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Linear Quadratic Regulation (LQR)

Notation State : Xt ∈ ℝn

Action: Ut ∈ ℝm

Dynamics Xt+1 = 𝐀tXt +𝐁tUt, where 𝐀t ∈ ℝn×n, 𝐁t ∈ ℝn×m.

Cost Per step cost : ct(xt, ut) = ‖xt‖2𝐐t
+ ‖ut‖2𝐑t

Terminal reward: cT(xT) = ‖xT‖2𝐐T

where ‖X‖𝐐 = X⊺𝐐X and for all t, 𝐐t = 𝐐⊺
t ⪰ 0 and 𝐑t = 𝐑⊺

t ≻ 0.

Control
objective

Choose Ut = gt(X1:t, U1:t−1) so as to minimize

J(𝐠) =
T−1

∑
t=1

ct(Xt, Ut) + cT(xT)

Regulation problem: keep the state of the system close to the origin.
Tracking problem: To keep the state of the system close to a reference
trajectory {x∘t}, use the cost

ct(xt, ut) = ‖xt − x∘t‖𝐐t + ‖ut‖𝐑t , cT(xT) = ‖xT − x∘T‖𝐐T .
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Deterministic LQR is a MDP
MDP Dynamic Model Deterministic LQR

System
Dynamics

Xt+1 = ft(Xt, Ut,Wt) Xt+1 = 𝐀tXt +𝐁tUt

Information
Structure

Ut = gt(X1:t, U1:t−1) Ut = gt(X1:t, U1:t−1)

Objective
Function

𝔼 [
T−1
∑
t=1

ct(Xt, Ut) + cT(XT)]
T−1
∑
t=1

ct(Xt, Ut) + cT(XT)

Structure of
Controller

Using Markov strategies does not entail any loss of optimality

Ut = gt(Xt)

Dynamic
program

VT(xT) = cT(xT);

Vt(xt) = max
ut∈𝒰t(xt){

ct(xt, ut) + 𝔼[Vt+1(ft(xt, ut,Wt))]},

t = T − 1, . . . , 1.
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Riccati equations are
named after Count Jacopo
Francesco Riccati (1670-
-1754) who studied the dif-
ferential equations of the
form
ẋ = ax2 + bt + ct2

and its variations. In mod-
ern control, such equations
arise in the calculus of vari-
ations and optimal filtering.
The discrete-time version
of these equations are also
named after Riccati.

Structure of optimal deterministic LQR

Theorem The value function at time t is

Vt(Xt) = ‖Xt‖2𝐒t

and the optimal control action is

Ut = −𝐇tXt

where the gain matrices 𝐇t are determined recursively as follows:

𝐇T = 0

𝐇t = [𝐑t +𝐁⊺
t 𝐒t+1𝐁t]−1𝚲t

where

𝚲t = 𝐁⊺
t 𝐒t+1𝐀t

and 𝐒t are determined by the backward Riccati difference equations:

𝐒T = 𝐐T

𝐒t = 𝐀⊺
t 𝐒t+1𝐀t +𝐐t −𝚲⊺

t [𝐑t +𝐁⊺
t 𝐒t+1𝐁t]−1𝚲t
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Completing the squares lemma

Lemma Let
x ∈ ℝn and u ∈ ℝm

𝐀 ∈ ℝn×n and 𝐁 ∈ ℝn×m

𝐑 ∈ ℝm×m and 𝐐 ∈ ℝn×n such that 𝐑 = 𝐑⊺ ≻ 0 and 𝐐 = 𝐐⊺ ⪰ 0.
Then

‖u‖2𝐑 + ‖𝐀x + 𝐁u‖2𝐐 = ‖u +𝐇x‖2𝐊 + ‖x‖2𝐋.

where
𝐊 = 𝐑+ 𝐁⊺𝐐𝐁, 𝐊 = 𝐊⊺ ≻ 0

𝐇 = 𝐊−1𝚲, where 𝚲 = 𝐁⊺𝐐𝐀

𝐋 = 𝐀⊺𝐐𝐀−𝚲⊺𝐊𝚲

Proof The result follows by completing the squares in two different ways.

LHS = u⊺𝐑u + u⊺𝐁⊺𝐐𝐁u+ x⊺𝐀⊺𝐐𝐀x + x⊺𝐀⊺𝐐𝐁u+ u⊺𝐁⊺𝐐𝐀x

RHS = u⊺𝐊u + x⊺𝐇⊺𝐊u + u⊺𝐊𝐇x + x⊺𝐇⊺𝐊𝐇x + x⊺𝐋x

Compare the coefficients of u⊺ ⋅ ⋅ ⋅ u, u⊺ ⋅ ⋅ ⋅ x, and x⊺ ⋅ ⋅ ⋅ x,
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Proof of the structure of optimal determistic LQR

Proof Proceed by backward induction.
Basis: VT(x) = cT(x) = ‖x‖2𝐐T

.

Induction hypothesis: Vt+1(x) = ‖x‖2𝐒t+1
.

Induction step:

Vt(x) = min
u [‖x‖2𝐐t

+ ‖u‖2𝐑t
+ Vt+1(𝐀tx + 𝐁tu)]

= min
u [‖x‖2𝐐t

+ ‖u‖2𝐑t
+ ‖𝐀tx + 𝐁tu‖2𝐒t+1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

completion of squares

]

= min
u [‖x‖2𝐐t

+ ‖u +𝐇tx‖2𝐊t
+ ‖x‖2𝐋t

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
]

where
𝐇t = [𝐑t +𝐁⊺

t 𝐒t+1𝐁t]−1𝚲t, where 𝚲t = 𝐁⊺
t 𝐒t+1𝐀t.

𝐋t = 𝐀⊺𝐒t+1𝐀t −𝚲⊺
t [𝐑t +𝐁⊺

t 𝐒t+1𝐁t]−1𝚲t.

Thus, the optimal control action is u = −𝐇tx and the optimal cost is

Vt(x) = ‖x‖2𝐐t
+ ‖x‖2𝐋t

= ‖x‖2𝐒t
, where 𝐒t = 𝐐t + 𝐋t.

Note that the update equation of 𝐒t is same as that in the Theorem.



Linear systems--State feedback(Aditya Mahajan)
6

Linear Quadratic regulator example
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Generalized LQR: Cross-term in cost

Minimizing
output error

Suppose that instead of minimizing the norm of the state Xt, we are
interested in minimizing the norm of the output Yt = 𝐂tXt +𝐃tUt. In
such a case, the per-step cost function will be of the form

ct(Xt, Ut) = ‖Xt‖2𝐐t
+ ‖Ut‖2𝐑t

+ 2X⊺
t𝐍tUt

Assume that the terminal cost function does not change, and

[

𝐐t 𝐍t

𝐍⊺
t 𝐑t ]

⪰ 0, or equivalently 𝐐−𝐍𝐑−1𝐍⊺ ⪰ 0.

Key Lemma ‖x‖2𝐐 + ‖u‖2𝐑 + 2x⊺𝐍u = ‖x‖2𝐐̃ + ‖u + 𝐑
−1𝐍⊺x‖2𝐑.

where 𝐐̃ = 𝐐−𝐍𝐑−1𝐍⊺.

Change of
variables

Let Ũt = Ut + 𝐑−1
t 𝐍⊺

t Xt. Then

Xt+1 = 𝐀̃tXt +𝐁tŨt, where 𝐀̃t = 𝐀t −𝐁t𝐑−1
t 𝐍⊺

t

Thus, the system is in the same form as the standard LQR.
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Generalized LQR: Cross-term in cost

Theorem The value function at time t is

Vt(Xt) = ‖Xt‖𝐒t

and the optimal control action is

Ut = −𝐇tXt

where the gain matrices 𝐇t are computed recursively as follows:

𝐇T = 0

𝐇t = [𝐑t +𝐁⊺
t 𝐒t+1𝐁t]

−1𝚲t

where

𝚲t = 𝐍⊺
t +𝐁⊺

t 𝐒t+1𝐀t

and 𝐒t are determined by the modified backward Riccati equations:

𝐒T = 𝐐T

𝐒t = 𝐀⊺
t 𝐒t+1𝐀t +𝐐t −𝚲⊺

t [𝐑t +𝐁⊺
t 𝐒t+1𝐁t]

−1𝚲t

Note that the only change from the standard LQR equations is in the
definition of 𝚲t.
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Generalized LQR: Proof for cross-term in cost

Proof Consider the system with the change of variables. The structure of the
optimal controller and the form of the value function are given as before.
Recall that Ut = Ũt − 𝐑−1

t 𝐍⊺
t Xt. Hence,

𝐇t = [𝐑t+𝐁⊺
t 𝐒t+1𝐁t]

−1𝐁⊺
t 𝐒t+1𝐀̃t+𝐑−1

t 𝐍t = [𝐑t+𝐁⊺
t 𝐒t+1𝐁t]

−1𝚲t

where
𝚲t = 𝐁⊺

t 𝐒t+1𝐀̃t + [𝐑t +𝐁⊺
t 𝐒t+1𝐁t]𝐑−1

t 𝐍t

= 𝐁⊺
t 𝐒t+1[𝐀t −𝐁t𝐑−1

t 𝐍⊺
t ] + [𝐑t +𝐁⊺

t 𝐒t+1𝐁t]𝐑−1
t 𝐍t

= 𝐁⊺
t 𝐒t+1𝐀t +𝐍⊺

t

Furthermore, since the terminal cost is the same as before, the initial
condition of the backward Riccati equation does not change. The Riccati
update is given by

𝐒t = 𝐀̃⊺
t 𝐒t+1𝐀̃t+𝐐̃t−[𝐁⊺

t 𝐒t+1𝐀̃t]
⊺
[𝐑t+𝐁⊺

t 𝐒t+1𝐁t]
−1
[𝐁⊺

t 𝐒t+1𝐀̃t]
Substituting the value of 𝐀̃t and 𝐐̃t and some (messy) algebraic
manipulation gives the result (see next page).
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Generalized LQR: Proof for cross-term in cost (cont.)

Proof (cont.) Ignore the subscripts for ease of notation.
1. Let 𝐊 = 𝐑+ 𝐁⊺𝐒𝐁. Thus, 𝐁⊺𝐒𝐁 = 𝐊− 𝐑.
2. 𝐀̃𝐒𝐀̃ = 𝐀𝐒𝐀+𝐍𝐑−1(𝐁⊺𝐒𝐁)𝐑−1𝐍⊺ − 2𝐀⊺𝐒𝐁𝐑−1𝐍⊺.
3. 𝐐̃ = 𝐐−𝐍𝐑−1𝐍⊺.
4. 𝐁⊺𝐒𝐀̃ = 𝐁⊺𝐒𝐀− (𝐁⊺𝐒𝐁)𝐑−1𝐍⊺ = 𝚲−𝐊𝐑−1𝐍⊺.
5. (𝐁⊺𝐒𝐀̃)⊺𝐊−1(𝐁⊺𝐒𝐀̃) = 𝚲⊺𝐊−1𝚲+𝐍𝐑−1𝐊𝐑−1𝐍⊺−2𝚲⊺𝐑−1𝐍⊺.
6. (2) + (3) - (5) = Result - 2[𝐍 +𝐀⊺𝐒𝐁 −𝚲⊺]𝐑−1𝐍⊺,

where the last term is zero by definition of 𝚲.
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LQR Tracking problem

Tracking setup Suppose that we want to ensure that the output signal Yt = 𝐂tXt is
close to a reference trajectory {y∘t}Tt=1. Then, the cost functions are

ct(Xt, Ut) = ‖𝐂tXt−y∘t‖2𝐐t
+‖Ut‖2𝐑t

, cT(XT) = ‖𝐂TXT−y∘T‖2𝐐T
.

Theorem The value function at time t is

Vt(Xt) = ‖Xt‖2St
+ αt

and the optimal control action is

Ut = −HtXt +H∘
trt+1

Recursive
computations

{𝐒t}Tt=1 and {𝐇t}Tt=1 follow the same recursion as before;

The gain matrices H∘
t are given by H∘

t = [𝐑t +𝐁⊺
t 𝐒t+1𝐁t]

−1𝐁⊺
t

The correction terms rt are given by

rT = 𝐂⊺
TQTy∘T, rt = [𝐀t −𝐁t𝐇t]

⊺rt+1 +𝐂⊺
t𝐐ty∘t

The tracking error αt is given by

αT = ‖y∘T‖2𝐐T
, αt = ‖y∘t‖2𝐐t

− 2r⊺t+1𝐁t[𝐑t +𝐁⊺
t 𝐒t+1𝐁t]

−1𝐁⊺
t rt+1 + αt+1
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Certainty Equivalence
principle (Simon, 1948)
Let f∶ℝn × ℝm → ℝ and
X be a ℝn valued random
variable. If f is quadratic in
its arguments, then
u∗ = arg min

u∈ℝm
𝔼[f(X, u)]

= arg min
u∈ℝm

f(𝔼[X], u)

Note: f is quadratic means
f(x, u) = 𝐀x+𝐁u+ ‖x‖2𝐐+
‖u‖2𝐑 + x⊺𝐆u + α where all
matrices are of appropriate
dimensions.

Stochastic Linear Quadratic Regulator (LQR) setup

Stochastic
dynamics

Xt+1 = 𝐀tXt +𝐁tUt +Wt, where 𝔼[WT ⊺W] = ΣW

The above model is similar to the deterministic LQR setup with the
exception that the state evolution is stochastic. The structure of the
optimal controller is as given below.

Theorem The value function at time t is

Vt(Xt) = ‖Xt‖2𝐒t
+ αt

and the optimal control action is

Ut = −𝐇tXt

where 𝐒t and 𝐇t follow the same recursion as before and

αT = 0

αt = αt+1 + Tr[𝚺W𝐒t+1] =
T

∑
τ=t+1

Tr[𝚺W𝐒τ]

Thus, the optimal controller is the same as in the deterministic case.
The only effect of the noise is to increase the value function. (This
phenomenon is unique to LQG systems).
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Proof of the structure of optimal stochastic LQR

The proof is similar to that of deterministic LQR and follows from the following observation.

Lemma For any particular values x ∈ ℝn and u ∈ ℝm, matrices 𝐀,𝐐 ∈ ℝn×n

and 𝐁 ∈ ℝn×m, and a random variableW such that 𝔼[W⊺W] = ΣW

𝔼[‖𝐀x + 𝐁u +W‖2𝐐] = ‖𝐀x + 𝐁u‖2𝐐 + Tr(𝐐ΣW)

Proof



The POMDP setup — Output feedback

Controller Observer

Plant

Process
Noise

Observation
Noise



Linear systems--Output feedback(Aditya Mahajan)
1

Problem formulation

Notation State : Xt ∈ ℝn Action: Ut ∈ ℝm

Observation: Yt ∈ ℝp

Dynamics Xt+1 = 𝐀tXt+𝐁tUt+Wt, where𝐀t ∈ ℝn×n,𝐁t ∈ ℝn×m,Wt ∈ ℝn.

Observations Yt = 𝐂tXt +Nt, where 𝐂t ∈ ℝp×n, Nt ∈ ℝp.

Random
variables

Primitive R.V.s {X1, N1:T,W1:T} are independent and Gaussian with

X1 ∼ 𝒩(0, ΣX), Nt ∼ 𝒩(0, ΣN), Wt ∼ 𝒩(0, ΣW).

Cost Per step cost : ct(xt, ut) = ‖xt‖2𝐐t
+ ‖ut‖2𝐑t

Terminal reward: cT(xT) = ‖xT‖2𝐐T

where ‖X‖𝐐 = X⊺𝐐X and for all t, 𝐐t = 𝐐⊺
t ⪰ 0 and 𝐑t = 𝐑⊺

t ≻ 0.

Control
objective

Choose Ut = gt(Y1:t, U1:t−1) so as to minimize

J(𝐠) = 𝔼𝐠
[
T−1

∑
t=1

ct(Xt, Ut) + cT(xT)]
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Sufficient statistic for control

Theorem
(Sufficient
statistic)

The state-estimate X̂t = 𝔼[Xt | Y1:t, U1:t−1] is a sufficient statistic for
control, i.e., there is no loss of optimality in restricting attention to
control laws of the form: Ut = gt(X̂t).

Kalman filtering This sufficient statistic is updated using the Kalman filtering equations

X̂t+1 = 𝐀tX̂t +𝐁tUt +𝐊t+1[Yt+1 −𝐂t+1X̂t]
where 𝐊t is the Kalman gain given by

𝐊t+1 = 𝐋t[𝚺N +𝐂t𝐏t𝐂⊺
t ]

−1 with 𝐋t = 𝐀t𝐏t𝐂⊺
t .

The initial mean is given by

X̂1 = . . .

and the covariance matrices 𝐏t are precomputable and are given by
forward Riccati difference equation

𝐏t+1 = 𝐀t𝐏t𝐀⊺
t + 𝚺W − 𝐋t[𝚺N +𝐂t𝐏t𝐂⊺

t ]
−1𝐋⊺

t

with

𝐏1 = . . .
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Structure of optimal controller

Theorem The value function at time t is

Vt(X̂t) = ‖X̂t‖2𝐒t
+ αt

and the optimal control action is

Ut = −𝐇tX̂t

where 𝐒t and 𝐇t follow the same recursion as before and

αT = Tr[𝐏T𝐐T]

αt = αt+1 + Tr[𝐏t𝐐t + (𝚺W +𝐀t𝐏t𝐀⊺
t − 𝐏t+1)𝐒t+1]

= Tr[𝐏T𝐐T] +
T−1

∑
τ=t

Tr[𝐏t𝐐t + (𝚺W +𝐀t𝐏t𝐀⊺
t − 𝐏t+1)𝐒t+1]
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Further Reading

1. The Kalman filter (and its generalization to non-linear systems called extended Kalman
filter) was used by NASA in the Ranger, Mariner, and Apollo missions, including the lunar
module of Apollo 11. For a history of Kalman filtering in NASA see:

Leonard A. McGee and Stanley F. Schmidt, “Discovery of the Kalman Filter
as a practical tool for aerospace and industry,” NASA Technical Memorandum
TM-86847, Nov 1985.

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19860003843_1986003843.pdf

2. A slightly more cumbersome form of “Kalman filter” was derived in:

Peter Swerling, “A proposed stagewise differential correlation procedure for
satellite tracking and prediction,” RAND Corporation report P-1292, Jan 1958; also
published in Journal of Astronomical Science, vol 6, 1959
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Problem formulation

The system consists of n agents.

Primitive
random variables

(X, Y1, . . . , Yn) jointly Gaussian with

𝔼[X] = x̄, 𝔼[Yi] = ȳi, cov(X, Yi) = Ξi, cov(Yi, Yj) = Σij.

Notation Observation of agent i: Yi

Action of agent i : Ui

Cost Let U = vec(U1, . . . , Un).

c(X,U) = U⊺𝐑U+U⊺𝐏X =
n

∑
i=1

n

∑
j=1
(Ui)⊺𝐑ijUj +

n

∑
i=1
(Ui)⊺𝐏iX

where𝐑 = [𝐑ij] is symmetric and positive definite and𝐏 = [𝐏⊺
1 , . . . , 𝐏⊺

n]⊺.

Control
Objective

Choose Ui = gi(Yi) so as to minimize

J(𝐠) = 𝔼𝐠[c(X,U)]



Witsenhausen Counterexample
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Problem Formulation

Primitive
variables

(X1, N2) zero mean independent (scalar) Gaussian.
var(X1) = σ2 and var(N2) = 1.

State equations X2 = X1 +U1

X3 = X2 −U2

Observations Y1 = X1

Y2 = X2 +N2

Cost k2U2
1 + X2

3

Objective Choose Ui = gi(Yi) to minimize the expected cost.

Note The dynamics are linear, cost is quadratic, and noise is Gaussian. But
the information structure is non-classical. Controller 2 does not know
the observation of controller 1.
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Reformulation using a change of variables

Reformulation Let X = X1, N = N2, and

f(x) = x + g1(x)

g(y) = g2(y)

Then,

J(f, g) = 𝔼 [k2(X − f(x))2 + (f(X) − g(f(X) + N))
2
]

The optimization problem is

J∗ = inf
(f,g)

J(f, g)

Theorem An optimal solution exists.

Remark The existence of an optimal solution was proved by Witsenhausen. For
the purpose of what we want to show, the existence result is not that
important.
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Structure of optimal strategies

Lemma 1. 0 ≤ J∗ ≤ min(1, k2σ2).
2. For any (f, g), there exists (f̃, g̃) such that

𝔼[f̃(X)] = 0, 𝔼[(X − f̃(X))2] ≤ σ2 and J(f̃, g̃) ≤ J(f, g).

Proof 1. Since the cost is positive, J∗ ≥ 0. Now consider the following two
strategies:
f(x) = 0, g(y) = 0. J(f, g) = 𝔼[k2X2] = k2σ2.
f(x) = x, g(y) = y. J(f, g) = 𝔼[(X − (X +N))2] = 1.

Hence, J∗ ≤ min(1, k2σ2).

2. If 𝔼[(X − f(X))2] ≥ σ2, then J(f, g) ≥ σ2. Set f̃(x) = 0 and g(y) = 0.
Then f̃ satifies the required conditions and J(f̃, g̃) = σ2 ≤ J(f, g).

If 𝔼[(X−f(X))2] ≤ σ2, then 𝔼[f(X)2] ≤ 4σ2 (why?). Therefore, 𝔼[f(X)]
exists. Let m = 𝔼[f(X)].

Define f̃(x) = f(x) −m and g̃(y) = g(y +m) −m.
𝔼[f̃(X)] = 0 and 𝔼[(X − f̃(X))2] = 𝔼[(X − f(X))2] − m2 ≤ σ2.
f̃(X) − g̃(f̃(X) + N) = f(X) − g(f(X) + N).

Consequently J(f̃, g̃) ≤ J(f, g).
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Performance of an affine strategy

Affine strategy From the previous lemma, we can restrict attention to strategies such
that 𝔼[f(X)] = 0. Thus, when considering affine strategies for the first
stage, we only need to consider f(x) = λx.

The best response to f(x) = λx is g(y) = μy where

μ = σ2λ2
1 + σ2λ2

The corresponding performance is

J(λ) = k2σ2(1 − λ)2 + σ2λ2
1 + σ2λ2

Proof Let X̃ = λX ∼ 𝒩(0, σ2λ2). Then, Y = X̃+N, and we want to choose g(y)
to minimize 𝔼[(X̃ − g(Y))2]. Since all random variables are Gaussian,
the best estimator is g(Y) = 𝔼 X̃ + ΣX̃YΣ−1

YYY and the corresponding
performance is ΣX̃X̃ − ΣX̃YΣ−1

YYΣ⊺
X̃Y. The result follows from observing

that

ΣX̃X̃ = σ2λ2, ΣYY = 1 + σ2λ2, and ΣX̃Y = σ2λ2.
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Best affine strategy

Best affine
strategy

Let λ = t/σ. Then, the best choice of t satisfies
t

(1 + t2)2 = k
2(σ − t)

Proof This follows by taking the derivative of J(λ) wrt λ and setting it to zero.

A family of
solutions

Let k2 < 1
4 and kσ = 1. Then,

λ = μ = 1
2 (1 ±√1 − 4k

2
) and J∗a = 1 − k2.

Proof It is easy to verify that this satisfies the solution above.
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Non-linear strategies can outperform the best lienar strategy

A non-linear
strategy

Note: This is different from the strategy presented in Witsenhausen’s
paper.

Consider

f(x) = σ sgn(x) and g(y) = λ sgn(y).

Let X̃ = f(X). Then,
J(f, g) = k2 𝔼[(X − X̃)2] + 𝔼[(X̃ − (X̃ + N))2]

= 2k2σ2
(
1 − 𝔼

[|
x
σ|])

+ 4σ2 ℙ(N > σ)

= 2k2σ2
(
1 −

√
2
π)

+ 4σ2 erfc(σ)

Comparison Let kσ = 1 and consider k → 0. Then

J∗a = 1 but J(f, g) = 2
(
1 −

√
2
π)

≈ 0.404

Thus, the non-linear strategy given above outperforms the best affine strategy!
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Appendix: Positive definite matrices

Positive definite A n × n symmetric matrix𝐌 is
positive definite (written as𝐌 ≻ 0) if

for any x ≠ 0, x ∈ ℝn, x⊺𝐌x> 0.

positive semi-definite (written as𝐌 ⪰ 0) if

for any x ≠ 0, x ∈ ℝn, x⊺𝐌x≥ 0.

Eigenvalues
characterization

A symmetric matrix is positive definite (resp., positive semi-definite) if
and only if all of its eigenvalues are positive (resp., non-negative).

Examples
[ x1 x2 ][

3 0
0 2 ][

x1
x2 ]

= 3x21 + 2x22 ⟹
[

3 0
0 2]

≻ 0.

[ x1 x2 ][

0 0
0 2 ][

x1
x2 ]

= 2x22 ⟹
[

0 0
0 2]

⪰ 0.
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Appendix: Linear estimation of Gaussian signals

Conditional
expectation
of Gaussian
vectors

Let (X, Y) be jointly Gaussian with mean μ = (μX, μY) and covariance

Σ =
[

𝚺XX 𝚺XY

𝚺⊺
XY 𝚺YY ]

. Then,

𝔼[X|Y] = μX + 𝚺XY𝚺−1
YY(Y − μY)

is a Gaussian random variable withmean μX and covariance𝚺XY𝚺−1
YY𝚺⊺

XY.

The mean square error (X − 𝔼[X|Y])2 is Tr[𝚺XX − 𝚺XY𝚺−1
YY𝚺⊺

XY].
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