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Abstract

We present a novel method for reconstructing three
dimensional surfaces from stereo intensity data. We
employ a set of competing surface hypotheses based on
parameterized models. We use mazimum a posteriori
(MAP) estimation and demonstrate a connection to
the Hough transform. Ezperimental results are given
showing the effectiveness of the algorithm.

1 Introduction

Stereo vision algorithms reconstruct three dimen-
sional surfaces from a pair of binocular images. Cen-
tral to these algorithms is solving the correspondence
problem. The task is to match features in one image
to those in the other image. This problem is often
approached through the minimization of a functional
which incorporates a data term, indicating how closely
features match, and a prior term, representing prior
assumptions about the surface. These priors are es-
pecially important since the stereo vision problem is
ill-posed in the sense that there are many possible so-
Iutions from a given pair of images. Priors are useful
since they restrict the class of allowable solutions, but
the danger is that if the assumptions are wrong, the
prior will not produce a good reconstruction. The
work described here is devoted to developing competi-
tive priors for surface reconstructions based on a series
of stereo image pairs [11]. Throughout the implemen-
tation the members of the space of priors compete.
Unlikely priors are elliminated and the best (accord-
ing to our goodness-of-fit criterion) remain.

If a prior is inappropriate for a specific scene, a
standard algorithm will give an incorrect estimate of
the depth because the assumptions about the world
which give rise to that prior are not valid. For exam-
ple, many smoothness assumptions commonly used in-
duce a bias towards the frontoparallel plane [5]. As the
viewpoint moves, the flattening will occur in different
directions. At most one such reconstruction will be
correct. This result is clearly undesirable because the
reconstructed surface varies with the viewpoint. Also,
parameterized models give a compact representation
for incorporating new data as camera position varies.
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We attempt to fit the data to a parameterized sur-
face model. This involves simultaneously determining
the model parameters and which data points lie on the
surface. Eventually, we will extend this to a search
over a small class of competing parameterized models

[11].

2 Imaging Model and Binocular Stereo
Camera Geometry

We consider the following as our basic setup. There
are two cameras of known focal length f physically lo-
cated at fixed points in space and directed in parallel
directions. The baseline distance b is also fixed and
the midpoint of the baseline connecting the two focal
points is defined as the origin of our world coordinate
system. The baseline defines the X-axis and the direc-
tion parallel to the lengths of the cameras determine
the Z-axis. The Y-axis is orthogonal to both the X and
7 axes. We define the central or ‘cyclopean’ camera as
the virtual camera with focal point at the origin and
directed parallel to the pair of cameras. A point in
space (X,Y,Z) which is visible to the system of cam-
eras projects to the left, right, and central cameras
at points (zr,yr), (¢r, Yr), (2,y) respectively. From
the geometry, it is clear that vy, = yg = y. We will
use the symbol y to represent this value and it should
be clear from the context which y we mean. It is
also clear that for any visible point projected onto the
three image planes, the central camera x-coordinate
will be the arithmetical average of the left and right
x-coordinates. We now define disparity or parallax
u(z,y) as the difference in values between the coordi-
nates zp in the left camera and ¢ g in the right camera.
We thus have the system of equations

T, —TR=1U

L + TR =22 (1)
By similar triangles it is also readily seen that

z_yﬁf_u (2)

Systems (1) and (2) are the fundamental equations
of stereo vision (for parallel cameras).
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3 Hough Energy

Here, we consider the problem of locating a sur-
face E parameterized by a set of coordinates @ =
(1, 009,...,a1). One example we will examine is a
plane, B = {X |V, Z|X cos p+Y cos b+ Z sin psin) =
p}. Here & = (p,,p). The disparity u = u(z,y, &)
is calculated from the equation for the plane and the
second system of equations.

u=">bf/Z
X=azZ/f
Y=yZ/f

Solving for u(z,y, @) yields

. b cos b bf sin ¢ si
Wz, y, @) = cc{):@x_i_ Cops¢y+ f<m/<,)o<1n¢ (3)

So for a planar surface model, the disparity is seen to
be a linear function of z and .

Given a pair of stereo images Ir(zr,yr) and
Ir(zRr, yr) we write down the following energy.

B[S, u(z,y, @)1, Ir,E] = E1 + B, (4)
where

E1 = ZST’Q{IL(’C + %,y) - ]H(1 - g;y)}g

T,y
By =9 (1 Suy)
z,y

S 1s a matrix represented as an image array, specifying
whether a point (z,y) is on the surface = or not.

Sey =1
Sey =0

(z,9) €
(z,9) ¢

[ m

u(x,y, &) is defined as the disparity between the left
and right images at the point (z,y) in the cyclo-
pean coordinate system. The two terms in the energy
weight the relative importance of matching intensities
(or features) at each point in the central image ver-
sus having the points ’vote’ for the surface. If a point
does not vote for the surface, a penalty of magnitude
¢ is added to the energy. This enforces that the points
remain honest for without the extra term, we would
do best to have no point vote for the surface under
consideration and let S, , = 0 everywhere.

The S field is required because all points in the vi-
sual field will only rarely lie on a single parameterized
surface.

We seek a minimum for the energy and formulate
the problem in the Bayesian framework via the Gibbs
probability distribution. We define the probability of

S and u given the surface = and the data In(zr,yr)
and Ir(zgr,yr) as

P[S, u(z,y, @)1, Ir, E] = %e—ﬁE[S’,u(my,&)llL,IR,E] (5)

where N is a normalizing constant and § is a param-
eter inversely proportional to the *temperature’ of the
system. In what follows, 8 will be fixed and is set
based on our estimate of the noise present in the im-
ages.

The probability of the membership array S and dis-
parity u given the surface = and data Ir(zp, yr) and
Ir(zR, yr) can be written as the product of probabil-
ities taken over all points in the central image.

PIS,u(t,y, D1, 11, 5) = - [ P15 (aD2a90-500)

@,y
(6)
where

(A1 = {I1(z + 5.9) = In(e - %, 1))

The marginal probability of the disparity u(z,y, &)
is obtained by summing over the space of S, ,’s [13].

Pulu(z,y, @)1z, Ir, Bl = > P[S,u(z,y, &)1z, [r, 5]

- (7)

" - 1 - -
PM[u(f,?J,CV)uL;]R,:] = NH{G ﬁ(AI)zvl’—I—e ,619}1 (8)
=,y
By multiplying over the points (z,y) in the central

lmage, we can write the marginal probability in terms
of an effective energy E.;; .

Pulu(z,, )11, I, B] = {e™#Pessbele itz in 21y
(9)
where

_ 1 (5
Eerslu(z,y, @)1, Ir, E] = ni=5 > Tlog{14eP (AN

Y
(10)
where n is simply the number of pixels in the central
image. Since n and ¥ are constant, we can drop the
first term in the effective energy and write

H[E|IL, Ir; 9, T] = TZ]og{l + c{ﬂh(AI)ixy)/T.} (1])

Y

1This is a mixtures model where the first term generates
points on the surface and the second term describes the un-
matched points. This formulation can be seen as multiple re-
gression (see De Veaux [4]).
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where T' = % is the temperature of the system and

¥ is now seen to be a parameter controlling the al- .

lowable difference between intensities between the left
and right images so that a point contributes signifi-
cantly to the energy. We call H = H[=] the Hough
energy or Hough sum for a surface E due to its sim-
ilarity to the standard Hough transform. In fact, in
the limit as # — oo (T — 0) the Hough energy ap-
proaches a Hough Transform. This relation between
Hough transforms and MAP was first shown in [13].
Surfaces can now be found by finding peaks in the
Hough energy.

The points with high contributions to the Hough
energy and thus lie on the surface can be found as
follows.

A0=(ADZ )T

ey = 1Meo I 5 = T @z e

(12)
We now form the image of points such that P, , =

P[Szy = 1|11, Ir, E] is greater than some threshold .

In our implementation we take vy = 137 ~ 0.73.

4 Window Matching
4.1 Correlation

Matching straight intensities pixel-by-pixel is often
not robust. Fluctuations due to camera noise and due
to limitations in the pinhole camera model can cause
intensities in corresponding pixels to differ. More crit-
ical are effects due to quantization and inexactitudes
in the Lambertian assumption. Since the surfaces un-
der consideration are seen from different angles except
when viewing a plane front-on, the intensities received
at each point will be necessarily different. A more se-
rious problem is one of matching ambiguity among
points, a point in one image will have many candidate
matches in the other image. Taking a small window
around each point greatly reduces the likelihood of a
false match. Yang [10] argues that points which cor-
respond in the left and right images will be locally
similar. He thus argues for window matching correla-
tions such as the sum of squared differences we employ
here. To account for the possibility of one image hav-
ing intensities that are scaled in the other image, we
subtract the means over each window before correlat-
ing.

- 1
Iy = ;EIL(IL-&-E,yL +n)

&n

1
;ZIR(JDR%—E,ZJR—FW)

&n

Ir

i

Thus, we define a feature at each point in the window
as being the pixel value less the mean over a small
window.

Frlep+&yr+n) =I(zr+&yr +0)— 11
Frlzr+&yrn+n) =Ir(zr+&yr+n) —Ir

Now, a window correlation at each point in the cen-
tral image W (x, y) is defined as the sum of the feature
differences squared over the window divided by k, the
number of points in the window. If the means in the
left and right images differ too much, we do not allow
those points to contribute to the energy.

Wiy = =S {Fulas+€ 90 +7) — Falon +& yn+ )Y
i &n
o (13)
if |Ir — Ir| < 7 for some threshold 7, otherwise Wy =
oo. where xy, and zg are given by the first system of
parallel equations in terms of z and u = u(z, y, &@).
We now write down the Hough energy in terms of
the window correlation of features at each point.

H[E|FL, P9, T) =T > log{1 +¢"~"=31T} (14

T,y
4.2 Normalized Correlation

It turns out that using a normalized correlation
window matching scheme [10], the peaks in the Hough
space do not change much, but the points that lie on

~ the planar surfaces are more readily identifiable.

=) e AFL(zr+&yr +n) Fr(zr+&,yr + 1)}

Wy =

(15)

if |Ir — Ir| < 7 for the threshold 7, otherwise W, , = oo.

5 Implementation: Complications and
Remedies

One serious complication with the implementation
of the algorithm, is the inaccuracy of the assumption
that the cameras lie on a parallel baseline. Due to the
nature of the mechanical setup, it is most likely that
the scan lines in one image will correspond to a scan
line slightly higher or lower in the other image. We
overcome this with a search over a small y-disparity
at each candidate for matching pixels or matching fea-
tures. Specifically, the Hough energy is modified to

H[E|FL, Fr; ¢, T} = Tz:mgx log{l-}«e{l’_wiy}ﬂ} (16)

@,y
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(a)

(©)

Figure 1: (a) Left image. (b) Points belonging to surface in cyclopean image. (¢) Right image. Book covered
with a road map in front of a sweater. The book is tilted at an angle away from the cameras. The algorithm

"identifies the plane with parameters p = 1800 mm, ¢ =

where

1
Wiy ==Y (Fuler+&urtn) = Fr(er+éyntn+6))
&m
(17)
and § is allowed to vary over a small range, typically
§e{0,£1,%24 3}

6 Experimental Results

Fig. 1 shows a stereo pair of a book covered by a
road map of New Jersey in front of a sweater. The
book is tilted at an angle to the cameras. The algo-
rithm 1s able to determine the depth of the plane, as
well as the angles to the world coordinate axes within
a reasonable tolerance. For this scene, the three pa-
rameters ¢, ¥, and p give a stable and compact de-
scription. The scene viewed here is relatively simple,
but by combining resulting descriptions over a more
complicated scene, a compact representation is pos-
sible. A global search over the space of parameters
gives a small set of possible values for the vector &.
Peaks are found in the Hough space and are marked
as possible solutions. For this plane, the MAP esti-
mate p = 1800 mm, ¢ = L and ¢ = 2L yielding
a maximum energy of 15,020. The constants for this
run were 7' = 1, and J = 0. Images of 121x128 pix-
els were examined with normalized correlation using
a 5xh window.

7 Conclusion

We have shown a formulation for fitting stereo data
to a parameterized surface model. This method in-
volves simultaneously determining the model param-
eters, & and which data points lie on the surface,
S = {Sey}. In future work, we will extend this to
a search over a small class of competing parameter-
ized models [11]. Preliminary experiments show that
a more robust reconstruction is possible by allowing
a broad enough class of priors and then selecting the
most appropriate one to describe parts of the scene.
Competitive priors are a novel way to deal with the

LI and ¢ =

31
=

complications of task dependencies and viewpoint in-
consistencies. The work described here demonstrated
a robust procedure for fitting data to planes while si-
multaneously determining the set of points contribut-
ing to the plane energy and therefore lying on the pla-
nar surface. Also, our MAP estimation algorithm was
shown to resemble the Hough transform in the sense
that we can search over the parameter space and de-
termine peaks corresponding to identifying surface de-
scriptions.

Two limitations of our algorithm presented here
are due to our assumptions about how data is gen-
erated in the scenes. The assumption that points ei-
ther lie on a surface or are ’outliers’ only remains valid
when the main object covers most of the scene. The
other, and perhaps more serious, issue is that the ar-
ray S = {S: 4} has no bias towards spatial coherence.
Thus points said to lie on the surface may turn out
to be disconnected. This is possible for transparent
surfaces but in general objects are made up of points
locally connected. This question is addressed in recent
work with Zhu [15]. A modification of the energy func-
tion as well as a unifying algorithm is discussed. Ex-
periments lead us to be optimistic about this Region
Competition’ approach. The method also allows for
multiple surfaces and models the structure of bound-
aries between regions.
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