

duce similar upsampled results. However, in the case that the input
shapes are far away from the training set, polynomial extrapolation
artifacts can be seen in the method of Ma et al. (see Figure 14).
Here we show our algorithm compared to an implementation of
the PDM method with the same database on two different inputs,
one from Kinect input using faceshift and the other from motion-
capture markers. The PDM approach produces unrealistic defor-
mation of the face and amplification of the pore details. One could
argue that increasing the size of the training set is a solution, how-
ever the PDM’s are determined by an underlying vector field and
discontinuities in the vector field causes artifacts in the resulting
displacements. The bigger the training set, the harder this vector
field is to control. This effect accounts for the discontinuities in the
left part of the lip, the left cheek and the forehead. Finally, in the
case of lower-accuracy input sequences like the ones from faceshift
(top row of Figure 14), the input deviates again from the training set
and results in more artifacts with the PDM approach. Our technique
is more general and handles a wider range of scenarios.

Fig. 14. Comparison to the Polynomial Displacement Map (PDM) tech-
nique [Ma et al. 2008] on two different datasets: Kinect input (top row) and
motion capture markers (bottom row). The PDM method (center) exhibits
more artifacts around the lips, cheek, forehead and exaggeration of pores,
compared to our method (right).

Limitations and Future Work. One area for future work is to
analyze and correct low-frequency errors. Currently, we assume
that the low-frequency component of the input animation is cor-
rect, however it could be the case that it does not match the shape
and dynamics of the real actor. Furthermore, in this work we use
the same actor for the database and input animations to ensure the
facial properties are similar. An interesting avenue would be to ex-
plore performance transfer, by using input animations from one ac-
tor with a database from another. In addition, our method does not
currently handle the eye region correctly due to a lack of accurate
data in this area. This could be corrected with an improved acqui-
sition system for the database. As a result, we blend closed-eyes
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into all results, which is easily accomplished with our shape space
interpolation framework.

8. CONCLUSIONS

We have targeted the gap between low-resolution artistically cre-
ated facial animations and high-resolution expressive performance
capture. On the one hand, art-directed animations are attractive
because the animation can easily be tuned for the desired perfor-
mance, however they lack the subtle details of deformation and tim-
ing that make a real individual’s facial performance so expressive
and compelling. On the other hand, high-resolution performance
capture can acquire the expressive facial details of a performance,
but the result can only be played back without further directabil-
ity. Our method extracts the fine-scale details from a performance
capture database that spans the range of expressiveness for a par-
ticular individual, and then transfers these details to low-resolution
input animations. Our system can also improve facial keyframe
interpolation so that the dynamics of the real actor are reflected
in the enhanced result. We demonstrate our method on four ani-
mations created by typical facial animation systems: marker-based
motion capture, a hand-animated facial rig, a morphable model fit
to monocular video, and a sequence reconstructed with a Kinect
depth sensor. We also validate our result against ground truth data
by using a smoothed performance capture animation as input, and
provide a direct comparison to current state-of-the-art. With our
technique, art-directed animations can now be enhanced to match
the expressive quality of performance capture.
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