720 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10. NO. 5, SEPTEMBER 1988

It is important to note that the error caused by center offset is
not affected by the amount of image quantization [see (20)]. There-
fore, the larger the image quantization is, the larger the 3-D error
caused by quantization becomes, making the relative effect of cen-
ter offset on the overall 3-D error smaller. To demonstrate this phe-
nomenon, the same experiment as above was also done with the
image feature coordinate data deliberately perturbed by rounding
them to the nearest integer. This is equivalent to an additional ran-
dom noise of 1/+12 = 0.29 pels in both coordinates. The center
offset then increases the relative 3-D measurement error by a factor
of only 2.

V. CONCLUSIONS

Simple and effective techniques have been presented for cali-
brating the horizontal scale factor and the image center for 3-D
machine vision. Most of the techniques are accurate and efficient,
as verified by the results of real experiments. The results indicate
that image center calibration is important for high accuracy 3-D
measurement applications where the image feature extraction can
be done accurately due to the type of image features involved. This
is also confirmed by the presented theory.
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Singularity Theory and Phantom Edges in Scale
Space

JAMES J. CLARK

Abstract—The process of detecting edges in a one-dimensional signal
by finding the zeros of the second derivative of the signal can be inter-
preted as the process of detecting the critical points of a general class
of contrast functions that are applied to the signal. We show that the
second derivative of the contrast function at a critical point is related
to the classification of the associated edge as being phantom or authen-
tic. The contrast of authentic edges is shown to decrease with filter
scale, while the contrast of phantom edges are shown to increase with
scale. It is shown that as the filter scale increases, an authentic edge
must either turn into a phantom edge or join with a phantom edge and
vanish. The points in the scale space at which these events occur are
seen to be the singular points of the contrast function. Using ideas from
singularity, or catastrophe, theory one can show that the scale map
contours near these singular points are either vertical or parabolic.

Index Terms—Catastrophe theory, edge detection, phantom edges,
scale space, singularity theory.

I. INTRODUCTION

A common image representation that is used in computer vision
is one based on image edges, loosely defined as a set of points
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where the image intensity function changes significantly. An edge
based representation is sparser, and hence more computationally
efficient than an intensity based representation, but still captures
the important features of an image. Multiresolution edge based im-
age representations are based on filtering an image with lowpass
filters of various bandwidths, followed by an edge detection pro-
cess, which localizes the position of changes in the intensity of the
filtered images. Multiscale image representations have been used
in 2 number of computer vision algorithms, one of the most notable
being the multiresolution stereo vision algorithm developed by Marr
and Poggio [13]. One of the first multiresolution edge detection
methods was proposed by Rosenfield and Thurston [17]. More re-
cently, Marr and Hildreth [12] have proposed a multiresolution edge
detection method that is technically satisfying in many ways. They
use a Gaussian lowpass filter to perform the smoothing, and use
the zero crossings of the second derivative (Laplacian in two di-
mensions) to localize the edges. A Gaussian lowpass filter has the
impulse response: g(x) = (o 2#)_"9“‘1;'1/2”2) where n is the di-
mensionality of ¥. The factor ¢ controls the degree of smoothing;
a large o results in more smoothing than a small o.

One of the problems facing researchers in applying multireso-
lution image descriptions lies in how the information at different
scales is to be integrated effectively. Marr [11] has suggested that
edges that spatially coincide at different resolutions are somehow
physically significant, but no real justification for this was given.
Part of the problem with Marr’s approach is that it is difficult to
associate edges at widely different scales. Clearly, it would be eas-
ier to associate edges at different scales if the scales were fairly
similar. This leads to the idea of the scale space [19], [22] repre-
sentation of an image. The scale space is the Cartesian product of
the image plane and the ¢ = 0 ray, and as such involves a contin-
uum of scales. An edge at one scale can be associated with an edge
at another scale if one can continuously follow the edge from the
first scale to the second scale. The scale space concept is clearly a
general one, in that any type of smoothing can be used, and any
type of edge detection process can be used. However, the scale
space obtained by using a Gaussian filter has special properties
which make it the natural choice [2], [12], [23]. Thus many mul-
tiscale image representations used in computer vision are of this
type, which we will call Gaussian scale space.

The scale space map I of a function i(x) is defined as the set
of points for which the second derivative of the smoothed function
is zero (this is a map in the sense of a contour map). Fig. 1 shows
an example of the Gaussian scale space map of a one-dimensional
function.

In this correspondence we introduce a new formalism for de-
scribing the edge detection process. This formalism is based on the
fact that zeroes of the second derivative of a one dimensional func-
tion can be associated with the critical points of a contrast function.
The singular critical points of this contrast function will be shown
to play a critical role in the study of the properties of the scale space
map. Using the machinery of catastrophe or singularity theory, we
will show that the scale map contours can only be one of two types:
either they are curves which extend, without bending back, towards
infinite scale, or they are curves which bend over once and then
return back to zero scale. All other possible contour shapes are
either not allowed or are nongeneric. We also use the contrast func-
tion formalism to express how the classification of zero crossings
as either authentic or phantom (as developed by Clark [4]) changes
as the scale changes. This leads us to the concept of the reduced
scale space map, which consists of only those zero crossings which
are classified as authentic. The reduced scale space map is seen to
consist solely of contours which originate at zero scale and either
proceed, without bending back, towards infinite scale, or terminate
at a singularity of the contrast function.

II. PHANTOM EDGES IN SCALE SPACE

One of the nice properties of the Gaussian scale space map is its
well behavedness, as can be seen with a cursory examination of

| 1L .

Fig. 1. A one-dimensional Gaussian scale space map.

x

Fig. 1, which depicts the scale map of a random function. The
scale map contours are smooth and start at zero scale and either
proceed forever towards infinite scale or gracefully turn back to-
wards zero scale. The scale map contours can be shown to never
have minima (i.e., pits or potholes) (proofs of this property can be
found in many places [2], [9], [10], [23]; a proof based on the
methods described in this correspondence can be found in [S]).

The rather well behaved nature of the Gaussian scale space map
is somewhat deceptive, however, in that portions of the scale map
may not have any direct relationship to features in the unfiltered
image. Consider the step edge shown in Fig. 2(a). Suppose we
smooth this signal with a Gaussian lowpass filter to yield the signal
shown in Fig. 2(b). In this correspondence we will denote the un-
filtered signal by i(x) and the filtered function by f(x). We can
localize the position of the ‘‘edge’” in the smoothed signal by let-
ting the position of the edge be where the smoothed signal has
maximum slope, as shown in Fig. 2(c). If we have a step edge in
the opposite direction as shown in Fig. 3, it is clear that, to localize
the edge in the smoothed signal, we should associate the edge with
the point at which the smoothed signal has minimum slope. Thus,
in general, we want to associate an edge with those points in the
smoothed signal where the slope is a local extremum. We can find
these extremal points by determining where the second derivative
of the smoothed signal is zero. This is the basis of the zero crossing
edge detection method.

However, one must be careful with this zero crossing edge de-
tection method. Consider the ‘‘double-step’’ signal shown in Fig.
4(a). It is easily shown (see for example [16], [18]) that a Gaussian
smoothed version of this signal produces not two but three zero
crossings of its second derivative. That this is true is easily seen in
Fig. 4. The two ‘‘authentic’’ step edges are detected, but, in ad-
dition, a third edge is found between them. It is evident from Figs.
2 and 3 that a positive going edge gives rise to a maximum of f;
(where the subscript indicates differentiation with respect to x) that
has positive sign (or a ‘‘positive maximum’’), while a negative
going step edges gives rise to a minimum of f, having a negative
sign (or a ‘‘negative minimum’’). It is obvious that a function must
have a minimum between two maxima and vice versa. Therefore
if one has two positive going edges, there must be a minimum of
£ between them. If this is not a negative minimum due to a negative
going step, then it must be a positive minimum of f;, which cannot
be ascribed to any step edge at all. Similarly for two negative going
steps. If there is not a positive going step between them, then a
phantom edge, which does not correspond to any step in the unfil-
tered signal, will be inserted between them. Studies performed on
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Fig. 2. (a) A step edge. (b) The smoothed step edge. (c) The slope func-
tion of the smoothed step edge.
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Fig. 3. (a) A step in the other direction. (b) The smoothed step. (c) The
slope function of the smoothed step.
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Fig. 4. (a) The double step. (b) The smoothed double step. (c) The slope
function of the smoothed double step.
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monkeys [16] have shown that there are cells in the monkey’s vi-
sual cortex which respond to these phantom edges, indicating the
presence of zero crossing detectors. A similar situation occurs in
the two-dimensional case. That is, not all zero crossing surface
patches can be associated with an intensity change in the unfiltered
image (for the domain of piecewise constant, or step images).

A physically significant scale space representation should con-
sist of only those zero crossings that directly correspond to actual
features in the unfiltered image. In order to produce such a repre-
sentation one must be able to classify zero crossings as to their
authenticity. Clark [4] provides a method for performing such a
classification. The ideas behind this classification procedure in the
one dimensional case are as follows. As we have seen above an
authentic step edge gives rise to either a positive maximum or a
negative minimum of f,. It can also be seen that a phantom edge
will either correspond to a positive minimum or a negative maxi-
mum of f,.. Thus one can use the classification variable x = ( f, feex)
to determine the authenticity of a potential edge point, f,, = 0. If
foe = 0 and x > O the edge is classified as a phantom edge. If f,.
= 0and x < O the edge is classified as an authentic edge. All other
cases we classify as no edge. This latter classification includes the
case where f, = f,, = 0 implies that there is no change in f (x) and
the case where f,, = f,,, = 0 which implies that f,, = 0 but does
not cross zero (these points correspond to the points in the scale
map [22] of f(x) at which the scale map contours are horizontal.)

III. THE REDUCED SCALE MAP

The removal of the phantom scale map contours from the scale
space map results in what we will refer to as the reduced scale
space map. An example of the reduced scale space map of a step
type signal is shown in Fig. 5(a). The full scale space map of the
signal is given in Fig. 5(b). Note that although zero crossing con-
tours are still not created as the scale factor o is increased, the
contours can terminate at a finite and nonzero scale. An interesting
property of the reduced scale space map is that its contours never
turn over.

It is evident that the phantom zero crossing contours present in
the full scale space map may introduce errors in some applications
such as multiresolution stereo vision (e.g., the Marr-Poggio al-
gorithm [13]). Errors arise in the case of stereo vision when phan-
tom edges are used as matching primitives because their locations
are only loosely coupled to actual physical events (by being con-
strained to lie between adjacent authentic edges which are coupled
to physical events). In such a case the reduced scale map should
be used to eliminate the disparity errors caused by the phantom
edges.

IV. SINGULAR POINTS OF CONTRAST FUNCTIONS

An interesting observation can be made about the classification
of the zero crossings of the second derivative of the smoothed func-
tion f. Consider a contrast function, defined as follows:

Definition 1: A constrast function of a smoothed signal f (x) is
a smooth (C®) function C(x) = h( f,(x)), where h(\) > O for
A #0,4(0) =0,and 2’ (N) = 0 only for A = 0 (where h’' (\)
=dh/dN).

The value of C(x) at a zero crossing of f,, gives a measure of
the strength of the edge associated with the zero crossing. It is well
known that any function that is a convolution of an arbitrary func-
tion with a Gaussian kernel is a solution of the following diffusion
equation:

of(x) = fulx) (1)

where o is the space constant of the Gaussian filter. Using this
relationship between x and o derivatives one can show that:

Co(x) = o’ (f) fnr(x). (2)

This equation is valid if f;, f, exist and are continuous. The smooth-
ness requirement on f (x) and C (x) ensures this validity. Note that,
because of the positivity of # and the fact that 4’ (\) = 0 only at
N = 0, we have that sgn (h'( f,)) is equal to sgn ( f,). Thus we
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Fig. 5. (a) The reduced scale map of a one-dimensional signal. (b) The
full scale space map of the signal.

=

have, for positive o, the following relation:
sgn (C,(x)) = sgn (fi(x) frr(x)) = sgn (x). (3)

This suggests the following observation.

Proposition 1: The contrast of a phantom zero crossing in-
creases as ¢ increases, while the contrast of an authentic zero cross-
ing decreases as ¢ increases. |

Proof: Let § be the direction along a zero crossing contour in
the direction of increasing o (so that ds/do > 0). Then

dC 0Cds 0dCax dC do

ds 90 ds oxds 9o ds’

since dC/dx = 0 at a zero crossing. Thus we see that

na—c—snﬁg
B \%s ) T\ )0

and hence, from (3) it is seen that the change in contrast as we
move along the scale map contour towards higher ¢ has the same
sign as the classification variable x. n

This observation implies that one can classify the zero crossings
of f..(x) based on the change in the contrast of the zero crossing
with a change in the value of the filter scale constant o. Let us
examine the one-dimensional case in some detail. If we have a step
type image (i.e., the image is piecewise constant) the strength
(contrast) of a phantom edge will be zero at ¢ = 0. As the scale
increases from zero the strength of a phantom edge which lies be-
tween two authentic edges will increase, while the strength of the
two authentic edges will decrease. Now it is evident that the con-
trast of a phantom edge that lies between two authentic edges must
always be less than the contrasts of both of the adjacent authentic
edges. Thus as we increase o the contrast of the phantom zero
crossing will increase to a point, and the contrast of the authentic
zero crossings will decrease to a point, where the contrast of the
authentic and phantom zero crossings are equal. It can be seen that,
since a phantom zero crossing corresponds to a minimum in the
contrast and the authentic zero crossings corresponds to maxima of
the contrast, the positions of the authentic zero crossings and the
phantom zero crossings must approach one another as their con-
trasts become equal. Clearly such a state of affairs can not continue
for higher o, as the contrast of the phantom zero crossing can not
increase, and the contrast of the authentic zero crossing decrease,
without the contrast of the phantom zero crossing becoming larger
than that of the authentic zero crossings, which is impossible. Thus
the phantom zero crossing must merge with an authentic zero cross-
ing and the pair disappear. This is illustrated in Fig. 6(a).

Authentic Edge

o
(a)
Phantom Edge
c ‘;/
1 ,,/‘fI =0
(b)

_ Authentic Edge

T

Fig. 6. (a) The pairwise annihilation of an authentic and a phantom zero
crossing. (b) The transformation of an authentic zero crossing into a
phantom zero crossing.

It is also possible for an authentic zero crossing to turn into a
phantom zero crossing as o increases. If the contrast of an authentic
zero crossing decreases to zero, then it obviously cannot decrease
any further. The fingerprint quality [23] of the full scale space map
prohibits isolated zero crossing contours from disappearing at fi-
nite, nonzero o values. Therefore this zero crossing must turn into
a phantom zero crossing, and its contrast will then increase with o
until it meets up with an authentic zero crossing at which point it
will vanish in concert with that authentic zero crossing (the finger-
print quality allows zero crossings to vanish pairwise at finite, non-
zero o values). This is illustrated in Fig. 6(b).

The above discussion of the life and death of authentic and phan-
tom zero crossings in scale space is rather narrative and lacks a
solid framework. One can provide a more solid framework by not-
ing that the points at which the classification of a zero crossing
contour changes correspond to the degenerate critical points of the
contrast function. This observation allows us to utilize the machin-
ery of Morse theory [14] and Catastrophe theory [15], [20] to char-
acterize the types of scale space contours that one typically ob-
serves.

The critical points of the contrast function C(x) are the points
x at which the first derivative of C with respect to x vanishes. That
is:

Culx) = W' (f)fex = 0. (4)

Since ' ( f,) = 0 only when f, = 0, the critical points of C(x) can
be categorized as one of two types: 1) Those points x where f,, (x)
= 0, which are the zero crossings which we associate with signal
edges, and 2) Those points x for which f, (x) = 0. For the moment
it suffices to note that the zero crossings of f,,(x) correspond to a
subset of the critical points of any contrast function C(x) that fits
the definition given earlier.

Let us, for now, concentrate on those critical points of C for
which C > 0 (and hence for which f, # 0). These critical points
are nondegenerate (or nonsingular) if C,, # 0. Note that, since f,,
= 0and sgn (h'(f,)) = sgn (f,), we have that sgn [C,,] = sgn
[x], the sign of the classification variable. Thus if a zero of f,,
corresponds to a nondegenerate point of C, then  is either positive
or negative, and the classification of the zero crossing is unambig-
uous and depends on the concavity of the contrast function. How-
ever, if the zero is a degenerate critical point, or singular point, of
C(x), then x = 0 and the classification is ambiguous (and the zero
is typically not a zero crossing either). Furthermore, the singular
points of C(x) are seen to be the points at which the classification
of a zero crossing contour changes from authentic to phantom as



724 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 5, SEPTEMBER 1988

one traces it out in the scale space map. Such points are known as
bifurcations or catastrophes. These terms refer to the fact that the
system changes state (from authentic to phantom edge) abruptly,
or catastrophically, as the control parameter ¢ is smoothly varied.
The set of ¢ values at which these bifurcations occur is called the
bifurcation set. We can use the techniques of singularity theory [1]
or catastrophe theory [15] to characterize the nature of the scale
map contours near such singular points.

The nondegenerate critical points of C(x) at a given scale o, are
stable, in that they typically (generically) remain nondegenerate
when the function is perturbed slightly, even though their position
may shift a little. Functions having only nondegenerate critical
points are known as Morse functions. Functions are generically
Morse functions; that is, the collection of all possible smooth Morse
functions form an open dense subset of the set of all possible smooth
functions. The complementary set, that containing non-Morse
functions has measure zero. This means that a contrast function
C(x) will almost always contain no singular points, and if it does,
a small perturbation of i(x) will cause the singular points to be-
come nondegenerate.

A family of functions can, however, generically contain singular
points. In particular, the family of functions implicit in the scale
space representation of a signal, where the filter scale ¢ is the pa-
rameter indexing the members of the family, typically contains de-
generate critical points. These singularities are stable since pertur-
bations of C(x) will only shift the position of the singularities
slightly in scale space and will not eliminate them. The scale space
family of functions, C'”(x), is called a one-dimensional unfolding
of C(x) [15].

The only type of singular point (considering edges for which
C(x) > 0 only) that is generically observed in any one parameter
family of functions, such as the scale space family, is the so-called
fold catastrophe [15] for which the scale space representation of
C(x) can be expanded in a Taylor’s series about the singular point
as follows:

Cly.u) =y +uy + 0, u?) (5)

where y, u are obtained by a smooth coordinate transformation from
x, 0. We have subtracted off the value of C(x) at the singular point
for convenience, as it does not affect the differential properties of
C(x). The singular point is located in these new coordinates at ( y,
u) = (0, 0). For one parameter families, such as the scale space
representation, the only generic singularity has the local form
shown above. The locus of the critical points near such a singular
point is shown in Fig. 7. This type of scale space contour is the
only type of degeneracy observed in a scale space map generically.
It can be observed that in the neighborhood of the singular point
we have sgn (C,,(y)) = sgn (x) = sgn (y). Hence the classifi-
cation of the edges on either side of the singular point are different.
That is, at a singular point of the contrast function an authentic
edge and a phantom edge come together. A result of this observa-
tion is that contours in the reduced scale space map can never turn
over since they must terminate at a singular point.

This is not to say that other types of degeneracies are theoreti-
cally impossible only that that typically (generically) never appear.
A example of a nongeneric degeneracy that has been described in
the scale space literature (see, e.g., [18]) is the double step func-
tion, which was shown in the previous section, Fig. 4. At a certain
scale it produces a singularity which locally is of the form:

Cly, u) =y +uwp’ + 0(y°, u?). (6)

The locus of critical points about (y, u) = (0, 0) is shown in Fig.
8(a), and is the characteristic pitchfork shape observed in some
bifurcation diagrams (such as for the Ginzburg-Landau description
of second order theromdynamic phase transitions [6]) and is also
known as the cusp catastrophe. This singularity, however, is non-
generic in the one parameter case, in that a small perturbation of

Cz = O,Cx:z; =0

Fig. 7. The form of the scale space map near a fold type degenerate critical
point.

4 fzz=0,Cz=0 7

Cz=0,Czz=0
{‘C: =0,Czz=0

—
perturbation

(a) (b)
Fig. 8. (a) The form of the scale space map near a cusp type of singularity.
(b) A slight perturbation results in the cusp catastrophe becoming a fold
catastrophe.

the form ey, for any nonzero ¢, of C(y, u), will destroy the sym-
metrical nature of the degeneracy and one will instead have a stan-
dard fold type of singularity, as shown in Fig. 8(b). Thus, in prac-
tice, a scale space map contour of the form shown in Fig. 8(a) is
never seen, but contours that are very close to that form, such as
in Fig. 8(b), are often observed.

The above analysis assumes that the critical points being ex-
amined are of the type for which C(x) # 0. However, if we have
C(x) = 0 at the degenerate critical point we have an interesting
phenomenon, one which helps explain why authentic zero cross-
ings can generically vanish (by turning into phantom zero cross-
ings) by themselves (i.e., not pairwise) at a nonzero, finite o value.
The case where two critical points of C(x) having C(x) = 0 come
together and annihilate each other (the analog of the fold catastro-
phe) can not happen since there must be an maximum of C(x), and
hence an authentic zero crossing, between them. Thus the simplest
form of a degeneracy when C = 0 is given by:

Cly, u) =y + uy? + 0(y°, u?). (7

We saw that for the case of C(x) # 0, this type of singular point
was unstable in that it turned into a fold type of singularity when
a small perturbation was added. The question now is, is this type
of singularity stable when C(x) = 0? The answer is yes, because
one cannot transform away the fact that C(x) = 0 when expanding
C(x, o) about the singular point. Thus, in order to maintain the
nonnegativity of C(x), any perturbation of the function cannot have
any odd order term with order less than 3. Thus the most general
perturbation of (7) is:

Cly,u) =y +uy’ + wy? + 0(y°, u?). (8)

It can be shown [20] that there is a smooth change of coordinates
which results in:

Clz, r) =2 + rz> + 025, r?). (9)

Thus the singularity (7) is stable under a small perturbation. Hence
the form of the scale space contour shown in Fig. 9 is generic, and
they are often observed in practice (see, e.g., Fig. 1). In this case
we have that sgn (C,,) = sgn (x) = sgn (12y? + u). The equation
of the scale map contour through the above type of singularity is a
vertical line. Since we have y = O we see that sgn (x) = sgn (u).
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Fig. 9. The form of the scale space map near a singularity of the form (8).

This indicates that the part of the contour with a scale less than that
of the singularity corresponds to an authentic edge, while the com-
ponent above the singularity corresponds to a phantom edge. Thus
we see that at this type of singularity an authentic edge changes
into a phantom edge as the scale is increased.

V. THE SHAPE OF THE SCALE MAP CONTOURS

The analysis of the previous section allows us to determine the
shape of the scale map contours near the singular points of the
contrast functions. In [5] it is shown that the extrema of the scale
map contours (which as we noted earlier are always maxima) occur
at the singularities of the contrast function of the type defined by
(5) (the fold catastrophe). The analysis that follows will thus de-
scribe the shape of the scale map contours near these extremal
points.

We begin by parameterizing a connected component of the scale
space map (i.e., a single contour) as 0 = M;(x) whre the index /
distinguishes which particular scale space map component is being
referred to. Along the curve 0 = M(x) we have that C,(x) = 0.
Let us make the change of coordinates u = 0 — g5, ¥y = x — Xg,
where (x,, 0g) is the position of the singular point in scale space.
Let us first examine the case wherein C(x) > 0 at the singular
point. For this case we can expand C(x) in a neighborhood about
the singular point as follows:

(10)
with ky, k,, k3, and k, generically nonzero. Along M( y), the scale
map contour, we have that C,(y, u) = 0. In a neighborhood U

about the singularity for which the above expansion is valid we
have:

C =k, + kyy* + kyyu + kyu? + higher order terms

Cy(y, u) = 3k + kyu. (11)
Thus we have:
u=M(y) = =3ky*/ks. (12)

Thus the scale map contour near this type of singular point, which
corresponds to an extremum of a scale space map contour, is par-
abolic.

Similarly, for the other type of generic singularity we have the
following expansion:

C = k;y* + kyuy® + higher order terms. (13)
Along M( y) we have that C,(y, u) = 0 which leads to:
C(y. u)= 4k, y? + 2kuy = 0 (14)
which gives the two solutions for the locus of critical points M ( y):
u=M(y) = —2kyy*/ky (15)
and
(16)

However, of these two solutions, only the solution y = 0 corre-

y = 0.

725

sponds to a scale map contour. To see this, recall that along a scale
map contour we have f,, = 0. Critical points, however, occur when
either f,, = 0 or f, = 0. Thus only those critical points for which
fix = 0 are taken to be part of a scale map contour. For Gaussian
smoothing we can show that:

Cio = (W (f)fecSeoe + W (f)fraxe) (17)
and

Cowe = (W (fIfec + 0" (ffcfoor + B (fferd) . (18)

Along a scale map contour we must have f,, = 0. Hence we have
from the above two equations:

C,\’U = GCYXX' (]9)
Near a singularity of the type defined by (7) we have that
Cuu = 2k3y, Cyyy = 24k (20)

These are equal only when y = 0 (k, is generically # 12k;). Hence
the solution y = 0 corresponds to a scale map contour, while the
solution u = —2k,y%/k; is not a scale map contour, but is where
fc = 0. We can conclude that the scale map contour near a singu-
larity of the type defined by (7) is a vertical line.

VI. EXTENSION TO Two DIMENSIONS

The analysis presented above is for the one-dimensional case
only. The two-dimensional case is naturally of more interest to
computer vision researchers (although many computer vision al-
gorithms, such as stereo vision, can be reduced to one dimensional
problems). The question then arises whether or not this analysis
can be extended to the two-dimensional case. Previous approaches
to the analysis of two-dimensional scale space maps include the
work of Torre and Poggio [21], and Koenderink [10]. Torre and
Poggio show that closed zero crossing contours generically can dis-
appear as scale is increased (an elliptic bifurcation) or split into
two closed contours as the scale is increased or decreased (a hy-
perbolic bifurcation). Koenderink’s analysis was done for image
intensity functions and did not consider edges (or the scale map).
His analysis did, however, describe how image detail is lost (by
light or dark blobs merging together) as scale incréases. The points
in scale at which detail is lost is a bifurcation in the same sense as
used by Torre and Poggio. Since Koenderink’s analysis is con-
cerned with image intensities and not edges it must be modified if
the scale space map is to be investigated. Such a modification will
result in an analysis similar to Torre and Poggio’s.

Neither Koenderink or Torre and Poggio concern themselves
with the distinction between authentic and phantom edges. Thus
their analyses cannot provide the whole story about the reduced
scale space map. We have seen that, in the one-dimensional case,
the bifurcations of the reduced scale space map correspond to points
where the classification of the edges as authentic or phantom is
ambiguous (x = 0). These points include the bifurcations of Torre
and Poggio as a special case, but in addition include those points
analogous to the bifurcation depicted in Fig. 9. In order to say
anything about the bifurcations of the reduced scale map we must
extend the singularity theory approach used in the one-dimensional
case to two dimensions. Clark [4] has shown that phantom edges
do exist in two dimensions, and it is observed that authentic edges
can change into phantom edges as the degree of smoothing of a
two-dimensional image increases. In a two-dimensional scale map
one obtains contours, which lie along the scale map surfaces, on
which the classification of the edge as phantom or authentic is am-
biguous (these contours are the places in the scale space map where
phantom and authentic edges meet). Thus we could construct a two-
dimensional reduced scale space map by deleting the phantom edges
from the two-dimensional scale space map.

The contours in the scale space map are presumably analogous
to the critical points of the contrast function in the one-dimensional
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case. This suggests that a reasonable approach for extension of our
one dimensional analysis to two dimensions might be to find an
analogous two-dimensional contrast function and find its singular-
ities. This approach has its problems, though, in defining what we
mean by a critical point of the contrast function, and by what con-
stitutes a singularity. We know that zero crossings in two dimen-
sions form closed curves. Hence our ‘‘critical’’ points in the two
dimensional analysis can not be isolated points but instead must
form one dimensional closed loci. This implies that the criticality
condition result in a single constraint on the coordinates of the crit-
ical point (x., y.) of the form F(x., y.) = 0. The usual notion of
a critical point of a two-dimensional function, however, yields two
constraints: Vf(x., y.) = (0, 0). Since this equation imposes two
constraints on (x,., y.) these critical points will be isolated, and not
form one-dimensional contours in general. One must therefore ex-
tend this notion of criticality. One can do this by devising some
measure of ‘‘flatness’” or of ‘‘stationarity’” of a contrast function
(such as | Vf|). Different measures will yield different edge detec-
tors.! For example, using as a flatness measure F(x, y) = 3C/dn
= 0 where Cis the first directional derivative of falong the gradient
direction (so that C = 3f/dn), yields the second directional deriv-
ative edge detector [3], [8]. Using a stationarity condition like F(x,
y) = div (Vf) = 0 yields the Laplacian edge detector [12], where
div is the divergence operator.

The idea of a singularity can be similarly extended by thinking
of a critical point as degenerate when the function F(x, y) is ““‘flat”
in the neighborhood of the critical point (where F(x,, y.) = 0). A
measure of flatness must involve a first order derivative of F(x, y).
However, in two dimensions, there are many directions in which a
first order derivative can be taken. We must choose some direction,
or combination of directions. In the case of the second directional
derivative edge detection method it makes sense to take this deriv-
ative along the gradient Vf. Thus an edge (‘‘critical point’’) may
be said to be ‘‘singular’’ if

¥f vf

e VF(x, y) v 0.
In the one-dimensional case we had that the classification of an
edge as authentic or phantom depended on the sign of dF (x)/dx
= d’C/dx*. Extending this to two dimension we would then ex-
pect that we could classify edges in two dimensions by the sign of
dF (x,y)/dn. In fact, this is the rule proposed in [4] for classifying
edges in two dimensions. One can also show that for the case of
Laplacian edge detection that the change of the contrast of an edge
with scale obeys the rule that sgn (C,) = sgn (dVf/dn). Hence
in two dimensions, as in one, the contrast of authentic edges de-
creases as the degree of smoothing is increased.

To use the machinery of singularity theory as we did in the one
dimensional case to make statements about the shape of the scale
map contours requires that we be more rigorous in defining what
we mean by critical and singular points. A more rigorous definition
of a critical point is supplied by the theory of differential topology
(see for example [7]):

Definition 2: Let X and Y be smooth manifolds and let f: X —
Y be smooth map. Then a point x € X is a critical point of f if the
mapping df |: T,(X) = T,(Y) is not onto (not surjective), where
T.(X) is the tangent space to the manifold X at the point x, and
T,(Y) is the tangent space to the manifold Y at the point y where

y =fx).

"It is for this reason that we use a general contrast function in the one
dimensional case instead of just f,(x). While it is true that the results in
one dimension are independent of what contrast function is used, and that
f(x) may just as well be used throughout, it is not true in two dimensions.
The type of edge detector you get depends on the form of the contrast
function used. So to maintain generality we use as general contrast func-
tion, even in the one-dimensional case.

A point x is a degenerate critical point or singular point if x is a
critical point of df|, as well as of f (where df in this case can be
thought of as the Jacobian matrix of f with respect to x). The mea-
sures of criticality that we have introduced above to generate our
edge detection methods (second directional derivative and La-
placian) cannot be put into the above definition of critical points.
One can, however, generalize the notion of criticality through the
idea of (non)-transversal mappings and manifolds (see [15], [7] for
discussions of transversality theory). The use of transversality the-
ory in investigating the shape of the two-dimensional scale map is
beyond the scope of this correspondence, however, and we will not
attempt it here.

VII. SUMMARY

The results presented above contain a number of results of in-
terest to computer vision researchers. First, the singular points of
any contrast function as defined in this paper are the points in scale
space at which authentic zero crossings vanish (either by turning
into phantom zero crossings, or by performing an electron-positron
like annihilation with a phantom zero crossing). These are signifi-
cant events as they localize the scale at which detail in the image
is lost as the image is smoothed.

Secondly, the manner in which the authentic zero crossings van-
ish is typically limited to only the two cases shown in Figs. 8 and
9. The shape of the scale space map contours near a singular point
of the form shown in Fig. 6(a) is seen to be parabolic while the
scale map contours that pass through a singular point of the form
shown in Fig. 6(b) are vertical near the singularity. These findings
strengthen the notion of the well-behavedness of the Gaussian scale
space map by showing that the shape of the scale map contours are
highly constrained near the singularities of the contrast function.

With the aid of the contrast function formalism we were able to
demonstrate the intriguing property that the strength (contrast) of
authentic zero crossings (for the case of Gaussian smoothing) de-
creases as the scale increases, while the strength of phantom zero
crossings increases as the scale increases.

We have introduced in this paper a modified scale space signal
representation, the reduced scale space map, which is composed of
the loci of the authentic zero crossings of the second derivative of
the smoothed image. The reduced scale map contours are seen to
be curves which start at the ¢ = 0 line and terminate at a singularity
of a contrast function of the smoothed signal. If one is using a
multiresolution representation for a vision algorithm such as in im-
age matching for stereopsis or motion analysis, one should use a
reduced scale space representation so that errors due to the non-
physicality of the phantom edges do not arise.

We briefly discussed the two-dimensional case where it was
pointed out that many of the interesting aspects of the one dimen-
sional analysis carry over to two dimensions. For example, phan-
tom edges do exist in two dimensions, and the contrast of authentic
edges in the case of the V?G edge detector decreases as the level
of smoothing is increased. We were not able to obtain results as to
the shape of the scale map surfaces in the two-dimensional case
due to the complexities involved in extending the notion of critical
and singular points from one to two dimensions. The use of trans-
versality as a generalization of regularity (the opposite of critical-
ity) promises a way of obtaining the scale map shape information.
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Abstract—An investigation of the effects of various error compo-
nents in a mobile robot system which uses a navigation line is available
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on the navigation line width determination and obstacle range deter-
mination resulted in equations which may be used to predict the error
resulting from changes in various system parameters. One component
of error which has not been investigated is the change in the rotation
angle of the robot sensor about its optical axis, called the roll angle.
The effects of changes in the sensor roll angle on both navigation line
width determination and obstacle range determination are presented
to complete this phase of robot error analysis. Numerical examples
showing the characteristics of the derived error equations are also
given.

Index Terms— Autonomous navigation, discrete sensor, machine vi-
sion, navigation line, sensor roll angle, visual navigation.

[. INTRODUCTION

The use of a contrasting line on the pathway floor of a mobile
robot has been proposed as a navigational guide [1]. A system
which uses a single discrete sensor and a continuous, straight-edged
line was proposed in [2]. This analytical investigation revealed the
effects of variations in system parameters in determining the best
width of the navigation line. Equations were developed which yield
the percent error caused by each component of system error. These
components of error included sensor resolution error, sensor height
error, sensor pan angle error, and sensor tilt angle error. These
equations enable the system designer to predict system error given
values for system parameters and the variations that may be ex-
pected in these parameters. Line width determination seems an ap-
propriate basis for this error investigation because the width of the
line as it appears in the image plane is the fundamental character-
istic of the robot’s view of its environment. The width of the line
as it appears in the sensor’s image plane is the basis for the width
ranging method to be discussed. Determining the line width also
leads to segmentation of the entire linc in the image plane, there-
fore aiding in the navigation of the robot (i.e., maintaining the
lateral offset of the robot from the navigation line). Variations in
system parameters which cause the width of the line in the image
to change are ultimately detrimental to the entire system perfor-
mance.

Two methods of determining the range to objects in the sensor’s
field of view were developed in [3]. A similar error analysis was
performed which gave the expected error in determining the range
to objects using each ranging method. The analytical results given
in [2] and [3] were tested extensively [4]. The methods developed
in [2] and [3] were found to be useful from two standpoints. They
were found to be both accurate (actual error was often less than
was predicted by the error analysis equations) and practical from a
real time implemenation point of view.

Fig. 1 represents the system geometry considered in [2]-[4]
where 6 is the pan angle and ¢ is the tilt angle of the sensor. Two
coordinate systems are shown: the unprimed coordinates (x, y, z)
representing the global coordinate system and the primed coordi-
nates (x’, y') representing the coordinate system of the image
plane.

One component of system geometry error not considered in (2]~
[4] is the roll angle of the sensor « or the rotation of the sensor
about its own optical axis, as shown in Fig. 1. The effect of changes
in the roll angle of the sensor on determining the width of the line
and on range determination will be considered in this paper. This
will complete the error analysis which is of fundamental impor-
tance in the design of this class of robots.

II. DIRECT PERSPECTIVE TRANSFORMATION

As derived in [5], the direct perspective transformation between
the global coordinate system and the image plane coordinate sys-
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