
Markov Decision Processes

Sequential decision-making with perfect observation

Aditya Mahajan
McGill University

Lecture Notes for ECSE 506: Stochastic Control and Decision Theory
February 8, 2016

These examples illustrate how
to use Markov decision theory
to establish qualitative prop-
erties of optimal strategies.
Such properties are useful be-
cause:

they appeal to decision
makers,
they enable efficient com-
putation,
they are easy to imple-
ment.

Examples of Markov decision processes

Optimal gambling

Optimal inventory management

Power-delay trade-off in wireless

Call options

Optimal choice

Energy storage

Image credit: http://commons.wikimedia.org/wiki/File:Gambling-ca-1800.jpg

MDP Example: Optimal gambling

MDP–Optimal gambling(Aditya Mahajan)
1

Xt Xt +UtXt −Ut

Probability of winning and
loosing starting at Xt

Utility of gambler: log x

Description of an optimization problem faced by a gambler

Optimal
gambling

A gambler goes to a casino with an initial fortune of $x1 and places bets
over time and must leave after T bets. Let Xt denote the gambler’s
fortune after t bets. In this example, time denotes the number of times
that the gambler has bet.

At time t, the gambler may place a bet for any amount Ut less than his
current fortune Xt. If he wins the bet (denoted by the event Wt = 1),
the casino gives him the amount that he had bet. If he loses the bet
(denoted by the event Wt = −1), he pays the casino the amount that
he had bet.

The outcomes of the bets {Wt}Tt=1 are primitive random variables, i.e.,
they are independent of each other, of the gambler’s initial fortune, and
the gambler’s betting strategy. Let ℙ(Wt = 1) = p.

The gambler’s payoff is logXT. Find the optimal gambling strategy for
the gambler that maximizes the expected value of his payoff.

MDP–Optimal gambling(Aditya Mahajan)
2

Strategy Ut = Xt Strategy Ut = min{4, Xt} Strategy Ut = 0.4Xt

denotes u�[Xt]; denotes 30u�[logXt].

Mathematical setup of optimal gambling problem

Notation State : Xt ∈ ℝ≥0

Action : Ut ∈ ℝ≥0

Feasible actions: u�t(xt) = {ut ∈ ℝ≥0 : ut ≤ xt}

Dynamics Xt+1 = Xt +WtUt where Ut = gt(X1:t, U1:t−1)

Rewards Per step reward: rt(xt, ut) = 0
Terminal reward: rT(xT) = log xT

Illustration Fortune of gambler over time for three possible strategies for
x1 = 10, p = 0.6, T = 25 (1000 sample paths).

(* Parameters of the system *)
x1 = 10; p = 0.6; T = 25;
samplepaths = 1000;

(* Strategies to be tested *)
strategyA[x_] := x;
strategyB[x_] := Min[4, x];
strategyC[x_] := 0.4x;
strategyD[x_] := 0.6x;
strategyE[x_] := (2p-1)x; (* Optimal strategy *)

(* Generate outcomes of bets *)
W = Map[If[#1 == 1, 1, -1]&,
 RandomFunction[BernoulliProcess[p], {1, T-1}, samplepaths]["States"],
 {2}];

(* System dynamics *)
dynamics[x_, u_, w_] := x + w u

(* Simulate the state of the system for a particular Markov strategy
 Usage: X = Simulate[dynamics, strategy, #]& /@ W;
*)
Simulate[dynamics_, strategy_, noise_?ListQ] := FoldList [
 dynamics[#1, strategy[#1], #2]&,
 x1,
 noise
];

(* Generate a plot showing random samples and the mean process *)
ShowPlot [strategy_] := Module[{X, mean, log, axis},
 X = Simulate[dynamics, strategy, #]& /@ W;
 mean = Mean[X];
 log = Max[(#-1.5)*30,-5]& /@ Mean[Map[Log[#] &, X]];
 axis = Table[{ (v-1.5)*30, ToString[v] }, {v, {1.5, 2, 2.5, 3, 3.5, 4}}];
 plot = Show
 [ListLinePlot[X,
 PlotRange -> {{1,T}, {0,50}}, Axes -> False,
 Frame -> { {True, True}, {True, False} }, FrameTicks -> { {Automatic, axis}, {Automatic, None} },
 PlotStyle -> {Dashed, Opacity[0.7]}],

 ListLinePlot[mean,
 PlotRange -> {{1,T}, {0,50}}, Axes -> False,
 PlotStyle -> {AbsoluteThickness[3], RGBColor[0.8,0,0]}],

 ListLinePlot[log,
 PlotRange -> {{1,T}, {0,50}}, Axes -> False,
 PlotStyle -> {AbsoluteThickness[3], RGBColor[0,0,0.8]}]
]
];

plotA = ShowPlot[strategyA];
plotB = ShowPlot[strategyB];
plotC = ShowPlot[strategyC];
plotD = ShowPlot[strategyD];
plotE = ShowPlot[strategyE];

Export["output/gambling-strategies-a.pdf", plotA, ImageSize -> 72*3, Background -> None]
Export["output/gambling-strategies-b.pdf", plotB, ImageSize -> 72*3, Background -> None]
Export["output/gambling-strategies-c.pdf", plotC, ImageSize -> 72*3, Background -> None]
Export["output/gambling-strategies-d.pdf", plotD, ImageSize -> 72*3, Background -> None]
Export["output/gambling-strategies-e.pdf", plotE, ImageSize -> 72*3, Background -> None]

(* Mathematica generates huge figures. Reduce the size of the image
 Based on: http://stackoverflow.com/a/6013710/193149
*)
Export["output/gambling-strategies-a.pdf",
 First@Import["output/gambling-strategies-a.pdf"], Background -> None];
Export["output/gambling-strategies-b.pdf",
 First@Import["output/gambling-strategies-b.pdf"], Background -> None];
Export["output/gambling-strategies-c.pdf",
 First@Import["output/gambling-strategies-c.pdf"], Background -> None];
Export["output/gambling-strategies-d.pdf",
 First@Import["output/gambling-strategies-d.pdf"], Background -> None];
Export["output/gambling-strategies-e.pdf",
 First@Import["output/gambling-strategies-e.pdf"], Background -> None];

Mathematica code for gambling strategies
output/MDP-structure-temp-mathematica-0.tmp

MDP–Optimal gambling(Aditya Mahajan)
3

The optimal gambling problem is a special case of a MDP
MDP Dynamic Model Optimal Gambling

System
Dynamics

Xt+1 = ft(Xt, Ut,Wt) Xt+1 = Xt +WtUt

Information
Structure

Ut = gt(X1:t, U1:t−1) Ut = gt(X1:t, U1:t−1)

Objective
Function

u� [
T−1
∑
t=1

rt(Xt, Ut) + rT(XT)] u�[logXT]

Structure of
Controller

Using Markov strategies does not entail any loss of optimality

Ut = gt(Xt)

Dynamic
program

VT(xT) = rT(xT);

Vt(xt) = max
ut∈u�t(xt){

rt(xt, ut) + u�[Vt+1(ft(xt, ut,Wt))]},

t = T − 1, . . . , 1.

MDP–Optimal gambling(Aditya Mahajan)
4

Closed form solution of optimal gambling

Theorem When p ≤ 0.5:
the optimal strategy is to not gamble, specifically, gt(x) = 0;
the value function is Vt(x) = log x.

When p > 0.5:
the optimal strategy is to bet a fraction of the current fortune,
specifically, gt(x) = (2p − 1)x;
the value function is Vt(x) = log x + (T − t)C
where C = log 2 + p logp + (1 − p) log(1 − p).

MDP–Optimal gambling(Aditya Mahajan)
5

Backward induction proof of the solution (u� ≤ u�.u�)

Proof of Case 1:
p ≤ 0.5

Let p = ℙ(Wt = 1) and q = ℙ(Wt = −1). Then p ≤ 0.5 implies p ≤ q.
Proceed by backward induction.

Basis: For t = T, VT(x) = log x.
Induction hypothesis: For t = t + 1, Vt+1(x) = log x, and gt+1(x) = 0.
Induction step: Define Qt(x, u) = pVt+1(x + u) + qVt+1(x − u).
∂Qt(x, u)
∂u = p

x + u −
q

x − u < 0; ⟹ Qt(x, u) is decreasing in u

∴ gt(x) = arg max
u∈[0,x]

Qt(x, u) = 0; ⟹ Vt(x) = Qt(x, gt(x)) = log x.

MDP–Optimal gambling(Aditya Mahajan)
6

Backward induction proof of the solution (u� > u�.u�)

Proof of Case 2:
p > 0.5

Let p = ℙ(Wt = 1) and q = ℙ(Wt = −1). Then p > 0.5 implies p > q.
Proceed by backward induction.

Basis: For t = T, VT(x) = log x.
Induction hypothesis: For t = t + 1,

Vt+1(x) = log x + (T − t − 1)C, and gt+1(x) = (p − q)x;

where C = log 2 + p logp + q logq.
Induction step: Define Qt(x, u) = pVt+1(x + u) + qVt+1(x − u).

∂Qt(x, u)
∂u = p

x + u −
q

x − u; ⟹ Extremum u = (p − q)x.

and
∂2Qt(x, u)
∂u2 = − p

(x + u)2 −
q

(x − u)2 < 0;

∴ gt(x) = arg max
u∈[0,x]

Qt(x, u) = (p − q)x;

⟹ Vt(x) = Qt(x, gt(x)) = log x + (T − t)C.

MDP–Optimal gambling(Aditya Mahajan)
7

Utility of gambler: log x

Strategy Ut = 0.4Xt Strategy Ut = 0.6Xt Strategy Ut = 0.2Xt

denotes u�[Xt]; denotes 30u�[logXt].

Maximizing u�[logu�u�] does not maximize u�[u�u�]
Illustration Recall previous setup: x1 = 10, p = 0.6, T = 25 (1000 sample paths).

The strategy gt(x) = (p = q)x = 0.2x maximizes u�[logXT].
It does not maximize u�[XT] or u�[logXT].

Mathematica code for gambling strategies
output/MDP-structure-temp-mathematica-0.tmp

MDP–Optimal gambling(Aditya Mahajan)
8

Generalized model: If terminal reward is increasing in u�,
then value function is increasing in u� and decreasing u�
Generalization The terminal reward rT(x) is monotone increasing in x

Theorem For the generalized optimal gambling problem
For each x, the value function Vt(x) is monotone decreasing in t.
For each t, the value function Vt(x) is monotone increasing in x.

Proof: Vt(x) is
monotone in t

Let p = ℙ(Wt = 1) and Qt(x, u) = pVt+1(x + u) + (1 − p)Vt+1(x − u).

Then, Vt(x) = max
u∈[0,x]

Qt(x, u) ≥ Qt(x, 0) = Vt+1(x).

Proof: Vt(x) is
monotone in x

Proceed by backward induction.
Basis: By assumption, rT(x) is monotone increasing in x.
Induction hypothesis: Vt+1(x) is monotone increasing in x.
Induction step: ∀x1, x2, u ∈ ℝ≥0, such that x1 ≤ x2 and u ≤ x1,

Vt+1(x1) ≤ Vt+1(x2) ⟹ Qt(x1, u) ≤ Qt(x2, u).

∴ Vt(x1) = max
u∈[0,x1]

Qt(x1, u) ≤ max
u∈[0,x1]

Qt(x2, u) ≤ max
u∈[0,x2]

Qt(x2, u) = Vt(x2)

MDP–Optimal gambling(Aditya Mahajan)
9

Exercises and further reading on optimal gambling

1. For generalization of this problem, read: Sheldon M. Ross, “Dynamic Programming and
Gambling Models”, Advances in Applied Probability, Vol. 6, No. 3 (Sep., 1974), pp. 593-
606. http://www.jstor.org/stable/1426236

2. Find the expected reward of using the all-in strategy gt(x) = x.

3. Find the expected reward of using the proportional-betting strategy gt(x) = αx as a
function of α. Use this expression to optimize over the value of α.

4. Bonus question: Find conditions on the terminal reward function rT such that the optimal
gambling strategy is increasing in x.

Image credit: http://commons.wikimedia.org/wiki/File:Modern_warehouse_with_pallet_rack_storage_system.jpg

MDP Example: Optimal inventory management

MDP–Optimal inventory management(Aditya Mahajan)
1

Holding cost h(x)

{
ax, if x ≥ 0
−bx, if x < 0

Holding cost: h(x)

Description of an optimization problem faced by online
retailers in managing inventory

Inventory
management

Retail stores stockpile products in warehouses to meet the random
demand. Additional stocks are procured at regular intervals. Let Xt

denote the amount of stock before the t-th procurement. In this
example, time denotes the number of additional stock procurements.

At time t, the store may procure an addition stock Ut units at a cost of
$p per unit. Thus the total procurement cost is pUt.

The random demandWt is i.i.d. with distribution PW. The stock available
at the next time is Xt+1 = Xt+Ut−Wt, where a negative stock denotes
backlogged demand.

The holding cost for the stock is given by h(x) where a is the per-unit
storage cost and b is the per-unit backlog cost.

Per-stage cost is c(Xt+1, Ut) = h(Xt+1) + pUt. Find the optimal
inventory control strategy to minimize the expected total cost over
a finite horizon.

MDP–Optimal inventory management(Aditya Mahajan)
2

Strategy Ut = 10u�{x≤0} Strategy Ut = 10u�{x≤5} Strategy Ut = (7 − x)u�{x≤7}

Mathematical setup of the inventory management problem

Notation State : Xt ∈ ℤ
Action: Ut ∈ ℤ≥0

Dynamics Xt+1 = Xt +Ut −Wt, where Ut = gt(X1:t, U1:t−1).

Cost Per-stage cost: ct(xt+1, ut) = h(xt+1) + put

Terminal cost : cT(xT+1) = h(xT+1)

Illustration Cost incurred by the retail store for three possible strategies for x1 = 0,
p = 1, a = 2, b = 3, PW = Unif[0, 10], T = 25 (250 sample paths)

(* Parameters of the system *)
x1 = 0; p = 1; a = 2; b = 3; T = 25;
samplepaths = 250;

(* Assume that the demand is Uniform with width w *)
w = 10;

(* Strategies to be tested *)
strategyA[x_] := If[x <= 0, w, 0];
strategyB[x_] := If[x <= w/2, w, 0];
strategyC[x_] := If[x <= w - 3, w - x - 3, 0];

(* Generate random demand W ~ Unif[0, w]. *)
W = Table[RandomInteger[w, T], {samplepaths}]

(* System dynamics cost *)
dynamics[x_, u_, w_] := x + u - w - 1;

(* Cost *)
cost[x_, u_] := p*u + If[x < 0, -b*x, a*x];

(* Simulate the cost of a particular Markov strategy
 Usage: Cost = Simulate[dynamics, strategy, #]& /@ W;
*)
Simulate[dynamics_, strategy_, demand_?ListQ] := Module[{X, Cost},
 X = FoldList [
 dynamics[#1, strategy[#1], #2]&,
 x1,
 demand
];
 Cost = Rest@Accumulate[cost[#1, strategy[#1]]& /@ X]
]

(* Generate a plot showing random samples and the mean process *)
ShowPlot [strategy_] := Module[{Cost, mean},
 Cost = Simulate[dynamics, strategy, #]& /@ W;
 mean = Mean[Cost];
 plot = Show
 [ListLinePlot[Cost,
 Axes -> False,
 Frame -> { {True, True}, {True, False} },
 PlotRange -> {{1,T}, {1,400}},
 PlotStyle -> {Dashed, Opacity[0.7]}
],

 ListLinePlot[mean,
 Axes -> False,
 PlotRange -> {{1,T}, {1,400}},
 PlotStyle -> {AbsoluteThickness[3], RGBColor[0.8,0,0]}
]
]
];

plotA = ShowPlot[strategyA];
plotB = ShowPlot[strategyB];
plotC = ShowPlot[strategyC];

Export["output/inventory-management-a.pdf", plotA, ImageSize -> 72*3, Background -> None]
Export["output/inventory-management-b.pdf", plotB, ImageSize -> 72*3, Background -> None]
Export["output/inventory-management-c.pdf", plotC, ImageSize -> 72*3, Background -> None]

(* Mathematica generates huge figures. Reduce the size of the image
 Based on: http://stackoverflow.com/a/6013710/193149
*)
Export["output/inventory-management-a.pdf",
 First@Import["output/inventory-management-a.pdf"], Background -> None];
Export["output/inventory-management-b.pdf",
 First@Import["output/inventory-management-b.pdf"], Background -> None];
Export["output/inventory-management-c.pdf",
 First@Import["output/inventory-management-c.pdf"], Background -> None];

Mathematica code for inventory management
output/MDP-structure-temp-mathematica-1.tmp

MDP–Optimal inventory management(Aditya Mahajan)
3

Optimal inventory management is a special case of a MDP
MDP Dynamic Model Optimal inventory management

System
Dynamics

Xt+1 = ft(Xt, Ut,Wt) Xt+1 = Xt +Ut −Wt

Information
Structure

Ut = gt(X1:t, U1:t−1) Ut = gt(X1:t, U1:t−1)

Objective
Function

u� [
T
∑
t=1

ct(Xt, Ut, Xt+1)] u� [
T
∑
t=1

pUt + h(Xt+1))]

Structure of
Controller

Using Markov strategies does not entail any loss of optimality

Ut = gt(Xt)

Dynamic
program

VT+1(xT+1) = 0;

Vt(xt) = min
ut∈u�t(xt)

u�[ct(xt, ut, Xt+1) + Vt+1(Xt+1)

| Xt = xt, Ut = ut], t = T, . . . , 1.

MDP–Optimal inventory management(Aditya Mahajan)
4

Qualitative properties of the value function

Definition Yt = Xt +Ut

L(yt) = u� [a[yt −Wt]+ + b[Wt − yt]+], where [x]+ = max(0, x).

Qt(yt) = pyt + L(yt) + u�[Vt+1(yt −Wt)]

St = arg min
yt∈ℝ

Qt(yt)

Lemma L(y) is convex in y.

This result is true as long as the holding cost is convex.

Lemma Vt(x) = min
y≥x

Qt(y) − px and gt(x) = y∗t − xt where y∗t = argmin
y≥x

Qt(y).

Theorem ∀x, y, the functions Qt(y) and Vt(x) are decreasing in t.
∀t, Vt(x) + px is increasing in x.

MDP–Optimal inventory management(Aditya Mahajan)
5

Backward induction proof of qualitative properties

Proof of
monotonicity

in t

Proceed by backward induction.
Basis: For completeness, define QT+1(y) ≡ py.

By definition, QT+1(y) = py ≤ py + L(y) = QT(y).
By definition, VT+1(x) = 0 ≤ VT(x).

Induction hypothesis: Vt+1(x) ≤ Vt+2(x) for all x.
Induction step:

Qt(y) = py + L(y) + u�[Vt+1(y −W)]

≥ py + L(y) + u�[Vt+2(y −W)] = Qt+1(y)

Similarly,

Vt(x) = min
y≥x

Qt(y) − px

≥min
y≥x

Qt+1(y) − px = Vt+1(x)

Proof of
monotonicity

in x

In the next Theorem, we show that Qt(y) is convex in y for all t.
Therefore, Vt(x) + px = miny≥xQt(y) is increasing in x.

MDP–Optimal inventory management(Aditya Mahajan)
6

A base stock strategy is optimal

Theorem For all t, Qt(y) and Vt(x) are convex in y and x respectively.
Furthermore, Vt is given by

Vt(x) =
{
Qt(St) − px, if x ≤ St
Qt(x) − px, otherwise

and the optimal strategy is a base stock strategy given by

g∗t(xt) = [St − xt]+.

MDP–Optimal inventory management(Aditya Mahajan)
7

Qt(y)

ySt

min
y≥x

Qt(y)

xSt

argmin
y≥x

Qt(y)

xSt

g∗t(x) = [St − x]+

xSt

Backward induction proof of the optimal strategy

Proof Proceed by backward induction.
Basis:
QT(y) = py + L(y) and is, therefore, convex.
VT(x) = miny≥xQT(y) − px. The minimizing y = max(x, ST).
VT(x) is convex and has the desired form.

Induction hypothesis: Vt+1(x) is convex and has the desired form.
Induction step:
Qt(y) = py + L(y) + u�[Vt+1(y −Wt)] is convex.
Vt(x) = miny≥xQt(y) − px. The minimizing y = max(x, St).
Vt(x) is convex and has the desired form.

MDP–Optimal inventory management(Aditya Mahajan)
8

Further reading on optimal inventory management

1. The mathematical model of inventory management considered here was originally
proposed in the following seminal paper: Kenneth J. Arrow, Theodore Harris, Jacob
Marschak “Optimal Inventory Policy”, Econometrica, pp 250-272, Jul 1951.
http://www.jstor.org/stable/1906813

2. The optimality of base-stock policy was first presented in R. Bellman, I. Glicksberg and O.
Gross, “On the optimal inventory equation”, Management Science, pp 83-104, 1955.
http://www.jstor.org/stable/2627240

3. Bonus question: Find conditions under which the optimal thresholds St are decreasing
in t.

MDP Example: Optimal power-delay trade-off in
wireless communication

Transmitter
Fading
channel

Receiver

Buffer state Channel state

Application Application

MDP–Power-delay trade-off in wireless(Aditya Mahajan)
1

Design of rate-allocation protocol in wireless communication

Rate allocation
in MAC layer

In a cell phone, higher layer applications (voice, email, etc.) data packets;
these packets are buffered in a queue and the transmission protocol
decides how many packets to transmit at each step.

At time t, Xt ∈ ℤ≥0 packets are buffered in the queue; the transmission
protocol transmits Ut ≤ Xt, Ut ∈ ℤ≥0 packets, and Wt ∈ ℤ≥0 new
packets arrive. Thus, Xt+1 = Xt −Ut +Wt. The delay incurred by the
packets are proportional to d(Xt −Ut), where
d(⋅) is strictly increasing and convex; moreover d(0) = 0.

Power-allocation
in physical layer

The transmission protocol sets the transmit power such that the signal
to noise ratio (SNR) at the receiver, which depends on channel fading, is
sufficiently high.

At time t, St ∈ u� denotes the state of channel fading. The transmit
power is proportional to p(Ut) ⋅ q(St), where
p(⋅) is strictly increasing and convex; moreover p(0) = 0.
q(⋅) is strictly decreasing and convex.

MDP–Power-delay trade-off in wireless(Aditya Mahajan)
2

A Markov process with
transition matrix P is
stochasticmonotone if

Qik =∑
j≥k

Pij

is increasing in i for all
k.

Design of rate-allocation protocol in wireless communication

Primitive
variables

The initial state X1 has distribution PX.
The arrival process {Wt}Tt=1 is an i.i.d. process with distribution PW.
The channel state {St}Tt=1 is a stochastic monotone Markov process,
i.e., for any increasing function f∶ u� → ℝ,

h(s) = u�[f(St+1) | St = s] is increasing.

X1, {Wt}Tt=1, and {St}Tt=1 are mutually independent.

Objective The objective is to choose a transmission strategy (g1, . . . , gT) where

Ut = gt(X1:t, S1:t, U1:t−1)

to minimize the total expected cost

u� [
T

∑
t=1

c(Xt, St, Ut)]

where c(Xt, St, Ut) = p(Ut) ⋅ q(St) + d(Xt −Ut).

MDP–Power-delay trade-off in wireless(Aditya Mahajan)
3

Power-delay trade-off as a special case of MDP
MDP Dynamic Model Power-delay trade-off

System
Dynamics

Xt+1 = ft(Xt, Ut,Wt)
Xt+1 = Xt −Ut +Wt

{St}Tt=1 independent Markov process

Information
Structure

Ut = gt(X1:t, U1:t−1) Ut = gt(X1:t, S1:t, U1:t−1)

Objective
Function

u� [
T
∑
t=1

ct(Xt, Ut, Xt+1)] u� [
T
∑
t=1

d(Xt −Ut) + p(Ut)q(St)]

Structure of
Controller

Using Markov strategies does not entail any loss of optimality

Ut = gt(Xt, St)

Dynamic
program

VT+1(xT+1, sT+1) = 0;

Vt(xt, st) = min
ut∈u�t {

ct(xt, st, ut) + u�[Vt+1(Xt+1, St+1)

| Xt = xt, St = st, Ut = ut]}, t = T, . . . , 1.

MDP–Power-delay trade-off in wireless(Aditya Mahajan)
4

Qualitative properties of the value function

Theorem
(Monotonicity
and convexity)

∀t: Vt(x, s) is increasing in x for all s; and decreasing in s for all x.
∀t: Vt(x, s) is convex in x for all s.

Theorem
(Structural
property)

Let g∗ = (g∗1, . . . , g∗T) be an optimal strategy. Then,
∀t: g∗t(x, s) is increasing in x for all s.

Thus, the optimal strategy is monotone.

MDP–Power-delay trade-off in wireless(Aditya Mahajan)
5

Proof of monotonicity of value function

Proof We show that the model satisfies the sufficient conditions (C1) and (C2)
for monotonicity of value function (see notes on MDP theory).

First note that u�(x) = [0, x] satisfies:
u�(x) ⊆ u�(x′) for all x′ > x
For any x ∈ u�, u, u′ ∈ u� such that u′ < u, if u ∈ u�(x) then u′ ∈ u�(x).

Therefore, we can use the Theorem.

C1. For fixed x and u , ct(x, s, u) is decreasing in s
For fixed s and u, ct(x, s, u) is increasing in x.

C2. For a fixed x, {St}t≥1 is stochastic monotone.
For a fixed s and u, {Xt}t≥1 is stochastic monotone because for any
increasing v and x′ ≥ x

u�[v(x′ − u +W)] ≥ u�[v(x − u +W)]

Hence, the result follows from the theorem on monotonicity of value
functions.

MDP–Power-delay trade-off in wireless(Aditya Mahajan)
6

A direct proof of con-
vexity does not work.
For fixed s and u,
we can show that
Qt(x, s, u) is convex.
But minimum of con-
vex functions is not
convex.

Since u ≤ x − 1 and
ū ≤ x+1, we have that
v ≤ x and v̄ ≤ x. Thus,
the next state is given
by x − u +W.

Backward induction proof of convexity of value function

Proof
(Convexity)

Proceed by backward induction.
Basis: Fix s and x > 1. Let u = g∗T(x − 1, s) and ū = g∗T(x + 1, s).

VT(x − 1, s) + VT(x + 1, s) = QT(x − 1, s, u) + QT(x + 1, s, ū)

= d(x − 1 − u) + d(x + 1 + ū) + [p(u) + p(ū)]q(s)
by convexity of d(⋅) and p(⋅)

≥ d(x − v) + d(x − v̄) + [p(v) + p(v̄)]q(s)

= QT(x, s, v) + QT(x, s, v̄)

≥ 2min
u≥0

QT(x, s, u) = 2VT(x, s)

where v = ⌊(u + ū)/2⌋ and v̄ = ⌈(u + ū)/2⌉.
Thus, for a fixed s, VT(x, s) is convex in x.
Induction hypothesis: For fixed s, Vt+1(x, s) is convex in x.
Induction step:Follow the same argument as above with d(x − u)
replaced by

d(x − u) + u�[Vt+1(x − u +W,St+1) | St = s].

which is convex in x.

MDP–Power-delay trade-off in wireless(Aditya Mahajan)
7

Proof that optimal strategy is monotone

Proof Define:

ht(x − u, s) = d(x − u) + u�[Vt+1(x − u +W,St+1) | St = s]

which is increasing and convex in x − u. Since ht(x − u, s) is convex in
x − u, ∂2ht(x − u, s)/∂x∂u ≤ 0. Hence, ht is submodular in (x, u).
Thus, for a fixed u,

Qt(x, s, u) = p(u) ⋅ q(s) + ht(x − u, s)

is submodular in (x, u). Therefore, the optimal strategy is increasing in x.
(See notes on MDP theory).

MDP–Power-delay trade-off in wireless(Aditya Mahajan)
8

Additional properties for i.i.d. fading

Theorem
(i.i.d. fading)

Suppose {St}Tt=1 is an i.i.d. process. Then
∀t: Vt(x, s) is convex in s for all x.
∀t: g∗t(x, s) is increasing in s for all x.

Proof Since {St}t≥1 is i.i.d., ht(x−u, s) (defined on prev. slide) does not depend
on s and we can write it as ht(x − u). Thus,

Qt(x, s, u) = p(u)q(s) + ht(x − u)

∂2Qt/∂s2 = p(u)∂2q/∂s2 ≥ 0. Hence, Qt is convex in s.
Hence, Vt(x, s) is convex in s.

∂2Qt/∂s∂u = ṗ(u)q̇(s) ≤ 0. Hence, Qt is submodular in (s, u).
Hence, gt(x, s) is increasing in s (for a fixed x).

MDP–Power-delay trade-off in wireless(Aditya Mahajan)
9

Exercises and further reading on power-delay trade-off

1. The mathematical model of power-delay trade-off considered here is from: Randall Berry,
“Power and Delay Trade-offs in Fading Channels,” Phd Thesis, MIT, June, 2000,
http://www.ece.northwestern.edu/~rberry/thesis.pdf

2. For a more detailed characterization of the optimal transmission strategy when the
average power goes to zero, see: Randall Berry and Robert Gallager, “Communication
over fading channels with delay constraints,” IEEE Transactions on Information Theory,
vol. 48, pp. 1135–1149, May 2002.

3. For a more detailed characterization of the optimal transmission strategy when the
average delay goes to zero, see: Randall Berry, “Optimal power-delay trade-offs in fading
channels—small delay asymptotics,” IEEE Transactions on Information Theory, vol. 59,
no. 6, pp. 3939-3952, June 2013.

Image credit: http://commons.wikimedia.org/wiki/File:Sao_Paulo_Stock_Exchange.jpg

Optimal Stopping Example: Call options

MDP–Call options(Aditya Mahajan)
1

p

Price of a stock
with independent increments

An optimization problem arising in trading of call options

Call options An investor has a call option to buy one share of a stock at a fixed price
of $p and has T days to exercise this option. For simplicity, assume that
the investor makes a decision at the beginning of each day.

If the investor exercises the option when the stock price is $x, he gets
$(x − p). The investor may decide not to exercise this option at all.

Assume that the price of the stock varies with independent increments.
More precisely, the value Xt of the stock on day t is

Xt = X0 +
t

∑
k=1

Wt

where {Wt}Tt=1 is an i.i.d. process independent of X0. Assume that
u�[Wt] = μW < ∞.

Let τ denote the day stopping time when the investor exercises his
option. Find the optimal investment strategy for the investor that
maximizes u�[(Xτ − p)u�[τ ≤ T]].

MDP–Call options(Aditya Mahajan)
2

This problem is an op-
timal stopping problem
in which a single stop-
ping decision has to be
made: when to exer-
cise the option.

Strategy Ut = u�[Xt > p + 8σ2] Strategy Ut = u�[Xt > p + 16σ2] Strategy Ut = u�[Xt > p + 32σ2]

Mathematical setup of call options

Notation State : Xt ∈ ℝ≥0

Action: Ut ∈ {0, 1}
Ut = 0 means do not exercise the option;
Ut = 1 means exercise the option.

Dynamics Xt+1 = Xt +Wt, where Ut = gt(X1:t, U1:t−1)

Cost Continuation reward: ct(Xt) = 0
Stopping reward : c∗(Xt) = Xt − p

Illustration Profit earner by the investor for three possible strategies for p = 50,
μ = 2, σ2 = 1, x0 ∼ u�(p, σ2),W ∼ u�(μ, σ2) (250 sample paths)

(* Parameters of the system *)
p = 50; mu = 2; sigma = 1; T = 25; samplepaths = 250;

(* Strategies to be tested *)
strategyA[{x_,s_}] := If[x <= p + 8sigma, False, True];
strategyB[{x_,s_}] := If[x <= p + 16sigma, False, True];
strategyC[{x_,s_}] := If[x <= p + 32sigma, False, True];

(* Generate random shocks in prices *)
x0 = RandomVariate[NormalDistribution[p, sigma]] ;
W = Table[RandomVariate[NormalDistribution[mu, sigma], T], {samplepaths}];

(* Dynamics *)
dynamics[{x_, s_}, u_, w_] := { Max[x + w, 0], s || u };

(* System dynamics cost *)
cost[{x_, s_}, u_] := If[Not@s && u, x - p, 0]

(* Simulate the cost of a particular Markov strategy
 Usage: Cost = Simulate[dynamics, strategy, #]& /@ W;
*)
Simulate[dynamics_, strategy_, shock_?ListQ] := Module[{State, Cost},
 State = FoldList [
 dynamics[#1, strategy[#1], #2]&,
 {x0, False},
 shock
];
 Cost = Rest@Accumulate[cost[#1, strategy[#1]]& /@ State]
];

(* Generate a plot showing random samples and the mean process *)
ShowPlot [strategy_] := Module[{Cost, mean},
 Cost = Simulate[dynamics, strategy, #]& /@ W;
 mean = Mean[Cost];
 plot = Show
 [ListLinePlot[Cost,
 Axes -> False,
 Frame -> { {True, True}, {True, False} },
 PlotRange -> {{1,T}, {1, 8(mu + sigma)}},
 PlotStyle -> {Dashed, Opacity[0.7]}
],

 ListLinePlot[mean,
 Axes -> False,
 PlotRange -> {{1,T}, {1, 8(mu + sigma)}},
 PlotStyle -> {AbsoluteThickness[3], RGBColor[0.8,0,0]}
]
]
];

plotA = ShowPlot[strategyA];
plotB = ShowPlot[strategyB];
plotC = ShowPlot[strategyC];

Export["output/call-options-a.pdf", plotA, ImageSize -> 72*3, Background -> None]
Export["output/call-options-b.pdf", plotB, ImageSize -> 72*3, Background -> None]
Export["output/call-options-c.pdf", plotC, ImageSize -> 72*3, Background -> None]

(* Mathematica generates huge figures. Reduce the size of the image
 Based on: http://stackoverflow.com/a/6013710/193149
*)
Export["output/call-options-a.pdf",
 First@Import["output/call-options-a.pdf"], Background -> None];
Export["output/call-options-b.pdf",
 First@Import["output/call-options-b.pdf"], Background -> None];
Export["output/call-options-c.pdf",
 First@Import["output/call-options-c.pdf"], Background -> None];

Mathematica code for call options
output/MDP-structure-temp-mathematica-2.tmp

MDP–Call options(Aditya Mahajan)
3

Call options is a special case of a MDP
MDP Dynamic Model Call Options

System
Dynamics

Xt+1 = ft(Xt, Ut,Wt) Xt+1 = Xt +WtUt

Information
Structure

Ut = gt(X1:t, U1:t−1) Ut = gt(X1:t, U1:t−1)

Objective
Function

u� [
T
∑
t=1

rt(Xt, Ut)] u� [Xτ − p]

Structure of
Controller

Using Markov strategies does not entail any loss of optimality

Ut = gt(Xt)

Dynamic
program

VT+1(xT+1) = 0;

Vt(xt) = max
ut∈u�t {

rt(xt, ut) + u�[Vt+1(Xt+1)

| Xt = xt, Ut = ut]}, t = T, . . . , 1.

MDP–Call options(Aditya Mahajan)
4

Qualitative properties of the value function

Dynamic
Porgram

VT+1(x) = 0
Vt(x) = max{x − p,u�[Vt+1(x +W)]}

Theorem
(Monotonicity
properties)

∀t: Vt(x) is increasing in x
∀t: Vt(x) − x is decreasing in x.
∀x: Vt(x) is decreasing in t.

Theorem
(Structural
properties)

There exist numbers s1 ≥ s2 ≥ ⋅ ⋅ ⋅ ≥ sT such that it is optimal to
exercise an option at time t iff xt ≥ st. Hence, the optimal strategy is
of threshold type.

MDP–Call options(Aditya Mahajan)
5

maximum of two
increasing functions

maximum of a constant
and a decreasing function

Backward induction proof of monotonicity properties

Proof of
monotonicity
properties

Proceed by backward induction.
Basis:
VT(x) = max{x − p, 0} is increasing in x.
VT(x) − x = max{−p,−x} is decreasing in x.
VT(x) = max{x − p, 0} ≥ VT+1(x).

Induction hypothesis: Assume that all results are true for t = t + 1.
Induction step:
Vt(x) = max{ x − p⏟

increasing in x

,u�[Vt+1(x +W)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
increasing in x

} is increasing in x.

Vt(x) − x is decreasing in x because

Vt(x) − x = max{ −p⏟
const

,u�[Vt+1(x +W) − (x +W)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
decreasing in x

+μW}

By the induction hypothesis Vt+1(x) ≥ Vt+2(x). Thus,

Vt(x) = max{x − p,u�[Vt+1(x +W)]}

≥ max{x − p,u�[Vt+2(x +W)]}

= Vt+1(x)

MDP–Call options(Aditya Mahajan)
6

x∘ x

st+1 st
[)St

[)St+1

Backward induction proof of the structural properties

Lemma If the selling action is optimal at x∘, then it is optimal at all x ≥ x∘.

Proof Let x ≥ x∘. Since the selling action is optimal at x∘.

−p ≥ u�[Vt+1(x∘ +W)] − x∘ ≥ u�[Vt+1(x +W)] − x

where the second inequality follows from monotonicity of Vt(x) − x.

Proof of the
structural
property

Define St = {x : gt(x) = 1} or equivalently, {x : x − p ≥ u�[Vt+1(x +W)}.
The previous lemma shows that St is of the form [st,∞) where st =
minSt. This proves the structural result.

To show that {st}Tt=1 is decreasing, we show that St ⊆ St+1. Let x ∈ St,
then x − p ≥ u�[Vt(x +W)] ≥ u�[Vt+1(x +W)] Hence, x ∈ St+1.

MDP–Call options(Aditya Mahajan)
7

Exercises and further reading on option pricing

1. The mathematical model of option pricing considered here was originally investigated
in the following paper: Howard M. Taylor, “Evaluating a Call Option and Optimal Timing
Strategy in the Stock Market”, Management Science, Vol. 14, No. 1, pp. 111-120, Sep
1967.
http://www.jstor.org/stable/2628546

2. Show that if μW > 0, then st = ∞ for all t. Thus, the result presented here is useful only
when the mean drift is negative.

3. Bonus question: Find a closed form expression for Vt(x) whenW ∼ u�(μ, σ2).

Image credit: http://www.americanscientist.org/issues/feature/2009/2/knowing-when-to-stop/

Optimal Stopping Example: Optimal choice

MDP–Optimal choice(Aditya Mahajan)
1

Optimal choice of the best alternative

Optimal choice A decision maker (DM) wants to select the best alternative from a
set of T alternatives. The DM evaluates the alternatives sequentially.
After evaluating alternative t, the DM knows whether alternative t was
the best alternative so far or not. Based on this information, the DM
must decide whether to choose alternative t and stop the search, or
to permanently reject alternative t and evaluate remaining alternatives.
The DM may reject the last alternative and not make a choice at all.

All alternatives are equally likely to be the best.

Find the optimal choice strategy thatmaximize the probability of picking
the best alternative.

This optimization problem is known by different names including secretary
problem (in which the alternatives correspond to finding the best
candidate as a secretary), marriage problem (in which the alternatives
correspond of find the best spouse), Googol (in which the alternatives
consist of finding the biggest number), parking problem (in which the
alternatives correspond to finding the nearest parking spot) and so on.

MDP–Optimal choice(Aditya Mahajan)
2

The problem is an op-
timal stopping problem
in which a single stop-
ping decision has to be
made: when to select
the current alternative.

Optimal choice of the best alternative

Notation State : Xt ∈ {0, 1}.
Xt = 1 means that the current alternative is the best so far.

Action: Ut ∈ {0, 1}.
Ut = 1 means to choose alternative t
Ut = 0 means to reject alternative t

Dynamics {Xt}Tt=1 independent with ℙ(Xt = 1) = 1/t.

Reward The continuation reward is zero.
The DM receives a stopping reward only if the current alternative is the
best (i.e., better than all previous alternatives (so Xt = 1) and better
than all future alternatives (so Xt+1:T = 0).

The expected stopping reward conditioned on Xt is

r∗t(Xt) = Xt ⋅ℙ(Xt+1:T = 0 | Xt = 1) = Xt ⋅
t
T.

MDP–Optimal choice(Aditya Mahajan)
3

Optimal choice is a special case of a MDP
MDP Dynamic Model Optimal choice

System
Dynamics

Xt+1 = ft(Xt, Ut,Wt) Xt+1 independent

Information
Structure

Ut = gt(X1:t, U1:t−1) Ut = gt(X1:t, U1:t−1)

Objective
Function

u� [
T
∑
t=1

rt(Xt, Ut)] u� [Xτ ⋅ τ/T]

Structure of
Controller

Using Markov strategies does not entail any loss of optimality

Ut = gt(Xt)

Dynamic
program

VT+1(xT+1) = 0;

Vt(xt) = max
ut∈u�t {

rt(xt, ut) + u�[Vt+1(Xt+1)

| Xt = xt, Ut = ut]}, t = T, . . . , 1.

MDP–Optimal choice(Aditya Mahajan)
4

Qualitative properties of the value function

Dynamic
Program

VT+1(x) = 0

Vt(x) = max
{
x ⋅ tT,u�[Vt+1(Xt+1)}

Lemma Define

Lt = Vt(0) =
t

t + 1Vt+1(0) +
1

t + 1Vt+1(1).

Then:

Vt(1) = max
{
t
T, Lt}

and therefore:

Lt − Lt+1 = [
1
T −

Lt+1
t + 1]

+
with LT = 0.

Note that it is never optimal to select an alternative if it is not the best
so far (i.e., Xt = 0). Thus, we can completely characterize an optimal
strategy by solving for {Lt}Tt=1 in a backward manner.

MDP–Optimal choice(Aditya Mahajan)
5

Structure of optimal strategy

Theorem
(Critical time)

There exists a critical time t0, t0 < T, such that it is optimal to reject
all alternatives until t0 − 1.
The critical time is the smallest integer t such that

T−1

∑
k=t

1
k < 1

The value functions are given by

Lt =
⎧

⎨
⎩

t
T

T−1
∑
k=t

1
k for t ≥ t0

Lt0 for t < t0

The optimal strategy is reject the first t0 − 1 alternatives and then
select the first alternative superior to all predecessors, if one such
occurs.
For large T, t0 ≈ T/e and the probability of selecting the best candidate
is ≈ 1/e.

MDP–Optimal choice(Aditya Mahajan)
6

t0

Proof of structural properties

Proof Lt − Lt−1 ≥ 0, thus Lt is non-increasing with t.
Vt(1) = max{t/T, Lt} where t/T is increasing with t and Lt is non-
increasing with t. Thus, the critical time t0 is the first time when
t/T ≥ Lt. Since LT = 0 and T/T = 1, such a t0 < T.
For any t such that t/T < Lt,

Lt−1 = Lt + [
1
T −

Lt
t]

+
= Lt.

For any t such that t/T ≥ Lt, we have that (t + 1)/T ≥ Lt+1. Thus,

Lt = Lt+1 +
1
T −

Lt+1
t + 1 =

t
T [
1
t +

T
t + 1Lt+1]

For large T,
T−1

∑
k=t

1
k ≈ ∫

T

k=t

1
k dk = log

(
T
t)

Thus, t0 = T/e. Moreover,

V1(0) = V1(1) = L1 = Lt0 ≈
t0
T =

1
e.

MDP–Optimal choice(Aditya Mahajan)
7

Exercises and further reading on optimal choice

1. The mathematical model of optimal choice considered here is adapted from John P.
Gilbert and Frederick Mosteller, “Recognizing the Maximum of a Sequence,” Journal of the
American Statistical Association Vol. 61, No. 313, pp. 35-73, Mar 1966.
http://www.jstor.org/stable/2283044

2. For a history of the variations of this problem, see Thomas S. Ferguson, “Who Solved the
Secretary Problem?,” Statistical Science, vol. 4, no. 3, 282-289, 1989.
http://projecteuclid.org/euclid.ss/1177012493

3. Let {Wt}Tt=1 be continuous valued i.i.d. random variables with PDF fW. Let Xt be the
indicator function of the event that {Wt ≥ max{W1:t−1}}. Then show that {Xt}Tt=1 are
independent and ℙ(Xt = 1) = 1/t.

Image credit: http://en.wikipedia.org/wiki/File:Giant_photovoltaic_array.jpg

MDP Example: Energy storage in renewable
generation

MDP–Energy storage(Aditya Mahajan)
1

To be written

Image credit: http://commons.wikimedia.org/wiki/File:Gambling-ca-1800.jpg

MDP Example: Optimal gambling

Image credit: http://commons.wikimedia.org/wiki/File:Modern_warehouse_with_pallet_rack_storage_system.jpg

MDP Example: Optimal inventory management MDP Example: Optimal power-delay trade-off in
wireless communication

Transmitter
Fading
channel

Receiver

Buffer state Channel state

Application Application

Image credit: http://commons.wikimedia.org/wiki/File:Sao_Paulo_Stock_Exchange.jpg

Optimal Stopping Example: Call options

Image credit: http://www.americanscientist.org/issues/feature/2009/2/knowing-when-to-stop/

Optimal Stopping Example: Optimal choice

Image credit: http://en.wikipedia.org/wiki/File:Giant_photovoltaic_array.jpg

MDP Example: Energy storage in renewable
generation

