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Authenticating Edges Produced by Zero-Crossing
Algorithms

JAMES J. CLARK, MEMBER, IEEE

Abs‘ract—It is shown that zero-crossing edge detection algorithms
can produce edges which do not correspond to significant image inten-
sity changes. Such edges are called phantom or spurious. A method for
classifying zero crossings as corresponding to ‘‘authentic’’ or ‘‘phan-
tom’’ edges is presented.

The contrast of an authentic edge is shown to increase with decreas-
ing filter scale (and hence higher resolution), and the contrast of phan-
tom edges is shown to decrease with a decrease in the filter scale. Thus,
a phantom edge is truly a phantom edge in that the closer one examines
it the weaker it becomes.

The results of applying the classification schemes described in this
paper to synthetic and authentic signals in one and two dimensions are
given.

The significance of the phantom edges is examined with respect to
their frequency and strength relative to the authentic edges, and it is
seen that authentic edges are denser and stronger, on the average, than
phantom edges.

Index Terms—Edge authentication, edge detection, phantom edges,
scale space.

I. INTRODUCTION

FUNDAMENTAL operation in early vision is that

of the detection of changes in image intensities,
sometimes referred to as edge detection. These edges are
used by higher-level visual processes such as stereo and
motion analysis and scene segmentation. These higher-
level processes must assume that the edges supplied to
them have physical significance. For example, in edge-
based stereo vision algorithms (e.g., [8]), a search is made
to find edges in two spatially disparate images that cor-
respond to the same scene feature. Obviously, if the edges
that are supplied to the stereo vision module do not have
any physical significance (that is, are not tied to events in
the scene, external to the camera and visual processing
system), then the depth information obtained from these
edges cannot be expected to be physically significant
either.

A commonly used method for localizing edges in image
intensities is to associate edges with the zero crossings of
the second derivative (or a suitable second-order differ-
ential operator) of a smoothed version of the image [2],
[7]. We show in this paper that these methods can produce
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phantom, or spurious, edges, which have no correspon-
dence to significant changes in image intensity. It is seen
that the phantom edges occur, for the domain of smoothed
step edges, when two spatially consecutive edges have the
same sense (i.e., dark to light or light to dark).

Given that an edge detector can produce phantom edges,
one must be able to distinguish these edges from authentic
edges, so that they may be discarded, and the remaining
authentic edges can be used in higher-level visual pro-
cesses. In this paper, we provide methods for performing
this classification in one and two dimensions. These
methods are seen to be related to the technique of non-
maximum suppression [2].

Typically, the strength, or contrast, of the phantom zero
crossings is observed to be less than that of the authentic
zero crossings. They are also less frequent. In Section IV,
we quantify the relative strength and frequency of authen-
tic and nonauthentic edges for the case of normally dis-
tributed random one-dimensional signals and compare
these theoretical results to experimentally obtained val-
ues. In the two-dimensional case, we present experimen-
tally derived results on random images and a small set of
real images.

We show that, for Gaussian smoothing, the strength of
a phantom edge increases as the filter scale constant ¢ in-
creases, while the strength of an authentic edge decreases
with ¢. From this observation comes the description of
these edges as phantom; as we reduce ¢ and are looking
at these edges more closely, they fade away, vanishing
altogether at 0 = 0.

Examples of the production, and classification, of
phantom edges are given for both real and synthetic im-
agery, in one and two dimensions. In the two-dimensional
experiments, both the Laplacian and second directional
derivative edge detection methods are tested. The results
of these experiments indicate that phantom edges are in-
deed produced in significant numbers in practical appli-
cations and that the classification procedures described in
this paper do detect the phantom edges.

II. PHANTOM ZERO CROSSINGS AND THEIR DETECTION

Let us consider the zero-crossing edge detection method
for the one-dimensional case. This method operates by
smoothing the signal with a low-pass filter (usually a
Gaussian low-pass filter) and associating edges with the
zero crossings of the second derivative of the filtered sig-
nal. This process is depicted in Fig. 1. The idea behind
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Fig. 1. (a) A one-dimensional step signal. (b) The signal after Gaussian
smoothing. (c) The second derivative of the smoothed signal.

the zero-crossing method is that the zeros of the second
derivative of a function localize the extremal points of the
first derivative of the function. Since edges can be thought
of as points where the magnitude of the first derivative of
the function is a local maximum, the zeros of the second
derivative can localize these edges. A problem with this
method arises, however, since the zeros of the second de-
rivative localize the minima of the magnitude of the first
derivative, as well as the maxima. The minima of the
magnitude of the first derivative cannot be thought of as
localizing intensity edges, but rather localize points that
are as non-edge-like as possible. Therefore, since the ze-
ros of the second derivative localize both maxima and
minima of the magnitude of the first derivative, one can-
not assume that all zeros of the second derivative of the
smoothed intensity signal correspond to edges. Some of
the zeros, those that correspond to minima of the magni-
tude of the first derivative of the smoothed signal, are not
edges at all. We will call these minima phantom edges,
and the maxima authentic edges, and they are defined as
follows.

Definition 1: An edge of the smoothed intensity func-
tion f(x) is an authentic edge if | (df)/(dx)| is a maxi-
mum.

Definition 2: An edge of the smoothed intensity func-
tion f(x) is a phantom edge if |(df)/(dx)| is a mini-
mum.

An example of the relationship between the signal and
the location of phantom and authentic edges is given in
Fig. 2. It can be observed from this example that phantom
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Fig. 2. (a) A one-dimensional step signal. (b) The signal after Gaussian
smoothing. (c¢) The contrast (magnitude of the first derivative) of the
smoothed step signal. Its extrema correspond to edges (both phantom
and authentic).

edges are produced whenever there is a double step in the
intensity signal.

Phantom edges as we have defined them have been ob-
served in biological vision systems. Richter and Ullman
[11] demonstrated the existence of cells in the visual cor-
tex of both cats and monkeys that respond to the phantom
edge found in the center of a double step. This was taken
by them as evidence of zero-crossing detection. Their
study also observed cells which responded to only the au-
thentic edges, indicating that the visual cortex has some
means of distinguishing between phantom and authentic
edges. They propose some mechanisms by which this dis-
tinction could be made, based on thresholding the edge
contrast or on spatial coincidence of edges at different
scales, but conclude that these mechanisms are not suffi-
cient for eliminating the phantom edges and suggest that
further psychophysical and physiological experimentation
is needed to determine how the human visual system han-
dles the phantom edges. In this paper, we provide a way
of handling phantom edges which the psychophysicists
and physiologists may well find in mammalian vision sys-
tems.

Edges are most commonly used as primitive features to
be input to higher-level vision modules, such as scene
segmentation, motion detection, and stereo depth mea-
surement. These modules assume that the edges produced
by the edge detection module are related to physically rel-
evant changes in the image intensity. It is evident that the
phantom edges detected by zero-crossing edge detectors
are only weakly related to significant changes in the image
intensity pattern. For this reason, it is important that one
be able to distinguish between phantom and authentic
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edges so that only the authentic edges may be passed on
to subsequent vision modules. In one dimension, the clas-
sification of edges as phantom or authentic is easily ac-
complished by applying the definition of a phantom or
authentic edge. We have defined an authentic edge as an
edge for which the magnitude of the first derivative of the
filtered signal is a maximum. This is equivalent to re-
quiring that the following condition be true:

dfﬁ<0
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tion [i.e., f. = (9f/dx)]. Phantom and authentic edges
can be distinguished by checking the sign of the following
quantity, which indicates whether the edge is a maximum
or a minimum of (3f/dn):

_oey

T 9nan’>

X (4)
If x is positive, the edge is phantom. If x is negative, the
edge is authentic, and if  is zero, we say there is no edge.
The derivatives in the expression above involving n can
be expressed as derivatives in x, y, yielding

X

Similarly, a phantom edge is indicated if

df d*f

If (df/dx)(d*f/dx®) = 0, we say there is no edge, as
either the contrast | (df/dx)| is zero or (d>f/dx?) is zero,
in which case we do not have a zero crossing of
(d*f/dx?*). This procedure for distinguishing between
authentic phantom edges is seen to be similar to the pro-
cess of nonmaximum suppression [2], which is used in
methods which localize edges as maxima in the magni-
tude of the first derivative of the smoothed signal to de-
termine where the maxima occur. Note that these methods
automatically weed out the phantom edges, as only max-
ima in the magnitude of the first derivative are searched
for.

It is easily seen that phantom edges can also occur in
the case of two-dimensional zero-crossing edge detectors.
The natural extension of the one-dimensional case to the
two-dimensional case is to consider edges as points at
which the magnitude of the first derivative along the gra-
dient direction is a maximum. This edge detection scheme
can be implemented in a zero-crossing algorithm by as-
sociating edges with the zero crossings of the second di-
rectional derivative along the gradient (of f (x)) direction
[2], [5], [13]. However, these zero crossings occur at both
maxima and minima of the first derivative along the gra-
dient. Thus, this zero-crossing method will produce phan-
tom edges in the same fashion as did the one-dimensional
zero-crossing edge detection scheme. Fortunately, the
phantom edge can be distinguished from the authentic
edges in the same manner as was done in the one-dimen-
sional case. Let A be the direction of the gradient of the
smoothed function f(x, y). That is, A = Vf/|Vf|. Letn
be a parameter along this direction. Then the second di-
rectional derivative of f(x, y) in the gradient direction is
given by

O fifu + 2ty + £y
on* |Vf|2

where |Vf| # 0 and the subscript indicates differentia-

(3)

f+h '

(5)

In two dimensions, the zero-crossing edge detection
schemes are not limited to use of the second directional
derivative along the gradient direction. Any second-order
differential operator can be used to indicate the presence
of an edge. A common choice of such a second-order dif-
ferential operator is the Laplacian. The Laplacian of the
smoothed intensity function is given by V’f = f,.. + f,.
This operator is obviously much simpler than the second
directional derivative operator and is linear as well. Fur-
thermore, it does not have the problem with determining
the gradient direction that the second directional deriva-
tive scheme has for small | Vf | values. These considera-
tions account in part for the great popularity of the La-
placian operator at present in computational vision over
the second directional derivative operator. However, the
Laplacian edge detector does not localize edges as well as
the second directional derivative operator in regions where
the edge is highly curved, such as corners [1], [5]. The
Laplacian operator is best thought of in the vision context
as a useful approximation to the second directional deriv-
ative operator. These two operators give similar results
when the curvature of the edges is low.

It is evident that, because the Laplacian edge detection
method is a zero-crossing method, it will produce phan-
tom edges. However, classifying edges as phantom or au-
thentic is problematic, as it cannot be said that the zeros
of V?f correspond to maxima or minima of any contrast
type of function. Thus, it does not suffice simply to clas-
sify Laplacian edges based on a nonmaximum suppres-
sion type of process. We can proceed in two ways. The
first is to acknowledge that the Laplacian operator is an
approximation (usuaily good) to the second directional
derivative along the gradient and use as a classification
variable the following:

_a(vf)
T on

If this variable x is positive, we say the edge is a phan-
tom. If x is negative, we say the edge is authentic. If x is
zero, we say there is no edge. The second way in which
we can proceed is to note that the Laplacian of f is the
divergence of the vector field Vf. The requirement that
V2f be zero at an edge implies that the divergence of the

Loy -5

n

(6)
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gradient of fis zero at an edge, indicating that the gradient
field at these points is in a sense stationary or extremal.
Since the gradient has both a magnitude and a direction,
its divergence will consist of a magnitude change part and
a direction change part. We show in the Appendix that
the Laplacian of a function can be expressed as follows:

s

V=5
f an?

+ |Vf |« (7)

where « is the curvature of the level crossing of f(x, y)
through the point in question. It is seen that these two
components of the Laplacian correspond to the ‘‘magni-
tude change’’ and ‘‘direction change’’ part of the diver-
gence of Vf. If the direction of Vf is not changing, the
curvature of the level crossings of fis zero, leaving only
the second directional derivative. If the magnitude of Vf
is not changing, then the second directional derivative of
fis zero, leaving only the curvature term. Zeros of cur-
vature, however, do not correspond to what one would
perceive to be an edge. In fact, zeros of curvature of the
level crossings of ftend to form loci that lie perpendicular
to the gradient when the gradient magnitude is constant.
This implies that only the magnitude change part of the
Laplacian contributes to the ‘‘edginess’’ of a zero cross-
ing, while the direction change part contributes only a
noise or distortion component. This distortion is manifest
in a deviation of the edge location from the ideal location.
This deviation was investigated in detail by Berzins [1].
Thus, in determining the authenticity of a zero crossing
of the Laplacian filtered signal, one should examine only
the magnitude change part. That is, the same classifica-
tion formula as was used in the second directional deriv-
ative case (4) should be used in the Laplacian case as well.
In practice, however, the classification formula given as
(6) may be more appropriate, due to the fact that the quan-
tity V’f is already available, and the second directional
derivative need not be computed. If (6) is used, then one
may expect possible errors in classification in those re-
gions of high curvature of the level crossings of f(x, y).
Of course, the positions of the edges obtained will be in
error as well in these regions.

The classification of the zero crossings of the V3G fil-
tered image given by (6) was also suggested by Berzins
[1]. However, his explanation of the origin of the phan-
tom, or spurious, edges as being due to the nonlinearity
of the intensity along a step edge, and to the approxima-
tion of the second directional derivative operator by the
Laplacian, is seen to be incorrect. Phantoms edges arise
with the second directional derivative operator, as well as
with the Laplacian operator, so that the approximation of
the second directional derivative operator by the La-
placian cannot be blamed for the production of phantom
edges. Furthermore, phantom edges can occur when the
intensity along a step edge is constant, as in the case of
the two-dimensional double step (see Figs. 4 and 5). Thus,
the nonlinear intensity variation along a step cannot
blamed for the production of phantom edges. We have

shown in this paper that the cause of the phantom or spu-
rious edges lies in the zero-crossing detectors both max-
ima and minima in the magnitude of the gradient, while
only maxima of the gradient magnitude correspond to
edges.

III. SIGNIFICANCE OF THE PHANTOM ZERO CROSSINGS

A question that naturally arises is, are the phantom zero
crossings significant in that their strengths and density are
comparable to those of authentic zero crossings? In this
section, we endeavor to answer this question.

Let us, for the purposes of clarity in our exposition,
make the following definitions.

Definition 3: The contrast of an edge of a function f(x)
is the magnitude of the first derivative of f (x) at the edge.
That is, C(x) = | f.].

Definition 4: The strength of an edge of a function f (x)
is the square of the contrast. That is, S(x) = | f,|*.

Recall that authentic edges correspond to maxima of
| (df/dx)|, and phantom edges correspond to minima of
|(df/dx)|. From this, we can infer the following theo-
rem.

Theorem 1: The contrast of a phantom edge that lies
between two authentic edges (with no other edges be-
tween them) is less than the contrast of either of the two
authentic edges.

Proof: The proof follows from the fact that a mini-
mum of a function cannot have a higher value than an
adjacent maximum.

This theorem implies another.

Theorem 2: If the contrast of a nonconstant function
goes to zero at the end points of an interval, then the av-
erage density of the phantom edges of that function in the
interval is less than the average density of the real edges
in the interval.

Proof: Recall that the definition of the contrast of an
edge implies that the contrast of a function is always non-
negative. Hence, the contrast at the boundary points of
the interval is a global minimum if (df(x)/dx) = 0 at
these points. But since (df(x)/dx) = 0, these minima
do not correspond to edges. Since the function f(x) is
nonconstant, the mean value theorem of elementary cal-
culus implies that its contrast has at least one extremum
in the interval. Since the end points are both global min-
ima, this extremum must be a maximum. It is evident that
maxima and minima must alternate in an interval. Thus,
because the end points of the interval are minima and there
is at least one extremum in the interval, there is one more
maximum in the interval than the number of minima.
Thus, the density of authentic edges in the interval is
greater than the density of phantom edges in the interval.

The differences in the density of phantom edges and
authentic edges is actually greater than implied by the
above theorem since a fraction of the minima inside the
interval may actually be global minima, for which
(df (x)/dx) = 0, and hence do not correspond to edges.
Thus, the number of phantom edges is, in general, smaller
than the number of minima of (df/dx). The number of
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authentic edges is equal to the number of maxima of
(df/dx). The worst case phantom edge production occurs
in a staircase function, where the number of phantom zero
crossings is equal to the number of authentic zero cross-
ings minus one. In this situation, all of the minima of
(df/dx) in the interval are nonglobal and hence corre-
spond to (phantom) edges.

Based on the fact that phantom edges correspond to
minima of the contrast and authentic edges correspond to
maxima of the contrast, it is tempting to propose a theo-
rem that states something like that the average contrast
(or equivalently average contrast) of authentic edges is
always greater than the average contrast of phantom
edges. However, one cannot do this since not all minima
of the contrast correspond to (phantom) edges. Thus, one
can have a few phantom edges, all of which have contrast
less than an equal number of authentic edges, and a very
large number of authentic edges which have very low con-
trast (but are associated only with global, nonedge min-
ima). In this case, the average phantom edge contrast can
be much higher than the average authentic edge contrast,
and hence, thresholding of the contrast will not serve to
distinguish between phantom and authentic edges. In
practice, however, most of the minima are nonglobal and
can thus be associated with phantom edges. Hence, in this
case, the phantom edges will, on the average, have a lower
contrast than the authentic edges. Later in this section,
we will demonstrate this for Gaussian distributed random
functions.

The strength of the edges of a function f (x) that is ob-
tained by filtering another function i (x) with the Gaussian
low-pass filter,

g(x) = b e X2 ¢>0 (8)
o2 ’ ’
exhibits an interesting dependence on the smoothing pa-
rameter ¢. This property is illustrated by the following
theorem.

Lemma 1: The Gaussian smoothed function f(x) and
its derivatives are solutions of a diffusion-type equation
(61, [15]:

If_1of
x> ¢do

(9)

In two dimensions, we have a similar result.
Lemma 2: The Gaussian smoothed function f (x, y) and
its derivatives are solutions of a diffusion-type equation:

g do’

Theorem 3: The strength S(x) = |(df/dx)|* of a
phantom edge of a Gaussian smoothed function increases
with an increase in the smoothing parameter o. The
strength of an authentic edge of a Gaussian smoothed
function decreases with an increase in the smoothing pa-
rameter o.

Proof: The derivative of the strength with respect to

v
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o is given by S, = 2f, f,,- With the above lemma, we can
show that f,, = (1/0)fc.. Thus, the sign of S, is then
given by

sgn (S,) = sgn (fifeur) = sgn (x)- (11)

Along a contour in scale space [14], [15] (i.e., as we track
the position of a zero crossing as ¢ changes continuously)
parameterized by arc length s (assumed to be a monoton-
ically increasing function of ¢ so that ds/dc > 0), we
have

(12)

Since sgn (g,) = +1 and S, = 2f, f,, = 0 along a zero
crossing, we have that

sgn (S,) = sgn (S,) = sgn (fefier)- (13)

From this equation, and (1) and (2), it follows that §; is
positive for phantom edges and negative for authentic
edges. Since edge contrast and edge strength are mono-
tonically related, it follows that the contrast of a phantom
edge increases with increasing scale as well.

A similar theorem holds in the two-dimensional case.

Theorem 4: Let f(x, y) be a function arising from the
Gaussian low-pass filtering of an arbitrary function i(x,
y). The strength of f(x, y) (i.e., | Vf|?) at a zero of Vif
then obeys the following equation:

(14)

The proof of this theorem follows the same reasoning as
the proof of its one-dimensional counterpart.

For a piecewise constant (step edge) signal, increasing
o is equivalent to decreasing the distance between steps,
so that we can say that the strength of a phantom edge
increases as the distance between it and its two adjacent
authentic edges decreases. Clearly, at some point as we
increase o, the strength of the phantom edge will have
increased, and its adjacent authentic edges will have
weakened, so that their strengths are equal. At this point,
the strength of the phantom edge cannot increase any
longer with ¢, nor can the contrast of the authentic edges
decrease any longer. Thus, the phantom zero crossing and
the authentic edges must annihilate each other and cease
to exist at higher values of ¢. This phenomenon will not
be studied in this paper, but is analyzed in detail in [3],
[4]. In those papers, it is shown that the shape of the scale
map contours near such annihilation points is parabolic,
and that, in addition, an authentic edge can actually turn
into a phantom edge as the scale increases.

The change in contrast over scale provides an alterna-
tive means for classifying an edge as authentic or phan-
tom. This has the advantage over the single-scale classi-
fication in that only first derivatives (in o) are required,
as opposed to the third derivatives (in x) required in the
single-scale classification process. There are some prob-
lems with implementing a scale-space classification, how-

S, = S.x, + S,0,.
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ever. One problem is that an authentic edge can turn into
a phantom edge as scale increases [3], [4]. This may re-
sult in an uncertain classification for an edge that is near
to such a transformation point in scale space. One can
perform a consistency check to determine whether or not
this is the case by examining the classification of two edge
points that lie on the same scale map contour, but at two
slightly different scales. If they have differing classifica-
tions, then one should be wary of these classifications.
Furthermore, obtaining the derivative of the contrast with
respect to ¢ may be difficult, or computationally expen-
sive, as two or more filterings of the signal, done at
slightly different ¢ values, must be performed.

We have seen that, in general, the contrast of phantom
edges is less than the contrast of authentic edges, and that
the number, or density, of phantom edges is also less than
that of authentic edges. However, we do not have as yet
any feel for how much weaker, or less dense, the phantom
edges are compared to the authentic edges. In order to
make quantitative statements about this, we need to as-
sume a model for the signal. For the purposes of this pa-
per, we will assume that the signal is a segment of a nor-
mally distributed stationary random function. While this
model may not accurately model most one-dimensional
signals found in computer vision applications, it does al-
low us to obtain exact results for the relative contrasts and
densities of the two classes of zero crossings in the one-
dimensional case. Unfortunately, closed-form solutions
cannot be obtained for the two-dimensional case.

The following theorems provide expressions for P,, the
probability of an edge being a phantom, and P,, the prob-
ability of an edge being authentic, as well as for the ratio
of the expected contrast of a phantom edge to the expected
contrast of an authentic edge, all under the assumption
that f(x) is a normally distributed random function, with
autocorrelation function ¢ (7) with 7 being the autocor-
relation lag.

Theorem 5: If f(x) is a normally distributed random
function, with autocorrelation function ¢ (7), then the
probability of an edge being a phantom edge is given by

p=(_ﬂ

, =3 (15)

where

_¢(4)(0)
V¥'2(0) ¥©(0)

The probability of an edge being an authentic edge is given
by

(16)

1-p -0t

s (17)

Proof: An edge occurs when f,, crosses zero. The

probability of a zero crossing of f,, being phantom is

P, =Pr(x > 0| fr = 0) = Pr(fifur > O] fo, = 0)
_Pr(fifx >0, £ =0)
- Pr(f,=0)

Lety, = fi, y2 = fix, and y; = f;,,; then, since f(x) is a
normally distributed random function, the joint probabil-
ity density of y;, y,, and y; can be written as

(18)

1 —(1/25TM-15)

" (20 M|

where M is the covariance matrix of ¥ (we assume that
Y1, Y2, and y; are zero mean) and | M| is the determinant
of M:

Z(y) (19)

-y@(0) 0 -y (0)
M = 0 y@0) o (20)
_\I/(4)(0) 0 _¢(6)(0)
Now, P, can be written
_Pr(yy; >0, 3»=0)
P T ke m=0) 2D

We can write the probability of finding y, in an interval
(y1, y1 + dy1), y; in an interval (y,, y; + dy,), and y; in
an interval (ys, y3 + dy;) as

Z(y1, y2, y3) dy, dy, dys. (22)

Fory, = 0, we can write dy, = | y;| dx; hence, we have
that

)

Pr(y, =0) = SS | 31Z(y1, 0, y3) dy, dys dx (23)

= 2<5S ¥3Z(y1, 0, y3) dy; dy; dx

0

0 0
- S_ So ¥:Z(y1, 0, y3) dy; dy; dx>,

(24)
and similarly,

Pr(yiy3 > 0,5, =0)

o

=2 Sg viZ(y1, 0, y3) dy; dys dx.  (25)

0
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Thus, we have the following expression for P,
SS ¥:Z(y1, 0, ;) dy dys
P, =— . (26)
0 -]
SS viZ(y1, 0, y3) dy, dys — S_m SO v3Z(y1, 0, y3) dy; dys
0
Similarly, the probability of an authentic zero crossing,
P,, is given by
0 ©
S_ SO v3Z(y1, 0, y3) dy, dy;
= = (27)
0 3
SS ¥3Z(1, 0, y3) dyr dys — S_m SO ¥sZ( 31, 0, y3) dy dys
0
Let p = M ™'. Then, we have (19) for P, and P,, yield
1 1
sout =] ]
(22)"* VM| p-— e 172y
P
. e‘(“113'12+2f‘|35'|)'3*“33’13[ (28) 1 1 2
1+a 1-—a
If we make the change of variables t;, = y\Vpuy, 13 =
and
¥3V a3, then 1
Z(t, 13) = Ke-("z+2“’113+’32) (29)
’ P = l—a 1l +a (34)
where a = (p3)/(Vpnpsz) and K = 1/ “T T 2
\/,u”,u33(27r)3|M|. The value of a can be expressed in 1+a + 1—-a

terms of the elements of M to yield

v (0)

wFore P

a= -

We can thus write

-3

SSyal(yl, 0, y3) dy, dy;

0
©

2 2
= SS tye” (TH2NBAE) ge de  (31)
V33

Rice [10] shows that the integral in the above equation
evaluates to v /[4(1 + a)]. Similarly,

0 o
- g_m So ¥3Z(y1, 0, y3) dy, dys

L=

K SS —(12—2011 +12)
= —F [38 ! 137 dfl dt:;
V33
. K+w (32)
4Vpuss(1 — a)’

The above equations, along with the expressions (18) and

If we assume that the input signal is white (i.e., r (1)
= (7)) and that the smoothing filter is Gaussian, then
the autocorrelation function of the filtered signal is given
by

1

e—rz/(402)
20T

¥(r) = (35)

By 2doirzlg a McLaurin series expansion of y(7) and of
e /™) it can be seen that the derivatives of ¥ (7) eval-
uated at zero are

¥ (0) =
<

(1)t

g>' 2n+10,n+l\/—1;

(36)

for n even and are zero for n odd. From this, we compute
that a = v3/5, which yields P, = 0.113. Thus, we ex-
pect to find that roughly one out of every nine edges is
phantom. One can derive the probability of a zero cross-
ing being authentic in a similar fashion; the result is P,
= (.887. The ratio of the density of authentic zero cross-
ings to phantom zero crossings is thus

P 1 l1+a
H=—=1= = 7.87. 37
P, P, l1—a (37)

It is evident then that for a normally distributed white ran-
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dom signal, when smoothed by a Gaussian low-pass filter,
the density of authentic zero crossings is about eight times
the density of phantom zero crossings. Note that the ratio
of the densities of the authentic and phantom zero cross-
ings is independent of o.

We will now state the theorem concerning the ratio of
the expected contrasts of authentic and nonauthentic zero
crossings.

Theorem 6: The ratio of the expected contrast of the
authentic edges to the phantom edges of a normally dis-
tributed random variable, with autocorrelation function
¥ (7) is given by

%:: <i ;Z>[l * (m —m; cos™! (a)>}

(38)

where a is given by

_ y“(0)
4= /‘L(Z)(O) Jx‘ﬁ)(O)'

Proof: The expected value of the edge contrast, given
that the edge is a phantom edge, can be written

G = E{| £l | fifuur > 0, fux = 0}.

As before, let y, = f,, y» = f., and y; = f,,,; then C, can
be written in integral form as follows:

(39)
(40)

C, S_ | yilp (31| y135 > 0, y, = 0) dy,

It

o

2 SO yip(n|ys > 0, y, = 0) dy,. (41)

Il

The quantity p(y;| y1y3 > 0, y, = 0) can be expressed
as

Py, y1y3 >0,y =0)
p(yys >0,y =0)
(42)

p(yi|yys > 0,3, =0) =

In the proof of the previous theorem, we showed that

d
ad P, dx.

IEE I

p(ny; >0,y =0)

Hence,

2 So (i, y3 > 0, y, = 0)dy,
C —

4 P, dx

(44)

Now, p(y1, y3 > 0, y, = 0) can be expressed, using dy,
= | y3| dx, as

p(yi,y» >0,y =0)

= <g: ¥:Z(y1, 0, y3) d)’3> dx.  (45)

Thus, we have

2<S0 SO ysZ(y1, 0, y3) dy; dy3> dx

= . (46
G P, dx (46)

From the definition of Z( ¥ ) and making the substitutions
t, = y1Vuu, t3 = y3 v a3 as before, we obtain

@

K Ss t1t3e—(¢l2+2m113+x§) dr, dry
Nipaz Y
C = . (47)

P Pp

Rice [10] provides the solution for the integral in the
expression above, and we can write

¢ = esc? (p)[1 ;,, ¢ cot (¢)] (48)

where ¢ = cos™! (a). The value of the parameter a can
be expressed in terms of the elements of the autocorrela-
tion matrix M as follows:

¥y (0)

a=- [5™(0) ¥©(0) (49)

One can easily show that

1 a
esc? (@) = = oo (o) = N (50)
Thus, we can write, after some algebra
V1 —a* — acos™! (a)
G = . (51)

1—a

Similarly, it can be shown that the expected contrast of
an authentic zero crossing is obtained simply from the
expression for C, by changing the sign of a. Doing this
yields

V1 —a®> —acos™ (a) + wa

G = 1+a

(52)

Hence, the ratio of the expected contrast of the authentic
zero crossings to the expected contrast of the phantom
Zero crossings is given by

%2:(1;3)[”(«—??

—acos™! (a)>j|

(53)

For the value of a determined earlier, this ratio works out
to be C,/C, = 3.155. Thus, the authentic edges are, on
the average, about three times stronger than the phantom
edges.

We have shown that, for the case of white, normally
distributed random signals, the phantom edges are fewer
(by a factor of about nine) and weaker (by a factor of
about three) than the authentic edges. One cannot con-
clude from this that the phantom edges are not significant,
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however. There may be phantom edges whose contrast is
greater than some authentic edges, so that, while thresh-
olding will get rid of most of the phantom edges, it will
not eliminate all of them and will eliminate some of the
authentic edges. Note that some of the authentic edges
may be due to noise and thus may not correspond to sig-
nificant image detail. The edge classification procedure
will therefore not remove these noise edges, and some
other method must be used to eliminate them (such as
thresholding of the edge contrast after the classification
process).

IV. ExamMpPLES OF PHaANTOM EDGE PRODUCTION AND
CLASSIFICATION

Examples of the classification process are shown in
Figs. 3-7. Fig. 3 depicts the classification of the zero
crossings of the second derivative of a smoothed one-di-
mensional Gaussian noise signal. The zero crossings clas-
sified as authentic are represented by solid vertical lines,
while the phantom zero crossings are represented by
dashed vertical lines. Notice that the phantom zero cross-
ings occur whenever there is a double step in the signal.
Figs. 4(a) and 5(a) are computer-generated images of re-
petitive intensity step functions. Figs. 6(a) and 7(a) are
images of typical laboratory scenes obtained with a video
camera. The set of all zero crossings of the filtered image
are shown in part (b) of Figs. 4-7. These include both the
authentic and the phantom zero crossings. In Figs. 4 and
7, the Laplacian operator was used, while in Figs. 5 and
6, the second directional derivative along the gradient op-
erator was used. The value of o for the Gaussian filter was
ten pixels in all of the two-dimensional experiments de-
scribed in this paper. The classification of the zero cross-
ings is given in part (c) of the figures. The authentic zero
crossings are in black, while the phantom zero crossings
are in white. Finally, part (d) of the figures shows just the
zero crossings that were classified as authentic. Note that,
in the synthetic images, the classification scheme per-
formed correctly, as it classified as phantoms those zero
crossings which did not correspond to any of the intensity
steps in the original image. Note also that these phantom
zero crossings arose when along a gradient track there
were consecutive changes in image intensity with the same
sense. In the case of the video camera data, it is interest-
ing to note the relative abundance of the phantom zero
crossings, as well as where they occur. The resulting au-
thentic zero-crossing image is seen to be much cleaner
than the image containing all the zero crossings. The
phantom zero crossings do not seem to correspond to sig-
nificant image features, whereas the zero crossings clas-
sified as authentic do, in general, correspond to actual im-
age features.

We also ran experiments to generate statistics on the
relative frequency and contrasts of the phantom and au-
thentic zero crossings. This was done to check the math-
ematical analysis done in Section III for the one-dimen-
sional case and to provide a feeling for the two-
dimensional case, for which the mathematical analysis
was not possible. The results of these experiments are
summarized in Table I. The results for the case of the one-
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Fig. 3. The classification of the edges of a one-dimensional signal. The
locations of authentic edges are indicated by solid vertical lines, while
the locations of phantom edges are indicated by dashed vertical lines.

dimensional Gaussian signal (P, = 0.125, Ca/C,, =
2.997) are close to those predicted by the mathematical
analysis of Section IV (P, = 0.113, C,/C, = 3.155).
The results on the two-dimensional images are interest-
ing. They indicate that for typical images the probability
of a phantom edge is around 0.15, or one in seven. The
contrasts of the phantom edges are on the order of one-
seventh to one-tenth the contrast of the authentic edges.
It is interesting to note that the frequency and contrast of
the phantom edges for a Gaussian noise image are much
less than for a typical real image. This indicates that there
is a relative abundance of ‘‘double-step’’-like intensity
patterns in real images, as compared to random images.
This observation could help to produce more realistic im-
age models by insisting on more double-step intensity pat-
terns in a synthetic image.

V. SUMMARY

We have demonstrated in this paper that edges pro-
duced by the zero-crossing methods do not always cor-
respond to intensity changes in the image. A method for
classifying the zero crossings produced by these edge de-
tection schemes as either phantom or authentic was pre-
sented.

Experiments were described that supported the claim
that phantom zero crossings are common and that dem-
onstrated the efficacy of the classification scheme in dis-
tinguishing the phantom zero crossings from the authentic
Zero crossings.

A probabilistic analysis was performed, under the as-
sumption that the signal was a normally distributed ran-
dom variable, which showed that, for the case of one-
dimensional white noise signals, smoothed by a Gaussian
low-pass filter, the density of the authentic zero crossings
is roughly eight times that of the phantom zero crossings
and that the contrast of authentic zero crossings is, on the
average, about three times the contrast of phantom zero
crossings.

It was demonstrated that, for the case of zero crossings
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(¢)

(d)

Fig. 4. (a) A synthetic piecewise constant intensity image. (b) The zero
crossings of the image after V3G filtering. (¢) The classification of the
zero crossings [using (6)]. White indicates phantom edges, while black
indicates the presence of an authentic edge. (d) The authentic edges of

the image only.

of V2G filtered signals, the contrast of the phantom zero
crossings increased with an increase in the filter ¢, while
the contrast of the authentic zero crossings diminished.
The V?G and (3°G/dn’) zero-crossing edge detection
methods are very popular at the present time in the com-

putational vision and image analysis field. Those using
these methods should be aware that not all of the edges
found by them are authentic edges and that the phantom
edges do occur in significant numbers and contrasts in
typical images. It is clear that in order to obtain the best
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Fig. 5. (a) Another synthetic piecewise constant intensity image. (b) The
zero crossings of the image after Gaussian smoothing and application of
the second directional derivative along the gradient operator. (c) The
classification of the zero crossings. White indicates phantom edges, while
black indicates the presence of an authentic edge. (d) The authentic edges
of the image only.

performance possible from a given application, such as APPENDIX

stereo vision, the phantom edges produced by zero-cross- DECOMPOSITION OF THE LAPLACIAN

ing edge detection algorithms should be detected and dis-

carded. In this paper, we have provided a means for doing In this Appendix, we develop a decomposition of the

$0. Laplacian into two parts. If we consider the Laplacian as
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Fig. 6. (a) An image obtained from a video camera. (b) The zero crossings
of the image after Gaussian smoothing and application of the second
directional derivative along the gradient operator. (¢) The classification
of the zero crossings. White indicates phantom edges. while black in-
dicates the presence of an authentic edge. (d) The authentic edges of the
image only.

the divergence of a gradient field, these two parts corre-
spond to a ‘‘gradient magnitude change’’ part and a ‘‘gra-
dient direction change’’ part.

We begin by finding an expression for the Laplacian
operator in a general curvilinear coordinate system. Let

us define a curvilinear coordinate system with basis vec-
tors &, &, and coordinates u', x> and metric tensor g”. The
basis vectors are related to the coordinate functions by e
= Vu' and & = Vu’. The metric tensor is given by g¥ =

é-ei,j=1,2. The Laplacian can be expressed in this
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o
N

(¢) (d)
Fig. 7. (a) An image obtained from a video camera. (b) the zero crossings
of the image after V-G filtering. (¢) The classification of the zero cross-
ings. White indicates phantom edges, while black indicates the presence
of an authentic edge. (d) The authentic edges of the image only.
coordinate system with the following (given in many texts TABLE I
on differential geometry, e.g., [12]): RESULTS OF CLASSIFICATION EXPERIMENTS
Tnage Name ) Figure 6 | Figure 7 | Mona Lisa | 2D Random | 1D Random | Theory.1D ]
ii af No. Authentic | 23629 | 20074 11504 18841 8829 8949
a{ g Fi No. Phantom 3765 3661 2272 1221 1257 1137
5 du = af No. Edges 27394 23735 13776 20062 10086 10086
Vf=————+ I".‘kg’f — (54) [Prob. Phantom |~ 0137|0154 0.165 0.069 0.125 0113
ou' ! ou’ T.JC, 9.346 | 7.005 10.054 32.34 2.997 3.155 ]
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where the Einstein summation convention is used (i.e.,
summation is implied over repeated indexes) and the
quantity I‘,j, called the Christoffel symbol of the second
kind, is defined in terms of the coordinate basis vectors
as follows:

- 6. (55)

The expression for the Laplacian expands to

f i ag’ af
V= —=— Jg¥ + —.
! <au'auf>g <a P+ T’ ) 5,7 (56)
Now let us use as the basis vectors for one curvillinear

coordinate system the unit vectors # and 7, that are nor-
mal and perpendicular to the curves of constant f(x, y).

That is,
Lol = L (O O\ _ Vf
e=Vu _|Vf|<3x 6y> |Vf| (57)
2 _y2o L (9 O
eV IVf|<6y’ o > (58)
We then have that ‘
(¢) =(é-e) =1 (59)

Let us, following the usual computer vision notation, let
n = u' be the coordinate in the 7 direction, and n, = u°
be the coordinate in the 7, direction.

It is easily seen that (8f/dn,) = O identically since
f(x, y) is constant in the direction perpendicular to its
gradient. Furthermore, one can show that (df/dn) =
| Vf |. Hence, we have

¥f f
Vi=gr t ez T Th A TR)[Vf]. (60)
From the definition of the Christoffel symbols, we get that
an
Iy=—--#
1 an n (61)
and
an
Th=—"i,.
12 an, n, (62)

Since (97 /9n) and 7 are orthogonal, we have that I'}, =
0. We can thus express the Laplacian as

+<ﬁl %)Wf{. (63)

The last term in the above expression can be expanded
using (87 /dn, ) = Vi - #, and is given by

N an _ f)%f;:x - zf;f;ffxy +f3f;)y
<n_L anJ—>‘Vf| - ‘Vf‘z . (64)
Thus, we have
20— Y.

It can be shown (see, for example, [2], [13]) that

B _Lhs VYIS
on |Vf|
Substitution into (65) gives
V= oty + L (67)

n;

Thus, we see that (4 f/ dn®) = 0. This observation
(which shows that [13, eq. (4.9)] is in error) is also ob-
tained by noting that (df/dn, ) is identically zero, and

hence so are any of its higher derivatives, including
(8%f/dn% ). We can now write
f (. on
Vi=gz+ (A5 )1l (68)
n,

The quantity (7, - (87 /dn,)) can be shown to be
equal to the curvature « of the level crossing of f(x, y)
through the point (x, y). Hence, we have

f (69)

Vi = 5 + «|Vf|.

The above expression for the Laplacian in terms of the
second directional derivative along the gradient and an
additive curvature term supports the observation, attrib-
uted to Kass in [13], that sz = (azf/anz) when the cur-
vature of the level-crossing lines of the intensity function
f(x,y) is zero. The above expression also reduces to the

form, given in [13],

14
vy 10
on’ p dp
in polar coordinates when f(x, y) is radially symmetric
(and whose level crossings thus have a curvature k =

1/p).

(70)
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