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Figure 1: Equal-time rendering (five minutes) of a bathroom scene with gradient-domain photon density estimation and bi-directional path
tracing [MKA∗15]. Our method more efficiently handles regions dominated by complex transport paths.

Abstract
The most common solutions to the light transport problem rely on either Monte Carlo (MC) integration or density estimation
methods, such as uni- & bi-directional path tracing or photon mapping. Recent gradient-domain extensions of MC approaches
show great promise; here, gradients of the final image are estimated numerically (instead of the image intensities themselves)
with coherent paths generated from a deterministic shift mapping. We extend gradient-domain approaches to light transport
simulation based on density estimation. As with previous gradient-domain methods, we detail important considerations that
arise when moving from a primal- to gradient-domain estimator. We provide an efficient and straightforward solution to these
problems. Our solution supports stochastic progressive density estimation, so it is robust to complex transport effects. We show
that gradient-domain photon density estimation converges faster than its primal-domain counterpart, as well as being generally
more robust than gradient-domain uni- & bi-directional path tracing for scenes dominated by complex transport.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: 3D Graphics & Realism—Raytracing

1. Introduction

Recent adoption of physically-based rendering in feature films, ani-
mation, and video game industry has promoted the importance of
efficient numerical solutions to light transport simulation. The most
common numerical solvers rely on Monte Carlo (MC) integration
such as uni- and bi-directional path tracing, or density estimation
such as photon mapping. While MC integration works well in many
cases, it struggles to resolve effects resulting from complex light
transport paths, namely those that are localized on small manifolds
in a high-dimensional path space. Common examples are so-called
SDS paths where a diffuse scattering event lies between two or more
specular (or near-specular) events. Density estimation approaches
are ideal for sampling such types of light transport paths.

Recently, new MC integration approaches based on gradient-
domain estimation have improved upon their primal-domain counter-
parts: here, image gradients are estimated numerically (as opposed
to image intensities), after which a reconstruction post-process is
used to compute the final image. The seminal work of Lehtinen
et al. [LKL∗13] proposed a gradient-domain variant of Metropo-
lis Light Transport [Vea97], and follow-up works similarly ex-
tended uni- and bi-directional path tracing to the image gradient-
domain [KMA∗15, MKA∗15].

We propose the first gradient-domain rendering approach based
on density estimation. As with prior work, our technique is concep-
tually simple, but a special care is necessary to ensure robustness
and convergence when shifting light paths to compute image-space
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gradients, computing appropriate Jacobians, and performing density
estimation itself. As such, our method cannot be constructed as a
trivial variant of existing gradient-domain techniques. Specifically,
our technical contributions comprise:

• a procedure to generate offset paths compatible with photon den-
sity estimation; namely, we present a hybrid shift mapping tech-
nique that exploits half-vector copy and manifold exploration,
• the derivation of the hybrid shift mapping Jacobian necessary for

compensating for the change in estimation domains, and
• theory and algorithms for offset photon density estimation and

image-space gradient evaluation which are designed to support
stochastic progressive density estimation [HJ09].

Our experiments show that gradient-domain photon density esti-
mation inherits many of the advantages of density estimation and
gradient-domain rendering, including the ability to sample complex
SDS paths more efficiently than MC path-based solvers and the abil-
ity to leverage primal-domain reconstruction as a means of filtering
away noise. Furthermore, gradient-domain photon density estima-
tion performs on par with existing methods on simpler light transport
paths (i.e., diffuse-only interreflections), where primal-domain pho-
ton density estimation can become inefficient. Figure 1 illustrates
these benefits on an example scene where (gradient-domain) uni-
and bi-directional path tracing both struggle.

2. Related Work

Gradient-domain rendering Lehtinen et al. [LKL∗13] presented
a seminal work of gradient-domain light transport which shows
how to perform shift mapping using manifold exploration [JM12]
for reducing the variance of gradient estimates in the context of
Metropolis Light Transport [Vea97]. Their key insight was that
focusing sampling budget on pixels with large gradients could lead
to significant gains. Kettunen et al. [KMA∗15] went on to show that
this adaptive sampling of gradients is not fundamentally necessary,
proposing a simplified gradient-domain path tracing algorithm that
still maintains similar convergence advantages. Their alternative
shift mapping approach maintains half-vectors when offsetting base
paths.

In a follow-up work, Manzi et al. [MKA∗15] extended gradient-
domain rendering to the bi-directional setting with a shift mapping
based on manifold exploration. In order to achieve practical per-
formance, they consider only diffuse-to-diffuse vertex connections.
This limits the applicability of their approach to handle scenes with
many specular interactions. We will directly address this limitation
by devising path generation and density estimation formulations
to enable gradient-domain light transport in the context of photon
density estimation. Theses formulations combine the advantages
of density estimation (i.e., robust treatment of specular transport)
and gradient-domain rendering (i.e., noise filtering through primal-
domain reconstruction).

Recently, Manzi et al. [MKD∗16] also explored temporal coher-
ence in gradient-domain rendering with a novel adaptive sampling
scheme. This work is orthogonal to ours and could be implemented
on top of our technique to support integration over time.

Photon density estimation Unlike MC path-based simulation, pho-
ton density estimation relies on computing local densities when

Symbol Meaning

zk vertex k on sensor subpath
zt ,z′t base and offset gather point
yk vertex k on light subpath
ys,y′s base and offset photon
G(yb,yb+1) geometry term
G(yb, . . . ,ys) generalized geometry term
ok half-vector at a vertex k
E, L, D, S eye, light, diffuse, and specular vertex

Table 1: Table of notation.

forming full light transport paths between light- and eye-subpaths.
Traditional photon mapping [Jen01] is a two-pass algorithm that
stores photons shot from light sources in the first pass. The number
of photons in the first pass is inherently limited by the total available
memory of the system. Hachisuka et al. [HOJ08, HJ09] proposed a
progressive variant that eliminates this limitation by storing photon
statistics at gather points in a manner that allows photon data to be
discarded and accumulated progressively. Density estimation can
also be combined with MC path-based estimators using multiple
importance sampling and an extended path-space formulation of
light transport that rectifies MC integral estimators with density
estimation [HPJ12, GKDS12]. We propose a gradient-domain den-
sity estimation and refinement scheme to compute image gradients
progressively, inheriting the benefits of progressive (primal-domain)
photon mapping.

Reconstruction In gradient-domain rendering, final images are re-
constructed using Poisson reconstruction after image gradients are
estimated. Lehtinen et al. [LKL∗13] compared an unbiased L2 recon-
struction with a more stable, biased L1-norm based reconstruction.
The latter does not suffer from dipole artifacts at the cost of some
(usually negligible) bias. Manzi et al. [MVZ16] proposed using a
G-buffer to better regularize this reconstruction stage. We rely on
traditional L2 and L1 norm reconstruction [LKL∗13] when gener-
ating our final results, thus our algorithm can be used as a drop-in
replacement for existing gradient-domain estimators.

3. Gradient-Domain Rendering

Image gradients are estimated using pixel finite differences. Base
pixel intensities can be estimated with paths sampled using e.g.,
MC techniques, and offset pixel intensities (next to the base pixel)
can similarly be estimated using offset paths built atop the same
set of bases paths. Noise in image-space gradients is reduced by
maintaining as much coherence between offset and base paths as
possible. We begin by detailing the integral used to estimate the
intensity of an offset pixel.

Given a light transport path x = x0 . . .x` of length ` in path space
P (where x0 lies on an emitter and x` on a sensor), the integral to
compute the intensity Ii of pixel i is

Ii =
∫
P

hi(x) f (x)dx , (1)

where f (x) is the path throughput and hi(x) is the reconstruction
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filter at pixel i. In order to estimate image-space gradients, gradient-
domain rendering uses finite differences of neighboring pixels, i.e.,
∆i j = I j − Ii where ∆i j is the finite difference at pixel i due to a
neighboring pixel j. While one can apply Equation 1 independently
across pixels and subsequently perform finite differencing, we can
exploit path coherence between neighboring pixels i and j:

Ii
j =

∫
P

hi(x) f (T (x))
∣∣∣∣dT (x)

dx

∣∣∣∣dx , (2)

where T is the shift mapping operator that transforms a path through
pixel i (the base path) into a path through pixel j (the offset path), and
Ii

j is the intensity at pixel j estimated by shift mapping. To exploit
coherence, the operator T is designed such that the base and offset
path share as many common vertices as possible. The Jacobian de-
terminant accounts for path density changes due to shift [LKL∗13].
Note that the reconstruction filter at the neighboring pixel is equal
to that of the base pixel, and so h j(T (x)) = hi(x). This formulation
assumes that neighboring pixels tend to have similar light trans-
port paths, and so correlated estimation using shifted paths is more
efficient than independent estimation using only Equation 1.

We use forward finite differences to estimate horizontal and ver-
tical gradients. Except at image boundaries, we can use either the
“primal” integral estimate (Equation 1) or the integral estimate us-
ing shift mapping (Equation 2). Consequently, the gradient due to
a pair of pixels i and j can be computed using a combination of
these two strategies, with equal weighting (i.e., 0.5). Kettunen et
al. [KMA∗15] propose setting the weights according to a multiple
importance sampling scheme, which can further reduce artifacts
near depth discontinuities.

Let the estimated horizontal and vertical gradients be Gx and Gy,
and the primal-domain image estimate be I0. Linearizing images to
1D vectors, we can express the final image I as the solution to the
following Poisson reconstruction problem [BCCZ08]:

I = argmin‖DxI−Gx‖p +‖DyI−Gy‖p +λ‖I− I0‖p , (3)

where Dx and Dy are 1D convolution operators that compute finite
differences along the image’s x and y axes, λ controls the simi-
larity between the final image and the primal-domain throughput
image, and p (which can take a value 1 or 2) denotes the choice
norm used during reconstruction. Specifically, an L2 norm yields
an unbiased reconstruction and L1 norm yields a result that is more
robust to reconstruction artifacts. For all our results, we solve this
optimization problem using an iterative re-weighted least squares
solver [LKL∗13].

4. Gradient-Domain Photon Density Estimation

Let x = y0 . . .ys,zt . . .z0 be a light transport path of length `= s+ t
sampled by photon density estimation, where y = y0 . . .ys and z =
z0 . . .zt are the light and sensor subpaths, vertex ys is a photon, and
zt a gather point. According to path space extensions [HPJ12], the
measurement contribution function of a photon density estimation
path includes a kernel K(ys,zt) to capture the flux transfer between
the “disconnected” vertices ys and zt . In our work, we use a simple
uniform kernel K(p,q) = K = 1/(πr2) with radius r, regardless
of the vertices p and q. We assume that light and sensor subpaths
are generated independently and, therefore, the path measure is

E
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D

Figure 2: An example of shifting for photon density estimation. The
sensor and light subpaths are first individually shifted, then density
estimation is performed on the offset path using the same kernel of
the base path (shaded region).

simply dx = dx0 . . .dx`. This allows us to treat density estimation
and MC integration in a unified manner, and so to apply and extend
previous shift mapping methods to our problem [LKL∗13,KMA∗15,
MKA∗15]. We use Heckbert’s regular expression notation [Hec90]
to classify families of paths: each scattering event along a path from
eye (E) to light (L) could be diffuse (D) or specular (S).

In order to evaluate gradients, we have to shift each photon den-
sity estimation path to generate an offset path. However, doing
so with existing shift mapping techniques [LKL∗13, KMA∗15] is
neither straightforward nor feasible, since a photon density estima-
tion path is bi-directional and contains two “disconnected” sub-
paths. Half-vector copies [KMA∗15] are designed to shift uni-
directional paths and, while manifold exploration [JM12] is able
to shift bidirectionally-sampled paths, the original manifold explo-
ration algorithm is only suitable for complete transport paths (i.e.,
and not a pair of disconnected subpaths). None of these existing shift
mapping approached are appropriate for shifting a photon density
estimation path, all while maintaining the kernel.

Our solution is to first shift the base sensor and light subpaths,
and then perform kernel evaluation to generate the corresponding
offset paths (see Figure 2). We design a shift mapping that restricts
the offset photon within the support of the density estimation kernel,
keeping the same kernel size as the base path’s. The benefit of
this shift mapping scheme is two-fold: first, it allows us to avoid
many offset paths with zero contribution when the subpaths are
shifted independently; second, we can tailor different shift mapping
strategies to the sensor and light subpaths.

Specifically, we shift sensor subpaths using a half-vector copy and
light subpaths using manifold exploration [JM12]. The rationale is
as follows: in photon density estimation, a sensor subpath comprises
only ES∗D transport configurations, which are a simpler subset
of configurations handled by gradient-domain path tracing (where
half-vector copy has been shown to be highly efficient and easier
to implement [KMA∗15]); since light subpaths can have L(D|S)∗D
configurations, a half-vector copy is not suitable as it requires a
DD subpath on the base path and a (D|S)D configuration on the
offset path in order to perform reconnection. Instead, we employ a
modified manifold exploration to shift light subpaths, and we show
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(c) Light subpath manifold walk
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Figure 3: Shift mapping strategies: (a) an offset sensor subpath is generated by half-vector copy, (b) an offset photon is generated by preserving
the local offset vector (yellow) between the base gather point and the base photon, and (c) the remaining vertices (purple) of the offset light
subpath are determined according to a manifold walk.

how to compute the Jacobian in this case. Figure 3 illustrates the
details of our shift mapping techniques.

4.1. Shifting sensor subpaths

In photon density estimation, we assume that a gather point is de-
posited at the first diffuse vertex on a sensor subpath. The half-vector
copy shift mapping can be used without modification to generate the
offset sensor subpath here (see Figure 3a). During sensor subpath
tracing, each vertex can be classified based on the roughness of the
current sampled BSDF component [KMA∗15].

Equation 2 is expressed in the surface area measure, and the
Jacobian has to remain compatible with this measure. In gradient-
domain path tracing, the Jacobian of half-vector copy is expressed in
the solid angle measure, and so applying it in our context necessitates
a change of measure. Let the last two vertices on the base path be
zi and zi+1 during eye path tracing, the corresponding vertices on
an offset path be z′i and z′i+1, and the Jacobian in the solid angle
measure be Jω, the Jacobian in the area measure can be written as:

J = Jω

[
G(zi,zi+1)

G(z′i ,z
′
i+1)

][
cos(n′i ,z

′
i → z′i+1)

cos(ni,zi→ zi+1)

]
, (4)

where G is the geometry term and ni is the normal at path vertex i.
Note that if zi and z′i are specular, the Jacobian is simply 1.

4.2. Shifting light subpaths

We generate offset light subpaths in two steps: the position of the
last vertex on the offset light subpath (the offset photon) is first
determined (red vertex in Figure 3b), before computing the interme-
diate vertices to connect the offset photon to the base light subpath
(purple vertices in Figure 3c).

Step 1. Shift mapping is effective when the base path is perturbed
as little as possible. To do so in photon density estimation, we aim
to preserve the local photon distribution at the base and offset gather
points. First, a candidate location y∗s for the offset photon (yellow
vertex in Figure 3b) is determined as

y∗s = z′t +M′M−1(ys− zt) , (5)

where zt and z′t are the base and offset gather points, ys is the base
photon location, and M and M′ are transformation matrices that
displace a point from surface tangent space to world space at the
base and offset gather locations.

Since the candidate location is not guaranteed to lie on a surface,
we trace a ray from the preceeding vertex of the base photon towards
the candidate location, and use the intersection y′s = trace(ys−1→
y∗s ) as the offset photon location, where trace function returns ray
intersection with the scene geometry.

The Jacobian of this shift is∣∣∣∣∂y′s
∂ys

∣∣∣∣= ∣∣∣∣ ∂y′s
∂y∗s

∣∣∣∣ ∣∣∣∣∂y∗s
∂ys

∣∣∣∣= G(ys−1,y∗s )
G(ys−1,y′s)

, (6)

where we leverage the fact that the angles from ys−1 to y∗s and to y′s
are equal (due to the ray tracing trace function in the first term),
and we know the second term |∂y∗s /∂ys|= 1 by taking derivatives
of both sides of Equation 5.

Step 2. We choose different techniques to generate the intermediate
vertices and to form a complete connection according to the type
of scattering event at a vertex on the base path. For light subpaths
that end with DD configurations, the offset photon can be connected
directly to the preceeding vertex of the base photon. Since no new

intermediate vertex is introduced, the Jacobian is simply
∣∣∣ ∂y′s

∂ys

∣∣∣ in
this case.

For the other types of subpath configurations, we shift using a
variant of manifold exploration [JM12]: let the base light subpath be
y0 . . .ybyb+1 . . .ys, where yb is a diffuse vertex; the offset light sub-
path will have the form y0 . . .yby′b+1 . . .y

′
s, where the reconnection

to the base light subpath occurs at yb. The segment y′b+1 . . .y
′
s−1

contains new vertices generated by manifold exploration, when con-
necting yb to y′s. Note that the vertices in y′b+1 . . .y

′
s−1 can be purely

specular or glossy, and we treat these two cases differently.

Jacobian for specular chains The Jacobian is only required to
account for vertices that change during a shift. When vertices in
segment y′b+1 . . .y

′
s−1 are all purely specular, we only integrate over
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y′b+1 in the constrained path space integral; other vertices do not
appear due to their Dirac responses. The Jacobian here is

J =

∣∣∣∣∂y′b+1
∂yb+1

∣∣∣∣= ∣∣∣∣∂y′b+1
∂y′s

∣∣∣∣ ∣∣∣∣∂y′s
∂ys

∣∣∣∣ ∣∣∣∣ ∂ys

∂yb+1

∣∣∣∣ , (7)

where we compute the middle term according to Equation 6. Using
perturbation theory [JM12], we compute the third term as∣∣∣∣∂yb+1

∂ys

∣∣∣∣= G(yb,yb+1, . . . ,ys)

G(yb,yb+1)
, (8)

where G(yb,yb+1, . . . ,ys) is the generalized geometry term of the
specular chain yb . . .ys. We compute the first term in the same way.

Jacobian for glossy chains For subpaths with glossy vertices, the
formulation becomes more involved as we must consider the inte-
gration of glossy vertices that are normally classified as specular
events during a standard manifold walk. The Jacobian becomes

J =
∣∣∣∣∂[y′b+1 . . .y

′
s]

∂[yb+1 . . .ys]

∣∣∣∣=
∣∣∣∣∣∂[y′b+1 . . .y

′
s]

∂[o′b+1 . . .y
′
s]

∣∣∣∣∣
∣∣∣∣∂[o′b+1 . . .y

′
s]

∂[ob+1 . . .ys]

∣∣∣∣ ∣∣∣∣∂[ob+1 . . .ys]

∂[yb+1 . . .ys]

∣∣∣∣ ,
(9)

where ok denotes the half-vector at a vertex k. This determinant
has three terms which corresponds to replacing the integration over
y′b+1 . . .y

′
s to one over o′b+1 . . .y

′
s, and then applying the Jacobian

in this latter reparameterized space (the middle term), before con-
verting back to the original parameterization. The reformulation
of the area measure form of the path integral into an integral over
half-vectors was first proposed by Jakob and Marschner in their
manifold exploration work [JM12], and was later extended in Ka-
planyan et al.’s half-vector space light transport [KHD14]. Lehtinen
et al. [LKL∗13] also leveraged this idea to calculate the Jacobian in
their gradient-domain Metropolis light transport.

The middle term is easy to calculate: since every half-vector is
preserved during a manifold walk, the middle term simplifies to∣∣∂y′s/∂ys

∣∣, which can be computed as in Step 1. We compute the
first and third terms as follows: recall that, from perturbation the-
ory [JM12], it is possible to calculate the derivative blocks ∂ok/∂y j
and ∂yk/∂ys from half-vector constraints, for each k ∈ [b+1,s−1]
and j ∈ [b+1,s]. We assemble these blocks to build the Jacobian
matrix

C =

(
∂[ob+1 . . .ys]

∂[yb+1 . . .ys]

)
, (10)

for which the determinant |C| is the third term that we require.
Similarly, for the first term, let C′ =

(
∂[o′b+1 . . .y

′
s]/∂[y′b+1 . . .y

′
s]
)
.

If every vertex yb+1 . . .ys is glossy (but treated as specular during

manifold walks), the determinant
∣∣∣C′−1

∣∣∣ is the first term we require.

The only remaining issue is when there exists a combination
of purely specular and glossy vertices in the subpath segment
yb+1 . . .ys. Here, we must selectively discard certain columns
and rows in C′−1 before computing the determinant [JM12]:
specifically, the column k that corresponds to the half-vector
of any specular vertex k ∈ [b + 1,s− 1] is discarded because
the half-vector does not contribute to the integral. Similarly,
we discard row k + 1 since, when vertex k is specular, vertex
k + 1 does not contribute to the integral (see inlined figure).

Glossy

Glossy

Specular

Glossy

3.10-2

3.10-3

3.10-4

1 5 15

5.10-3

5.10-4

5.10-5

5.10-6

Time (min)

relMSE

L2 reconstructionThroughput

Figure 4: Modified Cornell Box with modified materials, rendered
with our shift mapping. Only paths where the preceeding vertex of a
photon is specular and glossy are considered. From left to right: the
throughput, L2 reconstruction, and the error plot of the throughput
and the reconstruction. Both throughput and L2 reconstruction error
converge. The L2 reconstruction error is an order of magnitude
lower than the throughput error, which confirms the correctness of
our shift mapping and Jacobians.

Glossy interactions originally treated as specular ones are de-
noted “S”, and red lines are the columns and rows we discard.

"S"

S

D

"S"

"S"

Figure 4 demonstrates the shift
mapping for two simple scenes
with specular and glossy materi-
als. The relative error plots in this
figure empirically demonstrate
the convergence and confirm that
the proposed shift mapping and
Jacobian are accurate.

4.3. Implementation details

Progressive photon mapping Our method can be easily imple-
mented atop stochastic progressive photon mapping [HJ09] by track-
ing the total flux of the offset paths. In our implementation, each
gather point stores the flux and total number of photons for both
the base and offset paths, which can be used to compute the gra-
dients. All flux values in the gather point share the same kernel
radius reduction rate. Note that density estimation is only applied to
the base gather points. For each base photon, we first compute its
flux contribution, then apply shift mapping to generate offset gather
points and offset photons. Finally, we compute the contribution of
the offset photons, and update the appropriate statistics (i.e., the
radii and the total number of photons).

Reversibility To ensure reversibility, we additionally ensure that
the line of sight from the preceeding vertex of the offset photon to
the base photon is not occluded. If the offset path fails this visibility
check, the shift is not reversible and the weight of this offset path
(used as a strategy to compute the gradients) is set to 1.
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Figure 5: Convergence plots across scenes, using relative MSE metric. Gradient-domain photon density estimation outperforms the primal-
domain algorithm for every scene. Our method also converges faster than GBDPT [MKA∗15] in scenes with complex light transport paths
(Torus and Veach-lamp). It also performs competitively on Bookshelf and also Sponza, a scene comprising completely diffuse light transport.

Multiple importance sampling As in previous gradient-domain
methods, we apply multiple importance sampling (MIS) to reduce
dipole artifacts that could occur during L2 reconstruction, especially
around concave corners. For a photon density estimation path, since
its sensor and light subpaths are sampled and shifted independently,
the balance heuristic for MIS can be expressed as

w(x) = p(y)p(z)
p(y)p(z)+ p(T (y))p(T (z)) |T ′(y)T ′(z)| , (11)

where the probabilities are in the area measure and T ′ denotes the
Jacobian of the shift for the corresponding subpaths.

Layered BSDFs We follow the same classification scheme for
glossy vertices, which could include both diffuse and specular com-
ponents, as in gradient-domain path tracing [KMA∗15]. A vertex is
classified as diffuse if its BSDF roughness is greater than an certain
threshold, and specular otherwise. For a path vertex that has a multi-
component BSDF, only one component is sampled and considered
at a time. Offset path vertices are initialized with the same material
type as their base path.

5. Results

We implemented our method in Mitsuba [Jak10], and compare
against stochastic progressive photon mapping [HJ09], the pub-
licly available implementations of gradient-domain path trac-
ing [KMA∗15], and gradient-domain bidirectional path trac-
ing [MKA∗15]. Unless other stated, we use the following parameter
settings: the λ parameter for Poisson reconstruction is set to a small
value, λ = 0.2, as in previous works [KMA∗15, MKA∗15]; the
density estimation radius is initialized using ray differentials, to
approximate the projected pixel size, and we use a (conservative)
reduction ratio of α = 0.9; we shoot 1 million photons per progres-
sive iteration, and the BSDF roughness threshold (see Section 4.3)
is set to 0.05.

We evaluate gradient-domain photon density estimation (GPM)
on four scenes: Torus, Bookshelf, Veach-Lamp, and Sponza. Our
error metric is relative mean square error relMSE = (1/n)∑(R−
I)2/(R2 + 0.001) where I is the reconstructed image and R is the
reference, and n is the number of pixels. In contrast to previous
works that use this metric [KMA∗15, MKA∗15], we found that

it is not necessary to discard any high error pixels. We compare
our method to stochastic progressive photon mapping (SPPM) and
gradient-domain bidirectional path tracing (GBDPT). We do not
include gradient-domain path tracing (GPT) as it only performed
on par with GBDPT on the teaser scene and the Sponza, but worse
elsewhere. More comprehensive results for GPT could be found in
our supplementary document.

Figure 5 compares the convergence across algorithms in an equal-
time setting with all scenes rendered up to 30 minutes. We output
renderings after every five photon passes and collect the images for
error measurement. Our technique and GBDPT need to compute
gradients and thus take more time than SPPM per photon pass as
shown in the plot.

As can be seen, GPM L1 reconstruction usually has lower error
than L2 reconstruction, especially at the later photon passes. GB-
DPT converges for all scenes except the Veach-Lamp; here GBDPT
cannot render the glass egg efficiently, which contributes to its slow
convergence. We include more comparisons, including relative error
maps and interactive comparisons, in our supplemental document.

Figure 6 compares equal-time renderings of our test scenes. As
can be seen, in general, GPM consistently outperforms both SPPM
and GBDPT in scenes dominated with SDS paths, like Torus and
the cupboard area in the Bookshelf scene. Since the gradients are
well estimated here, using an L2 reconstruction is sufficient to ob-
tain high-quality reconstructions. In contrast, GBDPT’s subpath
connection strategy is not able to efficiently sample SDS paths, caus-
ing these regions to appear darker than the ground truth. GBDPT’s
L2 reconstruction also causes dipole artifacts and is generally less
robust than L1 reconstruction in these scenarios. Therefore, in Fig-
ure 6, we compare our L2 reconstruction results with GBDPT’s L1
reconstructions. For scenes with mixed diffuse and glossy materials,
our method works comparably to GBDPT, and is still (significantly)
more efficient than SPPM.

Compared to SPPM, our method is 1.5 to 3.5× slower at each
photon pass. However, since our shift mapping generates coher-
ent light paths, the gradients converges much more quickly, which
results in our method’s superior overall performance compared to
SPPM (i.e., using fewer photon passes). In our method, the overhead
of each photon pass is mostly due to the manifold exploration we
perform, especially when it fails to find valid paths. In these cases,
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Figure 6: Equal time comparison between our technique using L2 reconstruction, stochastic progression photon mapping [HJ09] and
GBDPT [MKA∗15] with L1 reconstruction.
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Figure 7: Failure case: gradient-domain photon density estimation
is less efficient at complex glossy regions (red zoom-in) or regions
with very few photons visible to the camera (blue zoom-in). Gradient
bi-directional path tracing works more effectively in these cases.

manifold exploration spends all of its computational budget (i.e.,
maximum number of iterations) to move and project a path in the
manifold, but still eventually fails. To limit the impact of this worst-
case behavior, we set the maximum number of manifold exploration
iterations to 5 (default in Mitsuba is 20), which led to about a 30%
improvement in running time per photon pass without sacrificing
the quality of the gradients. We use the same setting for GBDPT.

5.1. Limitations

Our method is not without limitations. Most obvious is that gradient-
domain photon density estimation inherits the disadvantages of its
primal-domain counterpart: essentially, traditional photon mapping
tends to perform poorly when photons are gathered on a glossy sur-
face or very few photons are visible from the camera. This adversely
affects gradient-domain reconstruction (see Figure 7), and in these
scenarios gradient-domain bi-directional path tracing is generally
more effective.

6. Conclusions

We presented gradient-domain photon density estimation, a new
rendering algorithm that computes image-space gradients using a
photon density estimation framework. We show how ideas from
existing gradient-domain rendering algorithms need to be adapted
and extended in order to support gradient-domain density estimation:
shifting photon density estimation paths and treating sensor and light
subpaths separately before performing density estimation. We also
show how to compute the correct Jacobians during these shifts. Our
experiments demonstrate that this gradient-domain density estima-
tion technique is more efficiently than its primal domain counterpart,
and it also outperforms gradient-domain path tracing and gradient-
domain bi-directional path tracing in scenes with complex transport
due to e.g., SDS subpaths.

Several potential extensions of our work would be interesting
to pursue. We perform density estimation only once to merge a
vertex pair at the moment. It would be interesting to see how this
can be extended towards a truly bi-directional photon mapping
formulation. Another possible extension is to explore whether a
shift mapping technique that does not rely on manifold exploration

can still generate shifted paths that are robust to complex transport
since manifold exploration is computationally expensive in general.
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