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Figure 1: For an equal quality target, our method (red curve) achieve almost two time faster rendering time for a better rendering quality
than the method of Durand et al. [DHS∗05] (blue curve). Insets from different images of the sequences (top) show how our method allows to
reconstruct images with much less artifacts and less noise than Durand et al. [DHS∗05], and an equal-time MIS integrator [VG95].

Abstract
We propose a method to render animation sequences with direct distant lighting that only shades a fraction of the total pixels.
We leverage frequency-based analyses of light transport to determine shading and image sampling rates across an animation
using a samples cache. To do so, we derive frequency bandwidths that account for the complexity of distant lights, visibility,
BRDF, and temporal coherence during animation. We finaly apply a cross-bilateral filter when rendering our final images from
sparse sets of shading points placed according to our frequency-based oracles (generally < 25% of the pixels, per frame).

1. Introduction

In physically based rendering, pixel colors are computed by es-
timating a multi-dimensional integral. Pixels are usually com-
puted independently, leading to potential redundancies. In the case
of animations, where variation across frames may only change
sparsely, the probability of performing redundant computation only
increases. To exploit this redundancy, previous work has targeted
more efficient computation of individual pixels by improving the
underlying numerical integration routines (e.g., path-integral and
density-estimation approaches [HPJ12, GJTS12] and importance
sampling [VG95]), or by amortizing computation across image
regions using adaptive methods based on predictive models of
light transport (e.g., caching, interpolants and filters derived from
frequency-space [DHS∗05] or first-order [RMB07] analyses).

We propose an adaptive approach to render animations with

complex direct reflection and shadows from environment lighting.
We perform adaptive sampling in image space, as well as during
the numerical integration of each image sample. We further amor-
tize shading cost by reusing previously computed image samples
across the animation in a conservative manner, based on frequency
analysis of light transport. To do so, we devise a caching scheme
to store image samples using spatial, directional and temporal fre-
quency bandwidths. Our intuition is that frequency bandwidths of
moving objects or viewpoints can be translated into static spatio-
angular bandwidths. For cases where this assumption fails (i.e.,
moving occluders), we derive tailored conservative estimates.

Our oracles builds on frequency-based light transport analy-
sis [DHS∗05], and we additionally leverage them during final im-
age reconstruction. We are able to render images using few image
samples. Our frequency-analysis extends previous work to addi-
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tionally treat temporally-varying occlusion changes, to support an-
imation sequences using a lightweight caching scheme.

We perform rendering by applying three simple concepts :

1. we shade only a carefully chosen sparse subset of pixels,
2. when doing so, we adapt the spherical integration sampling rate

according to variations in lighting, BRDF, and occlusion, and
3. for animations, we further reduce the image sampling rates by

reusing samples from previous frames according to our fre-
quency analysis, properly accounting for shading and occlusion
variations over time.

Specifically, our work consists of the following contributions :

• a frequency analysis of sample placement and reuse, within and
across frames, that amortizes shading computations over space,
time, and integration domains,
• an adaptive integration scheme based on material, lighting, and

visibility statistics devised from our new frequency-analysis,
• a practical lightweight caching scheme that reuses, discards, and

recomputes shading and occlusion information over time, ac-
cording to our frequency-analysis, in order to control error.

2. Previous Work

Frequency Analysis of Light Transport. Durand et al. [DHS∗05]
proposed a frequency analysis of local lightfields for surface based
shading. They applied it to a proof-of-concept adaptive image sam-
pling and reconstruction application, where the numerical integra-
tion of the shading integral at each sample location had already
been computed to (visual) convergence. This seminal work has
promoted significant work on adaptive sampling and filtering tech-
niques that rely on local frequency analysis for rendering various
effects including unshadowed environmental shading [BSS∗13a],
distribution effects [ETH∗09, SSD∗09, BSS∗13b, MYRD14], soft
shadows from geometric sources and ambient occlusion [EDR11,
EHDR11,MWR12], and diffuse indirect illumination [MWRD13].
We are also motivated by this seminal work and try to extend it
to the problem of adaptively rendering animation sequences. Like
most of these work, we limit ourselves to the rendering of opaque
surface and let aside the problem of rendering participating media.

Lightfield Reconstruction. Lehtinen et al. [LAC∗11, LALD12]
reconstruct static images from a sparse set of lightfield samples,
leveraging the structure of continuous lightfield space. These meth-
ods assume smoothness along reconstruction directions in the light-
field and rely on the user provided sampling rate to be adapted to
the integrand’s bandlimit. On the contrary, we determine adequate
sampling rates, and as such are better suited for higher frequency
variations.

Deep Image Filtering. A related set of techniques [RKZ11,
DSHL10, SD11, LWC12, BRM∗16] apply denoising filters directly
to rendered images, using custom feature-space metrics, computed
from unconverged path traced simulation. Instead of leveraging
structure in the high-dimensional lightfield, these approaches for-
mulate final rendering as a signal reconstruction problem ignoring,
for the most part, higher-order structures, coherence or frequency-
content of the shading. Still, they perform well in many complex

scenarios. In certain cases, a limited form of temporal filtering is
supported, but only between adjacent frames; our caching scheme
adapts over an entire animation sequence.

Caching and Temporal Coherence. Irradiance and radiance
caching [WH92, KGPB05] model local variations in indirect light-
ing to place sparse cache samples in a scene, and then com-
pute smooth shading from the samples using first- or second-
order [SJJ12] interpolants. Again, here the shading integral is com-
puted independently at each sample (without any adaptivity), and
temporal coherence is not handled. Bala et al. [BDT99] devise radi-
ance interpolants and cache re-use oracles based on error estimate
bounds on (potentially reusable) shading samples, and the render
cache system [WDP99, BWG03, VALBW06] reprojects previous
shading samples for interactive preview. We also reproject cache
samples for temporally coherent animations, but instead leverage
frequency bandwidth estimates that take local geometry variation,
spatial and temporal (spherical and camera) occlusion variations,
reflectance and lighting changes into account. Meyer and Ander-
son [MA06] used a smooth basis to reproject stochastic samples
both in space and time for smooth indirect illumination effects;
our approach instead treats much sharper features not amenable to
smooth, generalized basis-space techniques.

3. Overview

Our goal is to render still images and animated sequences, with all-
frequency shadows and reflections from direct environmental illu-
mination, without dense sampling of pixels nor of spherical integra-
tion samples for the outgoing radiance at each pixel (later refered
as “radiance points”). To do so, we leverage frequency analysis
to adapt the sampling in both of these spaces. For animations, we
also build a lightweight cache of radiance points on-the-fly in ob-
ject space in order to further reduce sampling cost. This cache is
maintained (discarding / adding elements) based on frequency cri-
terion. At each frame, we reproject in screen space radiance points
from the cache and ensure that our target sampling rate, in screen
space, is met by resampling only were needed. Our approach works
in four steps (see Figure 2 and Algorithm 1):

1. we perform an initial light sampling of radiance points to esti-
mate the frequency bandwidth metrics we will use to drive our
final sampling rates (Figure 2(a));

2. we reproject radiance points stored in a cache, according to their
spatial, angular and occlusion-aware temporal frequency band-
widths, to further prime our adaptive sampling scheme (Fig-
ure 2(c));

3. using the information gathered in #1 and #2, we adaptively
sample screen space (Figure 2(e)) according to the difference
between the conservative sampling density determined by our
frequency analysis (Figure 2(b)) and the density of radiance
points reprojected from previous frames (Figure 2(d)), poten-
tially adding new radiance points in undersampled pixel regions.
Newly sampled radiance points are computed using an adaptive
spherical integration approach; and,

4. finally, we reconstruct the final image(s) using a frequency
bandwidth-driven cross-bilateral filter (Figure 2(f)).

We distinguish ourselves from previous techniques by:
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Figure 2: From an initial sparse image-space sampling ((a), showing part of our extended G-buffer) we estimate the necessary sampling
density for artifact free reconstruction (b). We then reprojection & validate samples from our temporal cache ((c), in red) and compute
the sampling density from this first set (d) and subtract it from (b). We distribute samples according to this difference in density (e) and
reconstruct the final shading (f) using our frequency-space oracles. New samples are added to the cache for the next frame.

• coupling adaptive image/object-space sampling (Section 5),
spherical sampling (Section 4) and final image reconstruction,
using oracles devised from our frequency analysis (Section 6),
• accounting for shading variations due to camera and object mo-

tion in our bandwidth computation to, e.g., adaptively sample all-
frequency shadows and reflection effects, accounting for com-
plex occlusion and appearance variations in animated sequences
(Section 5), and by
• exploiting coherence in the spatio-angular outgoing radiance

with a lightweight cache of frequency-space metrics (Section 5).

4. Adapting the Spherical Sampling Rate

Our approach adaptively places radiance points in a scene (and
across animation frames) and, for each one of these point we use
a spherical integration scheme that adapts the sampling rate when
computing the outgoing radiance estimate.

Algorithm 1: Our adaptive sampling & reconstruction method.
input : Empty deep image img; Current cache cache; Viewpoint v
output: Reconstructed image buffer img

// Uniformly sample screen space (Section 5)
pts = INITIALPIXELSAMPLING(v)

// Compute radiance with adaptive integration at these positions
// and accumulate visibility statistics {µv, σv} (Section 4)
COMPUTEPOINTSRADIANCE(pts, v)

// Save points for cache insertion after image generation
SAVEPOINTSINCACHE(cache, pts)

// Cache point verification and reprojection (Section 5)
for c in cache do

if ISVALIDENTRY(c, v) do pts.add(c)
else cache.discard(c)

end

// For each pixel, reconstruct occlusion statistics and estimate
// the required sampling density (Section 4)
N = COMPUTESAMPLINGDENSITY(pts, v)
npts = SAMPLEIMAGEFROMDISTRIBUTION(N, Nmax)

// Compute the radiance at sampled positions and accumulate
// visibility statistics (Section 4)
COMPUTEPOINTSRADIANCE(npts, v)

// Reconstruct final image (Section 6)
img = UPSAMPLE(npts, v)

A radiance point corresponds to the outgoing radiance towards
a viewing direction ωωωv, at a 3D position p, based on the reflection
equation [Kaj86]:

L(p,ωωωv) =
∫
H2

L∞(ωωωl)V (p,ωωωl)ρ(p,ωωωv,ωωωl)(ωωωl ·nnn)dωωωl , (1)

computed using a Monte Carlo estimator (see details below). Here,
we restrict ourselves to direct illumination from distant environ-
ment/area sources L∞, where ρ is the BRDF, V is the binary vis-
ibility function and H2 is the hemisphere of unit directions at p
about the surface normal nnn.

One of our goals is to accurately compute radiance points, with
minimum computation, by adapting the hemispherical sampling
rate to the complexity of the integrand. Given a bandwidth esti-
mate B for our integrand, we apply Shannon’s sampling theorem
to determine the spherical sampling rate NΩ = 4B2 used for Monte
Carlo integration†. We remark that the integral in Equation 1 can
be interpreted as a windowing of the incident lighting by a filter
comprised of the product of the BRDF and cosine term [RH01].
Consequently, incident light and visibility frequencies outside of
this window will not contribute to the integral and, so, should not
be considered when determining the spherical sampling rate.

BRDF Cone When computing Equation 1 we first estimate the
BRDF’s footprint defined by its view-dependent lobe centered
about its mean reflection direction µµµρ and of standard deviation σρ,
simplifying its formulation by assuming the lobe radially symmet-
ric (see Figure 3). For a Lambertian BRDF, µµµρ is the surface’s nor-
mal and the whole hemisphere is considered. For rough microfacet-
based BRDFs, a good approximation for µµµρ is the mirror reflection
of the view direction ωωωv and σρ should be proportional to the sur-
face roughness e [BS87,TS67]. We derive σρ for a Phong BRDF of
roughness e from the variance of its signal in the 2D plane orthog-
onal to µµµρ defined as :

Var[e] =
∫

t∈R

t2

(1+ t2)e/2
dt =

√
π Γ[ e−3

2 ]

2 Γ[ e
2 ]

for e > 3 (2)

In practice, we approximate the gamma functions in Equation 2
with the convergent version of Stirling’s formula. We found that the
first three terms of the serie were enough for the precision we need.
The approximation is computed once per BRDF at initialization

† We square the 1D bandwidth to obtain a conservative 2D sampling rate.
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Figure 3: We only consider the frequency content of the (distant)
incident lighting and visibility within the view-evaluated BRDF
footprint (in yellow), defined as a cone centered about the mean
reflection direction of the BRDF slice µµµρ with radius equal to three
standard deviation σρ of the BRDF lobe. Our visibility statistics,
comprised of its mean µµµV and three standard deviation σV , are also
accumulated exclusively within this footprint.

time. For microfacet BRDFs, we first find the Beckmann-equivalent
shininess such as eMF =

√
2/(2+ ePhong) [WMLT07].

It is reasonable to treat any BRDF variation within the cone as
negligible compared to that of the incident light (see Figure 3),
and so we must estimate the incident lighting’s frequency content
within the directional cone footprint in order to adapt the spherical
sampling of our Monte Carlo estimator of Equation 1.

Incident Lighting Bandwidth To estimate the lighting bandwidth
within the BRDF’s cone, we pre-compute the environment light’s
local bandwidth for several discrete cone (window) sizes σρ and for
several discrete cone directions µµµρ [BSS∗13a]: this data is stored
in a mip-like hierarchy of spherical textures (see Figure 4). We
used cosine-windowed Fourier transforms to estimate the band-
width since they most closely match our BRDF-windowed inte-
gration footprint profile. For different levels in the hierarchy, each
cosine window corresponds to Phong lobe with a shininess propor-
tional to the window size, and computing this structure must only
be done once for each environment map. During spherical integra-
tion, we query this structure based on the BRDF footprint direction
µµµρ and size 3σρ in order to obtain the lighting bandwidth BL∞ .

While we could proceed with B = BL∞ and use pre-filtering
methods similar to previous work [RH01, RH02, KC07, BSS∗13a]
to query the incident lighting with a sole sample, we want to addi-
tionally account for the occlusion in the integration cone, and thus
have to use actual sampling to estimate our bandwidth.

Figure 4: We precompute the distant environment light’s bandwidth
for multiple footprint sizes (left), at discrete footprint directions.
During rendering, we query this structure to obtain the lighting’s
bandwidth within the BRDF’s footprint (right).

Accounting for Visibility It is impractical to directly incorporate
the visibility’s bandwidth into the integrand’s bandwidth estimate
B, since piece-wise constant (binary) functions in the primal (i.e.,
spherical) domain have infinite frequency bandwidth.

Instead, we motivate our solution by considering two spherical
regions of integration, one that is largely occluded and another that
is not: we note that the spherical sampling rate should not be modi-
fied in the unoccluded region since the sample rate already accounts
for the frequency of the integrand, and these regions will contribute
the most to the integral; we do, however, want to increase the sam-
pling rate in occluded regions within the footprint, since any oc-
clusions will likely increase the frequency bandwidth. As such, we
opt to modulate the sampling rate determined by BL∞ by a fac-
tor fV that accounts for the amount of occlusion in the solid angle
subtended by the cone of integration, as follows:

NΩ = fV +4B2
L∞ . (3)

To determine the amount of occlusion, we accumulate a statistical
representation of visibility during a first Monte Carlo estimation
of Equation 1, which we compute using multiple importance sam-
pling (MIS) [Vea97] and NL = 4B2

L∞ spherical samples. Our MIS
implementation distributes samples evenly according to the pdf s
of the environment light pL(ωωω) ∝ L∞(ωωω) and the view-evaluated
BRDF pρ(ωωω) ∝ ρ(p,ωωωv,ωωω). During integration, we progressively
accumulate the weighted arithmetic mean visibility vector µµµo and
3×3 visibility covariance matrix Σo within the BRDF’s footprint,

µµµo =
1

Ao

NL

∑
i=1

pppiρi(1− vi),

Σo =
N

(NL−1)Ao
2

NL

∑
i=1

(ρi(1− vi))
2(pppi−µµµo)(pppi−µµµo)

T ,

(4)

which we will use to adapt our spherical sampling rate. Here,
the pppi are the first hit-points visible from the shading position to
the ith Monte Carlo (2D spherical) integration sample’s direction
ωωωi (expressed in the local coordinate frame about the BRDF cone’s
central direction µµµρ) hitting a finite distance occluder, vi = V (ωωωi)
is the binary visibility evaluated at ωωωi and we weight the value by
the view-evaluated BRDF’s pdf evaluated in the sampling direction

Figure 5: We increase the number of spherical integration samples
to properly account for shading variations due to occlusion. This
reduces the error (right insets) with respect to the ground truth.
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ρi = pρ(ωωωi) to avoid considering visibility samples in regions out-
side the BRDF footprint (i.e., regions of little contribution to the
final integral); finally, Ao = ∑

N
i=1 ρi(1− vi) is the normalization of

BRDF weights for the occluded samples (vi = 0).

The visibility’s standard deviation σV corresponds roughly to an
occlusion coverage measure within the BRDF’s footprint (see Fig-
ure 3) and is derived as

σV = max(
√
(µ̂µµρt

)T Σo µ̂µµρt
,
√

(µ̂µµρb
)T Σo µ̂µµρb

), (5)

where µ̂µµρt
and µ̂µµρb

are the unit tangent and binormal vector of the
local coordinate frame around µµµp. We use the ratio of this cover-
age to the size of the BRDF footprint to estimate how many more
samples are needed as fV = f (σV/σρ). We experimented with var-
ious easing functions and found that a Gaussian profile, f (x) =

(NΩ
max−NΩ)e−1/2(x−1/2)2

yields good results, where NΩ
max is our

maximum spherical sampling budget (Figure 5). We use the re-
maining integration samples to improve our Monte Carlo estimate
of Equation 1 (with the same MIS estimator).

We use the frequency content of the BRDF and lighting, as
well as occlusion statistics, to adapt the spherical integration cost
for each radiance point. To further reduce render time, we will
both reuse information from radiance points computed in previous
frames (Section 5), as well as reconstructing the final image using
only a sparse set of image-space radiance points (Section 6).

5. A Sparse, Adaptive Radiance Cache

When rendering an image, we first uniformly distribute a small
number of radiance points in image-space in order to gather the re-
quired information to compute the optimal sampling density: we es-
timate the outgoing radiance’s spatio-angular frequency bandwidth
(Section 5.1). We then reuse radiance points from previous frames,
leveraging a object-space cache (Section 5.2). Shading variations
caused by camera and/or object motion can invalidate radiance
points stored in the cache, and so we yet again leverage our fre-
quency analysis to appropriately handle cache sample invalidation,
resampling, and reuse (Section 5.3) in a manner that maintains im-
age fidelity and temporal coherence.

5.1. Adaptive Image Space Sampling

The spatio-angular bandwidth of the outgoing radiance in image-
space will be used to determine the (screen-space) density of ra-
diance points required for artifact-free image reconstruction (dis-
cussed in Section 6). To compute this bandwidth we proceed sim-
ilarly to previous work [DHS∗05, BSS∗13a] as illustrated in Fig-
ure 6: beginning with the bandwidth emitted within the solid an-
gle of the (distant) light subtended by the BRDF’s footprint BL∞

(Figure 6(a)), we analyze the reflected bandwidth (Figure 6(b)) ac-
counting for the local visiblity and BRDF’s band-limit Bρ, to es-
timate the bandwidth of the shade point at the sensor location BS
(Figure 6(c)).

Frequency analysis methods typically operate either on the band-
width B or the variance σ

2 of the spectrum. We interchange be-
tween these two measures in our discussion using 3 standard de-
viation (corresponding to the 99th percentile of a Gaussian) as the

Figure 6: To estimate the screen-space bandwidth BS, we start with
the emitted (angular) bandwidth of the environment light BL∞ re-
duced to the BRDF’s footprint (a), we then apply the BRDF ban-
dlimit Bρ (b) and modulated according to the curvature, foreshort-
ening, and spatial transport (c). The angular bandwidth serves di-
rectly as the screen-space bandwidth estimate.

bandwidth of the spectrum from its variance: B ≈ 3
√

σ2. We use
a compact 2D variance representation [BSS∗13b] for our spatio-
angular bandwidths, σ

2 = {σ2
x ,σ

2
θ}, where σx and σθ are the spatial

and (isotropic) angular bandwidths of the outgoing radiance field.

While accumulating the mean occlusion direction µµµo and covari-
ance Σo during radiance point integration (Section 4), we also com-
pute the mean and variance of occluders’ distance in the BRDF
cone, similarly to Equations 4. We project the occluders’ hit infor-
mation on the mean reflection direction of the BRDF µµµp instead
of on its local tangents. We thus get a mean occlusion distance of
µt = ‖µµµo‖ and a standard deviation of σt =

√
(µ̂µµρ)

T Σo µ̂µµρ. We ap-
proximate the minimum distance to occluders as

tmin = µt −3×σt . (6)

Moreover, assuming a pinhole camera, the bandwidth incident on
the aperture is equal to the screen-space bandwidth we will use for
sampling. And so, the screen-space spatio-angular 2×2 covariance
matrix is computed as

ΣS,θ = Tx→v
(
Cv ◦Bρs ◦CL

)(
σ

2
L∞ +TV→x(tmin)

)
, (7)

where each of the five operators above are simply 2× 2 matri-
ces [BSS∗13a] (see Appendix A for details): CL accounts for
the local curvature and cosine factor between nnn and the mean
BRDF direction µµµρ; Bρs bandlimit the bandwidth according to
the view-evaluated BRDF; Cv accounts for the mirror reflection,
curvature and cosine foreshortening between the shade point and
the viewpoint; σ

2
L∞ is estimated using the bandwidth queried

from our hierarchical structure; and Tx→v transports the band-
width from the shade point to the eye. When accounting for oc-
clusion, an additional transport operator TV→x warps the spatio-
angular occlusion bandwidth according to the minimum occluder
distance between the shade point and the light as derived in Equa-
tion 6 [DHS∗05, EDR11].

From the covariance matrix ΣS,θ we retrieve the angular part σ
2
θ

defining our final scalar image-space variance, and derive its band-
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Figure 7: During reprojection, we test whether the new viewing
direction remains inside the BRDF’s footprint and, if so, we project
the sample onto the screen (plain green line); if not, we (optionally)
discard the sample from the cache (dashed red line).

width as stated above as

BS ≈ 3
√

σ2
θ
. (8)

Sampling Density and Radiance Point Placement We first uni-
formly sample pixels in the image plane with a low number of sam-
ples per pixel to compute per pixel visibility statistics. The number
of directional samples used is proportional to the BRDF cone apex.
We apply a simple depth- and normal-aware bilateral upsampling
filter [SGNS07] with filter sizes proportional to the pixel’s unoc-
cluded angular variance (see Appendices A, A) to remove noise
from the bandwidth and visibility statistic values, {µµµo,Σo}. We
use these values to compute the screen-space bandwidth BS using
Equations 7 and 8, and determine the final pixel sampling densities
by clamping the bandwidth between zero and one (see Section 7)
which we use to sample the image space by rejection sampling :
each pixel receiving one unique sample if a random value between
zero and one falls lower or equal than the corresponding pixel’s
sampling density, ensuring that a density of one always yields one
and only one sample and one of zero will never be sampled.

As detailed below in Section 5.2, we can further reduce the ren-
dering cost by only generating new radiance points in screen-space
where reprojected (valid) radiance point samples from our cache do
not satisfy our pixel sampling density requirement. When introduc-
ing a new radiance point, we always perform spherical integration
using the approach in Section 4.

5.2. Caching and Reusing Radiance Points

During animation, the number of new radiance points computed
each frame can be significantly reduced if we carefully reuse radi-
ance points from previous frames. As such, we propose an object-
space cache to store, update, invalidate, and reuse (when suitable)
radiance points across frames of an animation. Every scene object
gets an associated cache for easier management of its associated
samples. Each cache entry consists of a tuple comprising a 3D po-
sition, 2D viewing direction, surface normal, radiance value, time
at which the sample was originaly created, boolean flag identify-
ing moving samples, spatial bandwidth Bx, angular bandwidth Bθ,
a temporal bandwidth Bt (see Section 5.3), and the occlusion ratio

(a) Cache discard & reuse (b) Resampling

Figure 8: Left, we visualize the previous frame’s reused (in black)
and discarded radiance points (in different colors). Invalid samples
due to Bx are blue, to Bθ red, to Bt orange, and to occlusion ratio
are purple; Right, we show the number of reused and resampled
radiance points (in red and blue resp.) used for reconstruction.

used to define fV . The spatial, angular and temporal bandwidths
(Bx,Bθ,Bt) (see derivation in Appendix A) are used to define a cir-
cular surface patch, a cone of directions (see Figure 7, inset), and a
time interval within which the sample’s radiance value is known to
remain close to the correct value. In the case where the associated
object is a specular mirror, the tuple receives an additional 3D posi-
tion, normal and object ID describing the reflected object from the
view direction it was sampled from. Three render-time parameters
qε{x,θ,t} are used (see below) to control the accuracy of our method.

After our initial sampling, but before computing the current pixel
sampling density, we update (based on object motion) and reproject
radiance points stored in our cache onto the image plane. We only
reuse these points for final image reconstruction if:

1. they pass a z-buffer camera visibility test, and
2. their radiance value remains valid after reprojection.

The validity of reprojected radiance points is determined according
to spatial, angular and temporal bandwidth tests in order to con-
trol the bias introduced in the final rendering (as detailed below
and in Figure 7). Reprojected radiance points that do not pass these
tests are not considered for reprojection nor reconstruction, and are
flagged for discard from their respective cache (as illustrated in Fig-
ure 8(a)).

Namely, object motion affects cache point validity in four ways:

1. camera and object motion can lead to failed z-buffer (i.e., cam-
era visibility) tests during reprojection,

2. object motion can influence the validity of cached radiance
points that lie on the surface of the moving object,

3. temporal changes of distant lighting affects the product of the
light and BRDF during integration, and

4. object motion can influence the accuracy of radiance points due
to changes in the spherical visibility on all other objects.

We describe the latter case (visibility changes) in Section 5.3 and
discuss here the remaining points.

Validating Reprojected Cache Points We use the spatial, and an-
gular bandwidths to define a circular surface patch and directional
cone with radii rx = 2πεx/Bx and rθ = 2πεθ/Bθ, where the directional
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cone is centered along ωωωv (at the time of the radiance point’s in-
sertion into the cache), ε{x,θ,t} = acos(1− qε{x,θ,t}) is based on
quality thresholds qε{x,θ,t} corresponding to the maximum relative
error a cached point can cause during reprojetion. Validating a re-
projected radiance point corresponds to z-buffer testing the pixel
onto which it projects (for camera occlusion) and ensuring that the
view vector is inside its directional cone (Figure 7).

To treat temporal changes in the radiance value due to lighting
and occlusion motion, we add a temporal validity period to each
cache point based on temporal bandwidth ∆t = 2πε/Bt . We apply
Egan et al.’s [ETH∗09] bandwidth estimate to treat variations in
lighting rotation, and we derive temporal bandwidths for changes in
radiance due to occlusion motion in Section 5.3. The final temporal
bandwidth Bt is the maximum of these two bandwidths.

Image Resampling and Cache Updates Once reprojected, cache
samples contribute in decreasing the per-pixel density in their
screen-space reprojection neighbourhood. Each reprojected sample
is splatted on screen in a manner similar to the final reconstruction
(Section 6) and their derived screen-space bandwidth is subtracted
from BS. This difference density is used to distribute new samples
with the same rejection sampling rules as the empty cache case (see
Figure 8(b)). Given the increased start-up density due to cache re-
projection, we are more likely to introduce samples in areas that are
not covered by the reprojected sampling.

Cache Point Discard and Merging Each newly generated radi-
ance point is added to its corresponding cache and uses the spher-
ical sampling scheme of Section 4. If two cached radiance points
reproject onto the same pixel they may be merged if their object
IDs are identical and if their spatial and angular bandwidths agree
with the angular and spatial distances between them (Figure 9).
If a radiance point reprojects outside the view frustum, it is also
flagged for discard. Once per frame, each cache will remove in a
batch all the flagged-as-discard entries and set their slot as open
again for further entries to be added on future frames. The cache
memory size increases if no open slot is available for this object,
which happens implicitly for the first frame, and less regularly dur-
ing the rest of an animation. Cache size is grown by sample batches
and (re)allocations can thus occur a maximum of once per object
per frame. Each cache is grown at least once (for the first frame)

Figure 9: We merge two cache points that reproject onto the same
pixel only if both their spatial and angular bandwidths overlap
enough. In this example, while the two cache point’s angular cones
(ωωω1, ωωω2) align (gray), their spatial bandwidths at ppp1 and ppp2 do not
overlap enough. Consequently, the two points will not be merged.

by the amount of slots the sampler gave each object for the initial
frame.

5.3. Handling Temporal Occlusion Changes

Modeling the impact of object motion on the scene visibility is
challenging. Starting from a time-dependent visibility formulation
of the reflection equation (Equation 1), we will perform a frequency
analysis of changes in the outgoing radiance due to changes in vis-
ibility. We will show that the temporal bandwidth Bt of the change
in the final shading can be modeled using the projected angular ve-
locity of occluders and the distant light’s bandwidth. We store this
bandwidth Bt at each cached radiance point.

We consider the relative motion of occluders at a shade point
in our time-dependent reflection equation (below; Equation 9), and
assume that only the spherical visibility changes over time, but not
the lighting nor reflectance:

L(p,ωωωv, t)=
∫
H2

L∞(ωωωl)V (p,ωωωl , t)ρ(p,ωωωv,ωωωl)(ωωωl ·nnn)dωωωl . (9)

Concurrently treating temporal variations in lighting and re-
flectance is a challenging problem that we leave to future work.

Next, we model the change in outgoing radiance ∆L due to the
motion V (t) of a small moving occluder patch‡; we will later gen-
eralize this model to large occluders. The outgoing radiance “re-
moved” due to the (potentially moving) occluder at time t is

∆L(t) =
∫
Vt

L∞(ωωωl)ρ(ωωωl)(ωωωl ·nnn)dωωωl , (10)

where we denote the set of all occluded directions at time t as
Vt = {ωωωl | V (p,ωωωl , t) = 0}. We can now rewrite the outgoing ra-
diance at any moment of time as the sum of a temporally constant
(unoccluded) component, and the change in outgoing radiance that
does vary with time:

L(p,ωωωv, t) = [L(p,ωωωv,0)−∆L(0)]︸ ︷︷ ︸
constant w.r.t. time t

+∆L(t) . (11)

Here, ∆L(t) can be thought of as time-dependent antiradi-
ance [DSDD07]. We perform a frequency analysis of this formu-
lation in order to reason about the temporal bandwidth of changes
to the outgoing radiance at a radiance point and, given this seg-
mentation, the Fourier transform of the outgoing radiance is equal
to the Fourier transform of the change in the outgoing radiance,
L̂(Ωt) = ∆̂L(Ωt), as:

L̂(Ωt) = F [L(p,ωωωv, t)] = F
[
[L(p,ωωωv,0)−∆L(0)]+∆L(t)

]
= Aδ(Ωt)+F [∆L(t)], (12)

where A is a constant offset we can ignore since it has a bandwidth
equal to zero; as such, we only need consider the last term in our
bandwidth derivation:

F [∆L(t)] = ∆̂L(Ωt) = F
[∫
Vt

L∞(ωωωl)ρ(ωωωl)(ωωωl ·nnn)dωωωl

]
.

‡ We occasionally omit location p and view ωωωv parameters for brevity.
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Figure 10: We illustrate the need for our moving occluders band-
width to discard samples during animations in the KILLEROO scene
after 10 frames. Without this bandwidth, the cache incorrectly re-
project shadows (bottom inset) onto the screen which result in a
dark region in at the feet of the Killeroo.

We will directly relate the Fourier transform of the (change in) out-
going radiance to the Fourier transform of the distant lighting, by
assuming that the projected (spherical) area of the moving occluder
V (t) does not change w.r.t. time t and that the cosine-weighted
BRDF is constant over the projected occluder patch; this is rea-
sonable given our small occluder and small motion assumptions,
and similar to reflectance-constancy assumptions used in previ-
ous work [ETH∗09,EDR11,RAMN12]. We additionally model the
spherical angular motion of the occluder as a motion relative to the
distant illumination, allowing us to rewrite the Fourier transform in
Equation 12 as an integration of the occluding patch in its original
configuration at V (0), but now lit under the distant lighting rotated
according to the appropriate inverse (angular) rotation of the oc-
cluder motion:

∆̂L(Ωt)≈F
[

ρn

∫
V0

L∞(ωωωl + tv̇)dωωωl

]
, (13)

where v̇ is the angular velocity of the occluder patch, we introduce
a notational abuse of the + operator to denote angular rotation of
the lighting direction ωωωl for simplicity, and

ρn =
1
|V0|

∫
V0

ρ(p,ωωωv,ωωωl)(ωωωl ·nnn)dωωωl (14)

is the average cosine-weighted BRDF value over the occluder.

We can interchange the order of the integral and Fourier trans-
form (due to linearity) in Equation 13, allowing us to express the
Fourier transform of the (change in) outgoing radiance as the prod-
uct of the Fourier transform of the lighting, the ratio of the average
cosine-weighted BRDF and the angular occluder motion magni-
tude, and a phase term:

∆̂L(Ωt)≈ ρn

∫
V0

eiΩt (ωωωl [θ]+ωωωl [φ])

|v̇| L̂∞(|v̇|Ωt)dωωωl

=
ρn

|v̇| L̂∞(|v̇|Ωt)

[∫
V0

eiΩt (ωωωl [θ]+ωωωl [φ])dωωωl

]
, (15)

where the bracketed term is the phase component of the Fourier
transform which we conservatively bound below.

We can bound the bandwidth of ∆̂L(Ωt) by analyzing the spec-
trum’s amplitude, where the amplitude is | · | =

√
Re(·)2 + Im(·)2;

we first bound the amplitude of the phase term as the projected solid
angle of the occluder VΩ,∣∣∣∣∫V0

eiΩt (ωωωl [θ]+ωωωl [φ])dωωωl

∣∣∣∣≤ ∫
V0

dωωωl︸ ︷︷ ︸
VΩ

, (16)

since |eix| ≤ 1, and we can then bound the amplitude of ∆̂L(Ωt) in
Equation 15 as ∣∣∣∆̂L(Ωt)

∣∣∣≤ VΩ ρn

|v̇|
∣∣L̂∞(|v̇|Ωt)

∣∣ . (17)

Given this bound on the amplitude we can conservatively bound
the bandwidth Bt,single of the (change in) outgoing radiance due to
a small occluding patch: since the temporal rotation (i.e., shift) in
the primal domain of L∞ in Equation 13 results in an scaling of
the spectrum L̂∞ by a factor of |v̇| in Equation 15, the lighting’s
original bandwidth BL∞ is similarly scaled to |v̇|BL∞ under the
occluder’s relative motion. Thus, the bandwidth Bt,single of ∆̂L is
bounded as

Bt,single ≤ |v̇|BL∞ . (18)

Our analysis above considers the motion of only a single small oc-
cluding patch, and we conceptually estimate the bandwidth due
to the motion of all the occluders by taking the maximum band-
width across all the small occluding patches: during spherical ra-
diance point integration (Section 4), we compute (and cache; Sec-
tion 5.1) the mean angular velocity of occluding samples times the
light bandwidth (estimated using our hierarchichal structure; Sec-
tion 4) µ[|v̇|BL∞ ] and its variance σ[|v̇|BL∞ ], in a manner similar to
the accumulation of the visibility statistics in Equation 4. We then
approximate the final temporal bandwidth, and thus the maximum
bandwidth across all occluding patches, as the mean plus 3 times
the standard deviation,

Bt = µ[|v̇|BL∞ ]+3σ[|v̇|BL∞ ] . (19)

This conservative bandwidth estimate models the change in out-
going radiance that a radiance point will undergo in time due to
occluder motion; while it uses a conservative bound on the am-
plitude of the integrated phase term, we do not need to explicitly
account for the phase term during its calculation. This bandwidth
can be interpreted as associating a lifespan to radiance points in the
cache, and we simply extend our cache validity checks to accept
reprojected cache samples only if they are “young” enough; if not,
we discard them. We also discard samples which occlusion ratio is
different from more than 0.125 with the occlusion ratio computed
at the pixel the reproject to (occlusion ratio are ranging from 0 to
1). This further incorporate a change of viewpoint for the cache
sample.

While our bandwidth estimate is far from accurate, it improves
the quality of all-frequency shadowed regions and behaves consis-
tently: without occluder motion, cached samples will have infinite
lifespan and only be discarded if their spatial or angular bandwidth
tests are not satisfied resulting in blurred shadows (see Figure 10).

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



R. A. Dubouchet & L. Belcour & D. Nowrouzezahrai / Frequency Based Radiance Cache for Rendering Animations

5

10

15

0 50 100 150 200 250 300 350

ti
m
e
(s
)

Figure 11: Stills from the KILLEROO animation with one glossy and one diffuse Killeroo rotating above a diffuse and glossy checkerboard,
lit by the PISA environment. Rendering times per frame for our method and Durand et al. [DHS∗05] are in red and blue, respectively.
Reconstruction times are provided using dashed lines of the same color. Insets compare feature reconstruction our approach, equal-time
Durand et al. [DHS∗05], and an equal-time MIS integrator.

6. Image Reconstruction

We generate the final image(s) with a reconstruction using all our
(sparse) screen-space samples. We apply texture maps after shading
reconstruction to avoid having to account for their potentially high-
frequency content in our frequency analysis.

The reconstructed shading Li at a pixel i is a weighted sum of
the radiance points’ values Lp′ (where p′ denotes a projected pixel
position) in its local neighborhood Ni, where we only consider ra-
diance points that reside on the same object as i:

Li = Ti ∑
p′∈Ni

Wp′→i Lp′ , (20)

where Ti is the texture value for pixel i. We use a stan-
dard cross-bilateral filter, as in previous shading reconstruction
works [DHS∗05], tailored to our predicted bandwidth estimates:

Wp′→i = exp
[
−∑

f

1
2σ2

f
||fi− fp′ ||2

]
, (21)

where fi|p′ = {p,n,µv,σv} is our feature vector, so that the recon-
struction will not combine values that differ much along any of the
axes in this vector, and σf is a user defined standard deviation. In
the case of the pixel feature vector, fi, we use the center of the pixel.
Since our feature vector contains the frequency estimate, is capa-
ble of reconstructing both hard and soft transitions in image-space
caused by shadows and reflections.

7. Results and Implementation

Our implementation is built directly atop Intel’s Embree raytracing
engine and operates completely on the CPU, although it is readily
parallelizable on the GPU. Our implementation runs in parallel us-
ing OpenMP and a screen buffer separated into tiles of 16 by 16
pixels. We used the a screen-space curvature estimator depending
on object-space normals and positions when computing an object’s
curvature at eye-ray hitpoints. Our MIS estimator of Equation 1

(Section 4) uses the power heuristic [VG95] and evenly distributes
samples between the light and BRDF pdf s.

To construct the environment map’s bandwidth hierarchy (Sec-
tion 4), we use a 2D fast-Fourier transform [CT65] and, for foot-
prints smaller than 16×16 pixels, we return the maximum possible
frequency (one sample per texel). The bandwidth is computed by
taking the 95th percentile of the 2D spectrum. If the footprint spans
several pixels at the target resolution, we conservatively take the
maximum value over the resulting pixels.

To prepare the screen-space bandwidth of Equation 8 for sam-
pling by rejection, we first modulate it according to the screen’s
aspect ratio, and then bound it between zero and one. So that
the sampling density conforms to the aspect ratio, we multiply it
by the maximum of the horizontal and vertical modifiers, so that
BS = BS max

[ fx
W ,

fy
H
]
, in pixel−1, where fx and fy are the horizon-

tal and vertical fields of view, for a W ×H sized image. We expose
the maximum filter radius fmax for reconstruction as a user param-
eter, from which we can derive the minimum bandwidth we allow
according to Shannon’s theorem as Bmin =

1
2× fmax

. Bmin is fixed at 1
so that we never sample a pixel more than once. This higher bound
could be extended to add support for sub-pixel supersampling.

If an object’s associated cache needs to accommodate more sam-
ples than its current capacity during an animation, we resize it to be
1.5 time its current capacity so that we avoid the constant realloca-
tions that could theoretically occur.

We add anti-aliasing as a post-process operation for the results
of all the compared techniques and which processing time is not
included in the resulting times since it isn’t relevant to the measure.
For that reason, we use sub-pixel information for it about the nor-
mals, depths and object IDs for a more precise detection of edges.

Results. We have tested our method on the following scenes: HE-
LICO (Figure 1) shows a rotating rotor blade in a static scene with
simple Whitted-style indirect specular effects and texture mapping,
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Figure 12: Stills from the CAR animation with static geometry and a camera rotating around, lit by the HALLSTAT environment. Rendering
times per frame for our method and Durand et al. [DHS∗05] are in red and blue, respectively. Reconstruction times are provided using dashed
lines. Insets compare feature reconstruction our approach, equal-time Durand et al. [DHS∗05], and an equal-time MIS integrator.

CAR (Figure 12) is an example of glossy, diffuse and mirror ob-
jects under camera rotation, KILLEROO (Figure 11) combines dif-
fuse and glossy BRDFs with meshes that exhibit high curvature,
and so are particularly challenging for resolving reflections. All re-
sults are generated on an Intel i7 CPU 930 2.80 Ghz at a resolu-
tion of 1280×720, with the following parameter settings fmax = 8,
qεx = qεθ

= 1e−4 and qεx = 1e−7.

Our method consistently reconstructs image sequences using
only a fraction of the pixels on a screen, and our results are tempo-
rally coherent (see video): we typically reuse between 10 and 25%
of the pixels to render any given frame of an animation. Our cache
size ranges on tested scenes from 45k to 500k radiance points, but
could potentially go further than that (1M) for long, complex ani-
mations over convoluted scenes; corresponding to a maximum size
of 6, 68 and 136 Mb respectively.

We perform an equal-quality comparison of an animation
sequence generated with our method to that of Durand et
al.’s [DHS∗05] prototype (Figure 14): we also exhibit sublinear
scaling of the rendering time with respect to the number of ren-
dered frames.

Finally, we perform an equal-time comparison of a still frame
to the SURE-based optimization for Adaptive Sampling and Re-
construction from Li et al. [LWC12] (Figure 13). The results were
rendered with the parameter set put forth by the authors, that is
σ f k = 0.4, 0.125 and 0.3 for normal, texture color and depth re-
spectively. We adapted the number of filter bank iterations for the
final pass as σs = {0,1,2,4,8} for performance purposes to reduce
the execution time of their technique to something closer to ours.
The SURE-based adaptive sampling method performs a lot bet-
ter than raw MIS perceptually, especially in low-frequency regions
where their algorithm makes good use of larger filters. While it per-
forms quantitatively better than our method here, Li et al. technique
appear noisier, especially when handling all-frequency shadows, as
present in the HELICO scene.

8. Conclusion and Future Work

We presented an adaptive sampling, signal-tailored integration and
reconstruction technique for all-frequency direct illumination, ren-
dering images and animations using a fraction of the cost of stan-
dard techniques. We develop new frequency bandwidth estimates
to appropriately sample occlusion, reflectance, and lighting varia-
tions. In the case of animation sequences, we further amortize ren-
dering cost with a lightweight caching scheme that also exploits our
frequency analysis.

Discussion Our temporal bandwidth derivation for moving oc-
cluders assumes that the projected size of a small occluding patch
does not change over time; this only holds for purely rotational oc-
cluder motion (from the shading point’s perspective), but still pro-
vides a good approximation in the case of small motions. Alleviat-
ing this constraint could further improve our visibility bandwidth,
and we would like to investigate coupling the effects of temporal
changes in the reflectance and lighting together with the occlusion.
Similarly, we only consider linear object motion, as is common in
many rendering approaches, so modeling shading variations due to
rotational motion could be an interesting avenue of future work.

We do not model the temporally varying depth complexity of
occluders, which could lead to shading variations when occlud-
ers subtend the same spherical region at certain moments in time
during there motion; in the case where one moving occluder com-
pletely blocks another, this may lead temporal bandwidth underes-
timation in our current approach, however we have not noticed a
case where this results in any artifacts during our investigation.

Another more subtle issue arises when trying to simply multiply
the reconstructed shading by a texture value after the fact (Equa-
tion 20): this only holds when the texture value at a pixel does not
vary over time; this is clearly not the case for objects under relative
motion w.r.t. the camera. The correct solution would be to project
the texture, masked by the pixel’s spatial footprint, across time and
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Li et al. [2012]

RMSE : 0.01001 RMSE : 0.01967

RMSE : 0.00913RMSE : 0.01174

MIS

Ours Durand et al. [2005]

Figure 13: We present an equal-time still frame comparison be-
tween our technique and the work of Li et al. [LWC12], Durand et
al. [DHS∗05] and MIS as reference.
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Figure 14: When comparing cumulative rendering times, our cache
(in red) allows for smaller rendering time compared to the non-
caching method [DHS∗05] (in blue) where radiance points are re-
computed every frame. In the case of HELICOPTER we achieve
almost half the rendering time since we reuse most of the cache
samples.

onto our other filters in order to model its maximum bandwidth us-
ing e.g. a mean-plus-3-standard-deviation approximation. We can
then weight the spatially-varying texture by the shading variation
over the same time period.

While our caching scheme and bandwidth estimates can be read-
ily integrated into other frequency-based shading approaches to ac-
count for distribution effects such as defocus [SSD∗09, BSS∗13b]
or motion blur [ETH∗09, BSS∗13b], our algorithm and analysis
are currently restricted to single-bounce direct illumination (and
Whitted-style recursive effects, e.g. mirror reflections). Extensions
to global illumination are not trivial, but one direction would be to
formulate a progressively-accumulated bandwidth estimate to deal
with multiple bounces in e.g.a path-tracing estimator.

Lastly, while one of the benefits of our cache system is that it
is very lightweight, we do not currently share or reuse integra-
tion samples across radiance points; previous approaches [EDR11,
EHDR11] have treated similar problems using a heavyweight ray-
space cache. We find our proposed solution to be a reasonable
middle-ground solution, using higher-order statistics to compare
and reason about nearby radiance points, but we never share this
information across radiance points to influence the integration pro-
cess. Doing so is left to future work and could further improve the
efficiency of a technique like ours.
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Appendix A: Image-space spatio-angular variance

We derive the 2D spatial and angular variances of the incident light field
in object and image space to direct our sampling and reconstruction al-
gorithms. We do this by analysing how the light field function changes
along the light path from the light source to the eye, and work with 2× 2
matrix operators to facilitate derivation. Our analysis is based on previous
works [DHS∗05, EDR11, BSS∗13b, BSS∗13a].

We do not consider the convolution by the surface texture’s spectrum in
our analysis and apply texturing by simply doing the per-pixel product of
the final radiance estimation and the texture value at that (u,v) point.

We first derive the light field variance in the unoccluded case, where
the incident light field is not obstructed from its origin to the considered
surface point x, so that TV→x has no effect on the purely angular variance
at emission. We then study the variance in the occluded case, where part
of the light field can be obstructed by blockers between the light and the
surface.

Unoccluded Case We only consider light from distant illumination mod-
elled by environment maps, which has no spatial variation and only non-
zero angular variance, as

Σ =

[
0 0
0 σ2

L∞

]
. (22)

Light travels from the source to the surface point x in a straight line (since
we do not tackle participating media). This results in an angular shear with a
magnitude equal to the distance travelled d1. Since we use infinitely distant
light with only angular variation, this operation has no effect on the signal
and isn’t represented in Equation 7. The operator is defined as

Td1 =

[
1 −d1
0 1

]
. (23)

Reflection of the incident light field at the surface point x in the direction of
the eye is composed of a serie of transformations [DHS∗05]:

1. The re-parametrization of the light field in the surface’s local frame,
where the light field is first scaled by ci = cosθi to account for the fore-
shortening of the incident ray, and then sheared by the effect of the cur-
vature k of the surface. The scale due to the incident angle is spatial and
has no effect on our purely angular light signal here. In matrix form, Σ

is modified by

CL =

[
ci 0
k 1

]
. (24)

2. The angular convolution of the re-parametrized light field by the sur-
face’s BRDF, which band-limits the signal by an amount inversely-
proportional to the BRDF’s shininess. We only consider time- and space-
invariant isotropic BRDFs and our analysis is based on the Phong BRDF,
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for which we obtain the covariance covθ,θ(ρs) = s/4π2 for a Phong ex-
ponent (or shininess) of s [BSS∗13b], which can be rewritten in matrix
form, with b = 1/covθ,θ(ρs), as

Bρs =

[
0 0
0 b

]
. (25)

3. The re-parametrization in the outgoing direction to the eye, similar to
the first step, is first a mirror reflection in the spatial domain, followed
by the inverse curvature shear by −k and the scale by cv = 1/cosθv, as

Cv =

[
cv 0

cv k −1

]
. (26)

Finally, light travels from x to the eye by a distance d, and the signal is
modified one last time by the operator

Tx→v =

[
1 −d
0 1

]
. (27)

We put everything together to get the spatial and angular variances in object
and image space. Let Σ be the covariance of the incident light field, we get
the object space covariance Σo

S,θ by the succession of operations involving
the matrix operators defined above such as

Σc = CT
L ΣCL Σρ = Σc−

ΣT
c Bρs Σc

1+Tr
[
ΣT

c Bρs

] Σ
o
S,θ = CT

v Σρ Cv, (28)

and the image space covariance ΣS,θ by applying the travel operator

ΣS,θ = TT
x→v Σ

o
S,θ Tx→v. (29)

Occluded Case When accounting for occlusion, an additional transport
operator TV→x warps the spatio-angular occlusion bandwidth according
to the minimum occluder distance tmin between the shade point and the
light [DHS∗05, EDR11]

TV→x =

[
1 −tmin
0 1

]
. (30)

Since we employ distant environmental illumination, this operation
wouldn’t affect the covariance as it only has non-zero angular variance σ2

L∞
at emission. We add an undefined spatial frequency content a in the matrix
at emission and apply the transport shear before the interaction with the
surface, the BRDF and the re-projection to the eye, so that our covariance
matrix at emission is defined as

Σ =

[
a 0
0 σ2

L∞

]
. (31)

The rest of the derivation of the object and image space covariances is done
in the same manner as in the unoccluded case above, except that

Σc = CT
L Σt CL, with Σt = TT

V→x ΣTV→x. (32)

To get defined results, we compute the covariance in the limit where the
spatial content a of our emitted light tends to infinity.

Scalar variance & Bandwidth The matrix operations above are used
to determine the object space spatial and angular bandwidths (Bx, Bθ) to
control the validity of re-projected cache samples in Section 5.2; and the
image space angular variance σ2

θ
in Equation 8 of Section 5.1.

In practice, the occluded derivation is always used to get σ2
θ
, Bx and Bθ.

The only case where the unoccluded derivation is used is when determin-
ing filter sizes of the bilateral filtering pass used to smooth the visibility
statistics {µo,Σo} in Section 5.1.

When computing the occluded variables, in the frequent case where no
actual occlusion occur between the surface and the light, tmin is undefined
and we should optimally switch to the unoccluded variables. However, we
found that by using a large enough distance as tmin when there is no occlu-
sion gives us smoother transitions between occluded and unoccluded areas

and avoid the use of a hard switch. This maximum distance is scene depen-
dent and is defined proportionally to the scene’s bounds. By considering
every direction as occluded, we first bias our sampling scheme and recon-
struction filter sizes to distribute more samples and be smaller, respectively,
than with the hard switch; and second make our cache re-projection policy
stricter. We allow those biases since they can only improve quality, and be-
cause the maximum distance used is large enough as to make any of those
effect imperceptible.

Below are the scalar variables used in practice, evaluated from the deriva-
tions above.

Unoccluded Case
(σo

S)
2 = Σ

o
S,θ[1,1] = (4c2

v k2
σ

2
L∞ )

/
(1+bσ

2
L∞ ),

(σo
θ)

2 = Σ
o
S,θ[2,2] = (σ2

L∞ )
/
(1+bσ

2
L∞ ), and

σ
2
θ = ΣS,θ[2,2] = (1−2cv d k)2

σ
2
L∞

/
(1+bσ

2
L∞ ).

Occluded Case

(σo
S)

2 = lim
a→∞

Σ
o
S,θ[1,1] =

(
(ci +2 tlim k)2 +bc2

i σ
2
L∞

)/
bt2

lim ,

(σo
θ)

2 = lim
a→∞

Σ
o
S,θ[2,2] = b−1, and

σ
2
θ = lim

a→∞
ΣS,θ[2,2] =

(tmin− cv d (ci +2 tmin k))2 +bc2
v c2

i d2 σ2
L∞

bt2
min

.

We derive bandwidths Bx and Bθ in the same manner (see Section 5.1) as

Bx = 3
√

σo
S

2 and Bθ = 3
√

σo
θ

2.
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