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Abstract

When sampling audio signals for storage or coding prior
to transmission, one passes the signal through an anti-
aliasing filter. This filter prevents aliasing error when
the signal is reconstructed, but has the side-effect of
chopping off an important part of the spectrum of the
signal. In speech applications this results in a muffling
of the sound, while in musical applications it removes
the “sparkle” or brilliance of the sound. This removal of
a portion of the spectrum is referred to as “filtering er-
ror”. In this paper we show that, by using a nonuniform
sample sequence, with an appropriate anti-aliasing fil-
ter, one can whiten the spectrum of the filtering error
as well as allow more high frequency information to
be captured. The idea is that, for some audio applica-
tions, the added random noise will be less objectionable
than the muffling of the sound produced by standard
sampling.

1 Filtering Error in Sampled
Data Systems

It is well known that in order to uniformly sample
and reconstruct a signal without error, the signal can-
not have any frequency components greater than one
half the sampling rate (referred to as the Nyquist fre-
quency). If this constraint is not satisfied, the sampling
process will produce an overlapping of repetitions of
the signal spectrum, resulting in the so-called aliasing
error.

In practice one does not have control over the signals
that are to be sampled and, therefore, signals to be
sampled often do contain frequencies greater than the
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Nyquist frequency. In order to handle these sorts of sig-
nals, and avoid aliasing error, one must remove the fre-
quency components above the Nyquist frequency with
a lowpass filter. This filter is called an anti-aliasing
filter. The signal that is reconstructed from the sam-
ples is identical to the antialiased version of input sig-
nal. For most purposes this is sufficient. There are
many applications, however, for which the effect of the
anti-aliasing filter is deleterious. For example, the ex-
cessive lowpass filtering of speech encountered in low
bandwidth communication channels such as telephone
lines, causes a muffling of the sound, which reduces
intelligibility. Another example is the electronic mu-
sic “sampler”. These devices store digitized samples
of the sounds made by musical (or sometimes non-
musical) instruments which are then played back un-
der performer control. In order to economize on the
amount of memory used in the systems the product of
the sample length and the sampling rate is kept as low
as possible. For sounds with a long decay tail and sig-
nificant energy in high frequency components, such as
those of cymbals, this constraint results in either trun-
cation of the sound or a muffling, or loss of brilliance,
of the sound. ‘

The error in the reconstructed signal resulting from
the use of anti-aliasing filters is known as filtering er-
ror. Anti-aliasing has the drawback (for applications
whereing humans will be listening to the result) that
the filtering error is correlated with the input signal.
This plays a large part in the objectionableness of the
resulting sound to human ears. The objectionableness
of aliasing error is likewise due to the correlation of the
error with the signal. In contrast, error mechanisms
which result in random, wide band, errors which are
uncorrelated with the input signal are perceived-as be-
ing less objectionable by humans. The question which
arises, then, is: Is there a sampling and reconstruction
scheme whereby any errors that arise are uncorrelated
with the signal. That is, we want to come up with a-



way to whiten the filtering error (or perhaps the alias-
ing error if there is any) induced by the reconstruction
process.

In the remainder of the paper we propose a method
which does whiten the spectrum of the filtering error of
a sampling and reconstruction process. The filtering er-
ror using this method, although randomized, may also
be greater in magnitude than for the standard sampling
and reconstruction process. Whether the noise level is
increased unacceptably depends on the closeness of the
matching of the signals to the sampling scheme.

2 Nonuniform Sampling and
Reconstruction of Signals

The sample sequence used in a signal sampling and re-
construction system need not be uniform. Clark et al
[1] have shown that one can reconstruct a suitable class
of signals f(t) ezactly from their nonuniformly spaced
samples {f(t,)} with the following reconstruction for-
mula:

f@) = Y fltn)sine(x(t) —n) (1)

n=-—00
where 4(nT) = t,. The warping or distortion func-
tion ¥(t) is not uniquely determined by the constraint
imposed on it by the sample sequence. The space of
signals that is comprised of those signals for which the
above equation holds is defined by the particular choice
of ¥(t) that is made.

If a signal is not in the space of signals for which
the above equation holds there will neccessarily be an
error in the reconstruction of the signal. This error is
analogous to the aliasing error of the uniform sampling
and reconstruction approach. In order to avoid this
“aliasing” error it is expected that we need to apply
some sort of “anti-aliasing” filter to the signal. It is
not immediately obvious what form this anti-aliasing
operation is to take.

3 Anti-aliasing as Projection

Let us examine more closely the activity of the anti-
aliasing filter. To allow a clear generalization of anti-
aliasing to include non-uniform sampling and recon-
struction techniques let us look at filters as operators
(in the mathematical sense).

Let us first define the following signal spaces. Let
B, be the subspace of L?(R) consisting of signals that
are bandlimited to a frequency of wg. Let Br be the
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space of signals that satisfy equation (1) above, for a
given 7.

Let G be the bandlimit operator, i.e. the operator
that takes functions in L?(R) into the subspace B,,.

That is,

Gf(t) = f(t) * sinc(wet) (2)
where the * indicates the convolution operation. G is
easily seen to be a projection operator, since GG =
G. Thus the standard anti-aliasing filter for uniform
sampling can be thought of as performing a projection
into the space of bandlimited signals (with bandlimit
wg of the filter). If f(t) is bandlimited (to wg) then
Gf(t) = f(t), and f(t) is an eigenfunction (with unit
eigenvalue) of the bandlimit operator. In general we
can say that bandlimited signals are those signals that
are eigenfunctions (with unit eigenvalue) of bandlimit
operators.

Now let us consider the design of an anti-aliasing
filter for the case of non-uniform sampling. From the
projection operator point of view presented above we
see that the anti-aliasing filter for nonuniform sampling
is merely the projection operator related to the space
Br. Let us call this operator G. The signals which
satisfy equation (1) will be eigenfunctions (with unit
eigenvalue) of this projection operator. The form of
this projection operator has been derived by Shlomot
and Zeevi [4] and is given by

&= [ T (P siner(t) = dr (3)

Let T be the time warping operator defined by I'f(¢) =
f(v(@®)), with inverse T'"! defined by T~1f(t) =
F(y~(t)). Thus, using the above equation we can write

GIrf@t) = /_ O:o f(r)sine(y(t) — r)dr (4)

then we can write
r-1Grf@e) = / ” f(r)sine(t — T)dr = Gf(t) (5)

Hence we can see that
G/f(t) =TGI™'f(1) (6)

Note that GG = G, and hence G is a projection op-
erator. The projection operation for the nonuniform
sampling/reconstruction scheme can be seen to consist
of a time warping operation, followed by a bandlimiting
operation followed by an unwarping operation. From
equation (3) one can interpret the nonuniform antialis-
ing operation as filtering with a time varying lowpass

filter.



4 Filtering Error Spectrum

‘I'he filtering error will be zero for signals which are
cigenfunctions, corresponding to the unit eigenvalue,
of the projection operator used in the anti-aliasing op-
eration. In the case of uniform sampling these eigen-
functions are signals which are bandlimited to the
anti-aliasing filter cutoff frequency, wo. Signals which
arc bandlimited, but to a frequency higher than the
Nyquist frequency, will incur a nonzero filtering error,
as the frequency components above the Nyquist fre-
quency will be removed by the anti-aliasing filter. Sig-
nals that are non-bandlimited, such as FM (frequency
modulated) signals, will always incur some level of fil-
tering error, as they will always have some frequency
components above the Nyquist frequency.

The case of nonuniform sampling is somewhat more
complicated. Here, the eigenfunctions of the projec-
tion operator are generically (and perhaps always) non-
bandlimited [3]. This can be seen as follows. Let f(t)
be an eigenfunction of the anti-aliasing projection op-
erator defined by a time-warping I'. Then we have that

Gf(t)=(TGT™1)f = f

or
G-y =17

This means that, for f(¢) to be bandlimited, there must
exist a handlimited signal h(t) = G(F~1£(t)) for which
f(t) = Th(z) is bandlimited. The action of the T' oper-
ator is equivalent [1] to a phase modulation. It can be
shown [3] that phase modulated signals are generically
non-bandlimited.

One of the implications of the above is that, in
the case of nonuniform sampling, there is a class of
non-bandlimited signals (the eigenfunctions of the anti-
aliasing operator TGT'~! for which there is no filtering
error. Unlike the uniform sampling case, the nonuni-
form anti-aliasing filter passes through arbitrarily high
frequencies. The phase structure of these signals must
be precisely matched to the time warping function ¥(t)
for there to be no filtering error. In general, functions
that incur no filtering error are what Clark [2] refers
to as Generalized Phase Modulated Signals. These are
signals which are created by phase modulating ban-
dlimited signals with monotonic signals. For exam-
ple, if g(¢) is bandlimited, and 7(t) is monotonic, then
J{t) = g(v(t)) is a Generalized Phase Modulated Sig-
nal, and, in addition, will incur no filtering error when
sampled with a sequence that satisfies 7£n) =t,, and
reconstructed with a time varying filter G.
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Even for signals that are not eigenvalues of the anti-
aliasing operator, the nonuniform approach may be use-
ful. This is due to the fact that some high frequency
components of the signal are passed through. The an-
tialiased signal can be thought of as a superposition
of eigenfunctions of the anti-aliasing operator. Since
these are all generically bandlimited, there will be com-
ponents of the reconstructed signal at all frequencies.
Clearly some of these will be noise, or artifacts. For
example, if our input signal is bandlimited, then all
of the components of the reconstructed signal above
the Nyquist frequency will be artifacts of the recon-
struction process. In general it expected that some
high frequency (above the nominal Nyquist rate, as de--
fined by the average sampling rate) information will
be passed through. There will be, however, phase and
magnitude distortion of these high frequency compo-
nents. If the sampling sequence is somewhat random
(e.g. a random perturbation or deviation from a uni-
form sequence) then these distortions will be random as
well. Thus we will have acheived our goal or randomiz-
ing the filtering error in a sampling and reconstruction
scheme.

As an illustration of the ability of the anti-aliasing
filters for non-uniform sample sequence to pass through
some of the frequency components above the Nyquist
frequency we will look at the effect of the anti-aliasing
filters on a square wave signal. In figures 1 through
5 we show the effect of anti-aliasing on a square wave
signal for the case of uniform sampling and for the case
of random perturbations (uniformly distributed over a
range of £0.37 where T is the nominal sampling pe-
riod) of a uniform sampling sequence. The square wave
has a fundamental period of 100 time units, while the
effective sampling period (for the case of uniform sam-
pling is one time unit (i.e. the frequency of the square
wave is 1/100 cycles/time unit). The time invariant
lowpass filter used in both anti-aliasing filters has a
cutoff frequency of 1/8 cycles/time unit. Thus in the
case of uniform sampling the anti-aliasing filter should
pass through the first FLOOR(100/8)=12 harmonics of
the square wave fundamental frequency. :

Figure 1 shows the spectrum of the square wave
after being passed through the uniform anti-aliasing
time varying filter. Note that only odd harmonics are
present, and that the harmonics are passed through
up to the 11th harmonic. Harmonics 13 and above
are blocked by the anti-aliasing filter. Figure 2 shows
the signal after it passes through the uniform anti-
aliasing filter. Note the ringing due to the sharp cutoff
of the lowpass filter. Figure 3 shows the spectrum of
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Figure 1: The spectrum of the square wave after pass-
ing through the uniform anti-aliasing filter.
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Figure 2: The square wave signal after passing through
the uniform anti-aliasing filter.
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Figure 3: The spectrum of the square wave after pass-
ing through the nonuniform anti-aliasing filter.

the square wave after it passes through the nonuniform
anti-aliasing filter. Note the significant content in fre-
quencies above the Nyquist frequency. Note also the
presence of the higher harmonics of the square wave
(those above 11). It is observed that, above a fre-
quency of about 0.4, there seems to be even harmon-
ics present. This harmonic distortion may be due to
the above mentioned phase and magnitude distortion
by the reconstruction process and it may be that the
some of the higher odd harmonics have been shifted
in frequency so that they appear to be even harmon-
ics. Another factor that is immediately obvious is the
fact that the power in the harmonics in the stop band
(the frequencies above 0.125) are about 50 dB below the
level they are in the original signal. In fact, if one looks
at the antialiased signal, it looks almost identical with
the uniform antialiased signal (for this reason we do not
show it). One should also notice that the harmonics in
the stop band are about 10 dB above the noise. In an
attempt to raise the stop band harmonics to a reason-
able power level, we applied a stop band “inverse” filter,
which amplified the stop band frequencies between the
frequencies of 0.125 and 0.22 by 40dB. The frequen-
cies above .22 were not amplified (they were actually
attenuated by our inverse filter) as the harmonic dis-
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Figure 4: The spectrum of the square wave after pass-
ing through the nouniform anti-aliasing filter and the
“inverse” filter.

tortion seemed too large in this region. The spectrum
of the signal after this inverse filtering step is shown
in figure 4. Note that harmonics 13,15,17,19 and 21
Liave been restored, although their relative levels have
been distorted somewhat from what they should be. In
figure 5 we show the form of the signal as it leaves the
inverse filtering stage. It can be seen that the addi-
tional harmonics have sharpened up the square wave
edges, but have contributed overshoot of the edges, as
well as added some uncorrelated noise to the signal.
The effect of the extra harmonics can also be seen in
the flat parts of the square wave.

5 Discussion

The work presented here is a preliminary investigation
into the use of nonuniform sampling systems for digi-
tal storage and transmission of data. There are many
questions that needed to be addressed. A few of these
are: What is the perceptual effect of the nonuniform
sampling/reconstruction techniques on speech and mu-
sic signals? Is the result actually better in terms of hu-
man judgement than uniform sampling/reconstruction
methods? How much disorder is needed in the sample
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Figure 5: The square wave signal after passing through
the nonuniform anti-aliasing filter.

sequence to optimize the trade off between the desired
whitening or decorrelation of the filtering error and the
noise level? Can one develop generic random sample
sequences which minimize the noise levels while max-
imizing the decorrelation? Clearly, if we know some-
thing about the class of signals we are dealing with
we can to some extent match the sampling sequences
to the signal class. Eor example, in uniform sampling
schemes one determines the bandwidth of the signal
class and chooses the sampling rate accordingly. For a
class of Generalized Phase Modulated signals having a
common modulator, one can similarly define a suitable -
nonuniform sampling sequence. One could also con-
sider systems in which the signal class was estimated
from the signal itself and perform an implicit sampling
operation. For the case of nonuniform sampling this
estimation process is equivalent to a demodulation pro-
cess [2].

There is a similarity between the filtering error in-
curred by a sampling/reconstruction process that uses
anti-aliasing, and the aliasing error that is incurred by
processes that do not use any anti-aliasing. In both
cases, uniform sampling results in a reconstruction er-
ror that is correlated with the signal in a way that
is objectionable to human listeners. In addition to



whitening of the error due to anti-aliasing, nonuniform
sampling can also whiten the error due to lack of anti-
aliasing. Yellot [5] has demonstrated the effectiveness
of nonuniform sampling in whitening aliasing error in
the human visual system. In the retina there is no anti-
aliasing filter and signals with significant high spatial
frequency content can be imaged on the photorecep-
tor array. Yellot has shown that the randomness or
disorder of the photoreceptor distribution in the retina
breaks down the correlated nature of the aliasing error,
reducing the perceptual confusion that results from sig-
nal dependent aliasing error.
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