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Abstract— We describe a general technique for spec-
ifying trajectories of controllable imaging parameters
in an active vision system so that temporal integration
processes are optimized. The technique assumes that a
Kalman filter is used to perform the temporal integra-
tion of measurements and is based on determining, at
each point in time, the set of imaging parameter val-
ues that minimizes the trace of the state estimate error
covariance matrix. We present the application of this
technique to the active vision task of extracting the lo-
cation and orientation of a plane from shadows cast on
it with a position controlled light source.

I. INTRODUCTION

Active vision systems are characterized by control
over various aspects of the imaging process. A num-
ber of active vision techniques have been proposed that
use such control to improve the process of obtaining
3D information about object surfaces. For example,
Whaite and Ferrie [15] introduced a method for deter-
mining the location of a sensor that minimizes some
measure of uncertainty about the shape of an object.
They applied this to the task of building up object sur-
face descriptions from range-finder data. Shmuel and
Werman [11] presented a Kalman Filter based tempo-
ral integration scheme for depth from stereo where the
cameras are positioned so as to minimize an uncer-
tainty measure. The Kalman filter allows information
from a sequence of sensor readings to be integrated,
resulting in a reduction in the effect of noise on the in-
formation derived from the sensor data. Each of these
techniques shares a common thread in that they have
control over some aspect of the imaging process, and
use this control in a way so as to optimize the extrac-
tion of information from the sensor data.

In this paper we present a technique for determin-
ing the trajectory of an arbitrary control variable in
an active sensing system so as to minimize the error
in a result derived from the sensor data. This tech-
nique, based on the use of the extended Kalman filter,
has a general applicability to active sensing systems,
and has the advantage over the techniques used in the
work cited above in that the control law is expressible
in closed form, and its implementation is straightfor-
ward. To demonstrate its use we apply it to the task of
obtaining surface information using the shadows cast
by a position controlled point light source.
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II. OpTIMAL CONTROL OF IMAGING PARAMETERS

Although the assumptions used in the derivation of
the Kalman filter are not usually satisfied in vision
problems, the Kalman filter, it has been successfully
used in many vision algorithms. For example, the var-
ious vision tasks described in [1], [?], [4], [6], [8], [9],
[12] use the Kalman filter or its many extensions. Like-
wise, we will use the extended Kalman filter as the
basic temporal integration process in our technique.

The extended Kalman filter equations are [5):

& = Ep—1 + Ke—1[yx — ha(Zx-1)] (1)

where £ is the estimate of the state vector and y;
is the vector of measurement values at time k. The
function h(%) is the measurement function which re-
lates the noise free measurement vector to the state
vector (i.e. y = h(z) + n, where 7 is a vector of Gaus-
sian random variables with mean zero and covariance
matrix R). measurement. K is the Kalman gain,

Ki = Py HY (85—1)[He(8k-1)Poct HY (£k-1)+Re] ™"
(2)
The state estimate error covariance is updated is using

Py = I — KpHi(8k—1)]Pr—1 (3)

In the above equations Hj(£x—1) is the linear term
of the taylor’s series expansion of the measurement
function h(Z) evaluated at & = £,

Ohy (%)
5| (4)

T=Th—1

Hy(8r-1) =

The state estimate error covariance matrix P provides
a measure for the amount of uncertainty in the esti-
mate of the state variables. At each step of the Kalman
filter estimation process the information provided by
the new measurement reduces the error in the state es-
timates. In all active vision systems there are certain
controllable parameters which affect the measurements
that are made. We can specify the values of these pa-
rameters so as to maximize the reduction in the state
estimate error covariance due to the incorporation of
the measurement.

In order to implement such a procedure we require
a well-posed optimization criterion. In the work of



Whaite and Ferrie [15], the determinant of the state
estimate error covariance matrix was used as an ob-
jective function for optimization purposes. The trace
of the state estimate error covariance matrix, suitably
weighted, is also a reasonable quantity to be opti-
mized. If the state estimate errors are uncorrelated,
then the trace of P is the sum of the state estimate er-
ror variances. The diagonal elements of the covariance
matrix must be weighted to account for difference in
units between the state estimate error variances. This
weighting can be implemented by pre- and post- mul-
tiplying the covariance matrix by a constant diagonal
matrix before computing the trace. In terms of the
notation introduced earlier, the optimization problem
associated with this choice of objective function can be
expressed as follows (we drop the time step subscript
from H and K for clarity):

@ = argmin tr[WP,W| = argmin tr{W(I-KH)P,_ W]
u u
(5)

where 1 is the vector of parameters under our control,
and W is a suitable diagonal weighting matrix. This
problem is equivalent to

4 = arg max (@) (6)
where
€(@) = tr(WK(@)H (@) Pe—1 W] (7)

Noting that K = P,_yHT[HP,_1HT + R]™! it can be
seen that we can express € in the simple form:

¢ = tr[AT BA] (8)
by taking
A=HP,_,\W 9)
and
B=[HP,_HT + R}™! (10)

The matrix B is symmetric. The matrices A and B
typically depend on the value of the control vector
@ = (u1,uz,...,un) to be used in obtaining the mea-
surement. This dependency arises through the depen-
dency of the measurement matrix H and the measure-
ment noise covariance matrix R on the control vari-
ables. The prior covariance matrix Pr_; does not de-
pend on the new control variables, only on their pre-
vious values.

The quantity, €(@) that is to be maximized is, in
general, a nonlinear function of #. As such, solving
for the value of @ that minimizes ¢ may be difficult.
The situation is exacerbated by the fact that, in prac-
tice, there will be constraints on the values of @ that
can be used. For example, a camera may be mounted
on the end of a robot arm which has a limited range
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of motion. This means that solution of a constrained
nonlinear optimization problem is required. We can,
however, use the constraints on the values of the con-
trol parameters to our advantage in solving the opti-
mization problem. In many active vision tasks that
involve temporal integration, measurements are taken
after small, incremental, changes of the imaging pa-
rameters (see, for example, [9]). In such a case we
can replace the global constraints (those due to phys-
ical limits on the actuators that implement the imag-
ing parameter changes) with artificially imposed limits
that constrain the space of possible control parameter
values much more. In what follows we will make the
assumption that the range of possible. control param-
eter values is restricted to a spherical region centred
on the current value of the control parameter vector,
and that the radius of this region is sufficiently small
so as to allow the assumption that the gradient of ¢
with respect to the components of @ is constant. We
further assume that this constant gradient is non-zero.
These assumptions imply that the extrema will lie on
the boundary of the constraint sphere and that the
extremal values are equal to

Vae(@d)
[Vae(a)|

=k

u =’l7:0:*:'l' (11)

where r is the radius of the constraint sphere, iy is the
current control vector, and

o 9 3
Vg = (6_151’8_142""’ %:) (12)

In general the limits on the changes of the different
control parameters will not all be the same, as is re-
quired by the sphericity assumption on the shape of
the constraint region. In fact, the different control
variables may not even have the same units. We handle
this by normalizing the control parameters by divid-
ing each of them by their respective maximum allowed
changes. Thus the constraint region becomes the unit
sphere.

It may appear that such an incremental approach
results in a gradient descent on the objective func-
tion e(#). The objective function depends, however,
on the current state vector estimate, ;. Thus, the
form of the objective function is constantly changing,
and so the “landscape” which is being “descended” is
constantly changing its topography. In such a situ-
ation the objective function will never increase, but
the system is not guaranteed to converge to a mini-
mum. This aspect of incremental active vision control
systems was noted by Whaite and Ferrie [15]. They
observed that the change in the objective function due
to the information gained at a sensor location is of a



form that decreases the value of the objective func-
tion at the current location relative to other locations,
thereby forcing the sensor away from its current loca-
tion. This type of repulsion from the current location
prevents the system from being trapped in local min-
ima.

We now derive an expression for the gradient of (@)
with respect to the components of the control param-
eter vector u. It suffices to find a general form for the
gradient components, so we will determine the partial
derivative of €(i) with respect to a specific component
u;. In the derivation of the expression for the gra-
dient we will use the following matrix dlfferentlatlon
identities:

Let X = X(t) and Y = Y(¢) be matrix functions of
a scalar t. Then

2tr[XTYX] =tr [—a—(XTYX)] (13)
ot -7 Lot
Let X(t) = Y~1(t) be a symmetric matrix function of
a scalar . Then

0xX oY

S=-x(5)x (14)
From equation (8) we have that:

Oe

3Ui - aui r (15)

Using the first of the matrix differentiation identities
this can be written as:

Oe 9AT 70B 7,04
ou, =1tr o, (BA)+ A 9, —A+ A Ba (16)
From the definition of the matrix A we have that:
0A OH
aui Bu (17)

(since Px—; and W do not depend on the new value
of the control vector #). Using the second identity we

can write:
0B __p ( ) B
(18)

du;
Expanding equation (16), using the linearity of the
trace operator, we get

8HT +
Ou;

oR
(9’[1,,;

0H

7u, P HT + HP,_, =——

Be _
Bui

tr (WPt S BA| — tr [ATBYLP, \HTBA| -

]+

tr
tr [ATBZLP. W] -

jATB %BA]

tr
(19)
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Since the trace of a matrix is equal to the trace of its
transpose, the above equation can be written as

-é%f—l_ = 2ir [ATBg_ZPk—IW - ATBg_ng—lHTBA] _
tr [ATB%%BA]
(20)
Using ATB = WK, we get
B = 9tr [WKgng_l(I - HTKT)W] - o
tr [WKE"’%KTW]

Note that P,_;(I — HTKT) = (I - KH)Py_; = P,
the update to the covariance matrix. Thus we can

write:
or [k (2 w] e

Oe

6u,
Usually R depends on u only indirectly, through the
influence of v on the measurement function h. So we

OR
P~ 5K

O0H
Ou;

e OR _ OR oh
el il 2
Du: . Oh Bu; (23)
in the above equation. The quantity 38—’,3 is obtained

from a model for how the measurement noise varies
with the measured value.

I1I. APPLICATION TO SHAPE FROM CONTROLLED
SHADOW MOTION

Control of imaging parameters in active vision sys-
tems is not limited to control over the position of the
image sensor. One can control other parameters such
as the position of the illumination source. For exam-
ple, Clark [2] has described a technique for obtaining
the shape and absolute position of objects from shad-
ing information that rely on the control over the po-
sition of a light source. Likewise, Wang and Clark
[13] describe a technique for obtaining the shape of an
object onto which a shadow is cast which uses the con-
trolled motion of a light source to provide the required
data. In this section we show how the trajectory op-
timization procedure given above can be used in this
application.

There have been proposed many techniques that use
shadow motion to obtain information about surfaces
(e.g. [7], [10]). The technique described here, devel-
oped by Wang and Clark [13], are different than the
previously cited approaches in that it uses controlled
motion of a nearby light source, and provides absolute
surface depth information as well as surface normal in-
formation. The geometry of the Wang-Clark method
is shown in figure 1. For simplicity we show the 2-
D case, but the analysis given below is for the more



general 3D case. We assume that the light source is
a point source, and that the background object (onto
which the shadow is cast) is planar and that the fore-
ground object (which casts the shadow) is a quadric
surface. As the algorithm determines shape locally, the
assumptions on the background and occluding object
shape need only be satisfied locally. The background
plane can be defined by a vector, 7, normal to its sur-
face, and by the vector from the origin to any point on
the plane, 13, via the following equation:
ATP+1=0 (24)
The three components of 7 define the plane. The
quadric surface can be defined with the following equa-
tion: . . .
@M, G+iTG =1, (25)

respectively. where M, is a positive definite symmet-
ric matrix that describes the curvature of the object’s
surface, and Cj is any point on the surface. The six
independent parameters of M and the three compo-
nents of ¢ define the quadric surface. In total, there are
twelve parameters which define the shape of the back-
ground plane and the shadowing object. In addition
to these shape parameters, we also must determine
the location in space of the shadow boundary on the
background plane, 7, and on the shadowing object,
7q. These will change as the light source moves. The
shape parameters will not change as the light source
moves.

With the measurements i, and fq, and the known
light source position 7,, we seek to find the least num-
ber of such equations from which we can solve for the
unknown shape and shadow boundary position param-
eters: 7ip, i;, M,, 7p, and 7,. Each light source position
gives rise to a set of constraint equations that describe
the geometric relations among points on the surfaces
and in the image plane. Assuming perspective pro-
jection and a pinhole camera model, the image forma-
tion process gives rise to the following image formation
equations:

(26)

Noticing that, for each light source position, the vec-
tors 1y, 7p, and 7y, are coplanar, we have the illumina-
tion constraint equation:

(Fp —71) X (fq = 1) =0, (27)
Only two of the three equations provided by this con-
straint are independent, however. To see this, consider
the case where both 7 and 7, are known. These then
define a line on which 7, must fall, but leave free where
on the line 7, falls.
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Fig. 1. Geometry for the active shape from shadows technique.

Finally, the light rays for which the cast shadow
boundaries are formed on the background are tangen-
tial to the quadric surface patch, therefore we have the
following tangent equations:

(7y = 71)" fig = 0, (28)
where i, = 2 M, 7, + f,

Counting the equations provided by the above geo-
metric constraints, we see that there are 7 x4 indepen-
dent equations, where i is the number of different light
source positions we make measurements at. There are
a total of 12 + 6 * ¢ unknowns (the 12 shape parame-
ters and 6 shadow position parameters for each light
source position). Thus we need at least 12 light source
positions to solve for the unknowns. This results in a -
system of 84 quadratic equations in 84 unknowns! It
can be shown (see [14] for details) that the unknowns
can be decoupled so that we need only solve a system
of 12 quadratic equations for the 12 shape parameters,
from which the position parameters can be straightfor-
wardly computed. Even so, the solution of a system
of 12 quadratic equations cannot be obtained in closed
form and numerical solutions will be plagued by sen-
sitivity to noise and multiple solutions.

If, however, we make the assumption that the object
that is casting the shadow contains a “sharp” edge
at the shadow boundary then the problem simplifies
greatly. At a sharp edge the self-shadow boundary
does not move as the light source moves. In this case



the shadowing object can be defined by only the lo-
cation of the points along its sharp edge, which will
coincide with the location of the shadow boundary 7.
Thus the number of unknown shape parameters has
been reduced to those of the background plane only.
Furthermore, in the sharp corner case, the location of
the self-shadow boundary 7, does not vary with the
light source position, further reducing the number of
unknowns to be determined.

Under these conditions we get an equation, for each
light source position, which is linear in four of the un-
knowns 71, and 1/r,,:

Nz
ipz  ipy e Npy — -é‘.
(% %1 2) ™ = (@)
1/rq.
where )

Wy = frl:z: — gz Tlz

Yo = fTie—ipaTiz (30)

gz = ipz - iqz-

A linear system of four such equations, obtained from
four different positions of the light source,

;(1) ;(1) 1

Bz g ‘_Yj(uil 3%

f f wil w®

i(2) i(2) 2 2

=l 7P Tipz 3%

! I wf'é’) w(2)
& n x

Y - _

iy iy 45 Mz (35

7 b 1 w_f_ﬁ 1/7'qz wis}

(4) (4) (4) I35

1 13

Bz pY Xe O}

f f 1 wﬁf) w£:4

(31)

will give a unique solution for the shape variable 7,
and depth of the object edge point, ry,, as long as the
coefficient array is invertible. From these values, the
remaining parameters can be recovered as follows:

Tqz
f
Using these equations, we can solve, in closed form,
for the desired quantities from image measurements
obtained at four different light source positions. The
results of doing this straightforward solution are un-
suitable in practice due to noise in the localization of
the images of the shadow boundaries and to uncer-
tainties in the location of the light source. To alleviate
this sensitivity to noise somewhat, we can apply an ex-
tended Kalman filter to provide estimates of the shape
and position parameters, integrating information ob-
tained over many light source positions. This indeed
does provide acceptable results in real-world applica-
tions, as detailed in [14]. We can, however, do even

7y = (32)

'.'_ - -1 ird
1q; Tp—mlp
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better if we have control over the light source posi-
tion. In this approach we make small displacements of
the light source, as prescribed by equation (11). Af-
ter each displacement we make a measurement of the
shadow boundary locations, and update the Kalman
filter. To implement this technique we need to deter-
mine expressions for H, the linearized measurement
equation, and %—Z, the derivatives of H with respect
to the control parameters. Due to their complexity we
do not include these expressions here. They can be
found in [14].

In the remainder of the paper we will present the
results of an implementation of this approach in a real
robotic system. In this experiment the light source was
a 250W quartz light with a fiber-optic light guide out-
put. The light guide terminated in a 2mm aperture,
over which a diffusing layer was placed. The position
of the light guide terminus was controlled via a six
degree-of-freedom robotic manipulator, the American
Cimflex Merlin. The camera was mounted on a tri-
pod which was fixed relative to the base of the robot.
The camera viewed a scene consisting of a sharp edged
object that cast shadows onto a flat background wall.
The coordinate transformations between the camera
image plane and the initial light source position were
determined via a calibration process. Details of the
calibration process can be found in [14]. :

In figures 2, 3, and 4 are shown results of two sep-
arate experiments. In the first, an iterated extended
Kalman filter was used to integrate information where
the light source was moved in a pre-set helical trajec-
tory. In the second experiment the Kalman filter was
used to integrate information where the light source
was moved according to the optimal control specified
by equation (11).

Figures (2) and (3) shows the convergence of the
state variable estimates. Note that using the opti-
mal control results in the estimates converging much
more rapidly than when using the preset trajectory (by
about 10 steps versus 40 steps). Note also the shape
of the optimal trajectory.

Figure (4) shows a depiction of the surface patches
reconstructed by the active shape-from-shadowing
process in the case of the optimally controlled trajec-
tories. Shown are the locations of the recovered 3D
locations of the shadow boundaries on the shadowing
and background objects. The recovered surface nor-
mal of the background is not depicted.
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Fig. 2. The convergence of the state variable estimates for the
pre-determined light source trajectory.
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Fig. 3. The convergence of the state variable estimates for the
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