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Abstract

A mobile robot system will typically have associated
with it a number of sensing subsystems. If these sensing
subsystems are “active”, that is, using motion to aid in
the sensing process [1, 2, 8, 9, 14], they will each be issuing
motor requests related to the sensory processing algorithm
that they are performing. In addition, the manipulatory
portions of the robot system (i.e. those which uses its
arms, grippers and so on, to manipulate objects) will also
be requesting motions. Thus an important consideration
in the design of sensori-motor systems in robotics is the
management of conflicting motion requests from multiple
sensory and manipulatory modules.

This paper examines the motion management problem
and we present in this paper an architecture, based on Be-
stavros’ IOTA abstraction [5], that allows one to schedule
the motor commands sent to the various actuators in the
robot in a manner appropriate to the goals of the robot.

1 Introduction

In a general mobile robot the motor systems of the robot may
be required to perform duties related both to the acquisition of
sensory information (i.e. active sensing (1, 2, 8, 9, 14]), as well
as to influencing of the robot’s environment. For example the
active sensing system may require the robot to move around a
block in order to see what is behind it, while the manipulative
system may need the robot to stand still so that it can grasp a
nearby object which would be out of reach if the robot moved. It
can be seen by this simple example that one cannot decouple the
motor activities required by the sensing system from the motor
activities required by the manipulative system. Thus any system
that is developed for controlling motor activities in a robot must
take into account both the perceptual goals and the manipulative
goals of the machine and produce motions which address these
goals in an integrated and orderly manner.

One can think of the motor units of the robot as a limited
resource that must be shared between the sensory and mani-
pulative systems. The motion control operating system must
arbitrate between the conflicting requirements of these two sy-
stems in a way which allows the goals of the two systems to be
attained.
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2 An Operating System for Sensori-motor
Control

A mobile robot will typically have a number of goals that it
is trying to achieve at a given moment in time. The attainment
of these goals require the robot to undertake a number of tasks.
In general, however, a robot will only be able to perform one
task at a time. The tasks must therefore be prioritized according
to the relative importance of the goals these tasks subserve, and
the most important is then worked on. The relative importances
of the tasks may change with time, so that a given task may be
interrupted by a new, now more important, task. In addition,
a given task may have temporal constraints associated with it.
For example, a task may require execution within a certain time
since its request, after which it becomes obsolete or invalid. Or a
task may be guaranteed to complete in a specified interval since
the beginning of its execution. The motion management system
must take these into account when determining what motion to
undertake.

These considerations lead us to the idea that a mobile robot
requires a multi-tasking, interrupt driven, planning system for
determining which motion it is to execute at a given time. This
planning system would examine the robots current estimation of
its environment, based on its current sensory input, and deter-
mine which task it is to work on. If this requires that a given task
be interrupted, a mechanism must exist that will allow resump-
tion of the interrupted task once the interrupting task has been
completed. This means that the state of a given sensory routine
be saved upon interruption so that it can be resumed properly.
Again, one can make a direct analogy between the operation of
this system and an interrupt driven multi-tasking computer.

We propose to base our sensori-motor operating system on
the MDL (Motion Description Language) developed by Brockett
(3, 6, 10] and on the concept of I/O Timed Automata [5]. The
MDL language provides a device independent mechanism for the -
specification of the motions of robotic systems. The I/O Timed
Automata allows us to construct a sensori-motor operating sy-
stem that meets the requirements described above.

In our proposed system motion requests from the sensory and
manipulative systems are presented to the operating system in
the format of MDL programs. The sensori-motor operating sy-
stems then processes these requests with reference to the goals of
the robot and all relevant physical or temporal constraints, and
passes on suitable motor commands, expressed in MDL format,



to the individual motor controllers for each degree of freedom
possessed by the robot. Detailed descriptions of the MDL ap-
proach to robot control can be found in [6, 10). The I/O Timed
Automata, and its application to robotics, is described in the
following sections.

3 The & Framework

The current practice in building real-time embedded systems is
not based on any sound scientific approach [13]. In view of the
increasing complexity, cost and criticality of these systems, it
has become evident that a new methodology should be adopted
in their design and implementation.

In [5], the Input-Output Timed Automata (IOTA or simply &
- read “yota”) model was introduced. The § model is expressive.
1t offers a clean methodology for incorporating timing constraints
in the problem specification. Its asynchronous non-blocking (re-
active) nature allows accurate and realistic specification of real-
time systems. In [4], we have demonstrated how s can be “na-
turally” used for specifying different activities in a wide range
of real-time applications (e.g. robotics, neural networks, asyn-
chronous circuits, . .. ete.). The use of a high level programming
language based on that model within an environment that would
provide the necessary support for the development cycle of real-
time applications was proposed. In this section, we overview the
& model and discuss its potential use as a framework for the
specification of integrated sensory and manipulative activities.

3.1 The $ Model: An overview

Using the & model of computation, a system is viewed as a set
of interacting automata called 9’s (I0OTAs). Each one of these
Qs represents an entity in the system. This entity might be a
software module,! a system resource,? or a hardware component.3

Q’s communicate with each other and with the external envi-
ronment through channels. A channel is an abstraction that en-
capsulates the notion of a communication media. Among others,
a channel might represent a simple physical wire, a Unix-like
socket or pipe, a function invocation, or, a possible transfer of
information through function calls and returns. The information
that a channel carries is called a signal. A signal consists of a
sequence of events. An event underscores the instantiation of an
action at a specific point in time.

A channel changes the value of its signal by firing a new ac-
tion. Once this happens, the computation associated with that
action is performed. This might result in a state transition. The
firing of an action, along with the necessary computation and
state transition, are assumed to be done atomically: that is indi-
visibly and irreversibly.

le.g. a scheduler, a resource manager, a motion control algorithm, ...etc

2¢.g. a communication network, a shared memory, a special purpose image
processor, ...etc

3e.g. an actuator, a sensor, ...etc.
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Channels, and consequently the signals and actions that they
carry, are classified as input or output. Signals from input chan-
nels are uncontrollable since they are supplied by the environ-
ment or by other &’s. Unlike other models [12], they cannot
be blocked. This notion is crucial for the modeling of real-time
systems, where state transitions are forced by the environment.
Signals from output channels, on the other hand, are the way a
Q reacts to the outside stimuli. They are enabled only when the
Q is in one of some specific set of states. Note that the specific
action that would fire, is state dependent. Thus, the state of a &
determines which channel(s) are enabled and which action(s) are
to fire. Input and output channels are called external because
they can be observed from outside a §. Channels used to signal
actions that are observable only locally are called internal.

To reflect timing constraints, lower and upper time bounds
are associated with each local channel to determine when its sig-
nal should change its value (by firing an action) if it ever becomes
enabled. For instance assume that 7 and 7¢ are the lower and
upper time bounds associated with a local channel ¢. Further-
more, assume that ¢ became enabled at time ¢;, then ¢ can fire
at any time ¢; € {t; + 7f, % + 75} provided that it remained en-
abled during the time interval {¢;,2;}. In a sense, these time
bounds define a timing constraint on the response of the < to
some conditions.

A specification of a § is a description of its behavior (i.e.
how it reacts to stimuli from the environment). A < is said to
implement another Q, if it is impossible to differentiate between
their external behaviors. This is the primary tool that is used to
verify that an implementation meets the required specification.
Finally, to allow for modular and hierarchical specification, I’s
can be composed together to form new I's.

3.2 The $ Model: An Example

Consider a robotics system designed to manipulate objects mo-
ving on a conveyor belt using a gripper mounted on the end-
effector of a six-degrees of freedom arm. A camera system mo-
unted on the same end-effector is used to locate the objects and
to monitor the surrounding environment. Figure 1 illustrates the
different components in such a system. The planning process ac-
cepts various sensory information and generates perceptual (in
this case visual) and manipulative goals accordingly. To meet
these goals, the vision control and the manipulative control pro-
cesses might request different end-effector positions. These possi-
bly conflicting requests are handled by a motion scheduler which
determines the actions to be taken by issuing MDL commands
[6]. These commands are processed by an MDL interpreter which
drives the motor controllers.

Using the S framework, each one of these processes would be
specified by a §. For instance, consider the specification in Figure
2 of a simple motion scheduler. It accepts request signals from
both the vision control and the manipulative control ¥’s. Each
request consists of an MDL* command [6], a priority level and a
time bound. The MDL command consists of a triplet < u, k,t >,
where u defines the control inputs (or setpoints), k determines the
effect of the feedback vector, and t is the length of time (or epoch)
the command should be applied. The scheduler response to the
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Figure 1: An example of a robotic sensori-motor system
requester can be either COMMIT, ABORT, or REJECT. The COMMIT
response means that the request was completed successfully. The
ABORT response means that the request had to be aborted in favor
of a higher priority request. The REJECT response means that the
request cannot be serviced due to a conflict with a higher priority
request.

In Figure 2 we use a S-based specification language, ESPRIT,?
to describe the motion scheduler. The specification consists of
two parts: an interface and a body. In the interface, the name
of the S, its external input and output channels along with the
range and switching time of these channels are specified. The
interface provides all the information needed by other Qs to in-
teract with the scheduler. In particular, it provides enough in-
formation for type checking and compatability of signals. For
instance, our scheduler accepts inputs from N channels req[0],
req[1], ..., req[N-1]. The values expected on these channels
are specified by the mdl_req structure. Furthermore, the mini-
mum time between two requests on anyone of these channels is 1
time unit. The specification of the outputs of the scheduler can
be explained in a similar way.

The body of a S identifies its behavior. It consists of three
parts: the declaration part, the invocation part, and the compu-
tation part. In the declaration part, the state variables, their
ranges and their initial values are given; the internal channels
are specified; and, local Qs are identified. In the inclusion part,
local §'s are instantiated and their input/output channels are
bound®. For instance, our scheduler has three state variables: the
request vector and the current_master and current._priority
variables. The schedule[i], commit[i], and reject[i] chan-
nels are internal — they are invisible outside the body of the
. Our simple scheduler is not defined in terms of any other
Q%s, thus, there are no included s in its body. In the com-
putation part, the behavior of the & with respect to each of its
actions is specified. This is done using three clauses. The enable
clause specifies a pre-condition on the state of the 3. Whenever
this pre-condition becomes true, the associated action becomes

“Motion Description Language
SExecutable Specification of Parallel Real-time Interactive Tasks
®assigned to output/input signals of other ¥’s
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struct mode {
flost v, X ;

strect mdlreg {
struct mode control ;
float epoch, timeout ;
it priority ;

struct reguest {
int status ;

struct mdl_reg command ;

}i
iota scheduler: req[N](struct mélreq)/1 — ack(N](int)/1, mdl-command(struct mode)/1

states
struct request Toquest[N] = NOREBQUEST ;
inl current.master = NULL, currentpriority = 0 ;

channels
schedule(N1()/1, comnit{¥](}/1, reject(N(}/1 ;

actions (120;i<N;i++)
reqlil(x)
do { request[i}.status = PREDING ; request[i).comsand = x ; }

schedule[11()
when (request[i].status == PENDING A
request [{].command.priority > curreat priority)
do
ix( (current.status == SIGNALING)
request [(master].status = ABORTED ;
request[i].status = STARTING ;
current master = i ;
current priority = request[i).comsand.priority ;

}

commit[1]()
when (request(i].status =s SIGEALING)
after request(i).command. epoch
do

request[i].status = CONNITTED ;

curventmaster = NULL ;
curreat.priority = 0 ;

reoject[i1()
when (request[i].status == PENDING V request[i).status == STARTING)
after request(i].timeout
do { request(i).status = REJECTED }
mdl-command(request [current master] .command.mode)
when (request(current master].status == STARTING)
do { requesticurrentmaster].status = SIGRALING }
ack{i] (ABORT)
when (request(i].status == ABOATED)
within [0,T]
do { request[i}.status = NULL }

acx (1] (comMIT)
when (request[i).status == COMMITTED)
within [0,T)
do { request{i].status = WULL }

ack({1] (REJECT)
when (request[i].status == REJECTED)
within {0,T)
do { request(i].status = NULL }

Figure 2: S specification of a motion scheduler

enabled. The time-constraint clause determines a time interval
within which the action should be taken in case it becomes and
remains enabled. Input actions (for example req[i] (x)) cannot
be blocked, thus, they cannot be associated with enable or time-
constraint clauses. The do clause specifies how the state variables
should be affected by the firing of the associated action.

We illustrate how actions are taken, by looking at our simple
scheduler once more. It should commit a request if it were able
to signal the appropriate MDL controls for the required epoch of
time. This is what the commit [i] () internal action is expressing.
It fires if the requested mode is signaled for an amount of time
equal to the requested epoch. Committing a request results in
the scheduler moving to a state where it is free to accept a new
(or pending) request. This is depicted in the do clause of the
commit[i] () action. The commit[i] () action is an example of
an action that is associated with a “hard” time constraint. The
ack[i] (x) output actions, on the other hand, are examples of



actions associated with “soft” time constraints where the action
is allowed to fire within an interval of time. The absence of the
time-constraint clause in an action specification means that it is
allowed to fire at any time as long as its pre-condition holds. The
schedule[i] () internal action is an example of “unconstrained”
actions.

The motion scheduler that we used as an example to intro-
duce the & model could have been specified in very different ways.
For example, we made an unstated assumption that if sensory sy-
stems S; and S, submit requests R, and R; respectively, where
R, is optimal with respect to S, and R; is optimal with respect
to S; and the timing constraints are such that only one of the
requests can be executed, then one of these requests will be gran-
ted based (say) on some priority scheme, whereas the other will
be rejected. There are ways, however, to suboptimally satisfy
both requests. For instance, if instead of submitting a request
for (say) a position vector, Sy and §2 also provide the scheduler
with some cost function (how costly is it to be in position P+dP
instead of position P), then it is indeed possible for the schedu-
ler to minimize the total cost by issuing a move command to an
intermediate position. The cost function will depend on the deg-
radation of the expected sensory information and on the relative
importance of that information to the overall system operation at
that point in time. The expression of the above fusion ideas using
Qs should be straightforward. This is not the case with metho-
dologies like Brooks’ sumbsumption architecture, [7], where (as
it will be explained in the next section), even a dynamic priority
scheme cannot be supported.

3.3 Behavioral Specification using the 3 model

Building autonomous creatures has been a particularly interesting
and challenging area in robotics research. This goal has led to
research in building control systems based on “task-achieving be-
haviors” [11], that can deal with multiple goals and multiple sen-
sory information. In this section, we show how the & model (and
language) can be used to specify such behaviors in a natural, con-
cise and elegant way. We contrast the & framework with Brooks’
subsumption architecture {7]. In particular, we show that the &
model is more general and more expressive; it “subsumes” the
subsumption architecture.

In [7], Brooks proposes the subsumption architecture as a me-
thodology for specifying and building complex control systems.
This architecture suggests the use of a vertical decomposition of
the control system into a number of parallel independent task-
achieving behaviors. Each one of these layers of behaviors is
made out of smaller units called modules. Each module has a
finite state controller and a certain number of inputs and ouputs
for communicating with other modules. There are two distin-
guished inputs for each module reset and inhibit. Reset forces
the finite state controller to go back to its initial state. Inkibit
prevents the module from producing its output. Another special
form of interaction, the subsumption, allows a module from a
higher layer to overwrite the output of a module from a lower
layer. The higher layer is called a dominant behavior, whereas
the lower layer is called an inferior behavior. Subsumption allows
control systems to be patched up by allowing smarter (or higher
priority) behaviors to take over from default behaviors whenever
appropriate.
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The subsumption architecture can be supported easily and
effectively using the & model. A module is simply a & with its
inputs (outputs) being the input (output) signals of the 3. The
reset and inhibit inputs can be easily implemented as always-
enabled input signals. In particular, the reset signal should make
the S return to an initial state, whereas the inhibit signal should
make it go to a specific state in which all output actions are disab-
led. The subsumption interaction between layers can be modeled
by a simple S, the subsumption-&. This & will have as input sig-
nals the output of a dominant module and that of an inferior
module. Its output signal will be identical to the inferior input
signal as long as the dominant input signal is absent.” Other-
wise, it will be identical to the dominant input. Obviously, the
subsumption-S is just an implementation of a two-level priority
scheme. It can be easily extended® to model a static multi-level
priority scheme® which would then represent a hierarchy of do-
minant and inferior behaviors.

The subsumption architecture is suitable for the specification
of task-achieving behaviors that can be statically organized as a
hierarchy of dominant and inferior behaviors. It cannot deal with
applications with dynamically changing priorities. In particular,
if the priority of a behavior depends on the task (or goal) to
be achieved, and if such a goal is dynamically changing, then
this behaviour can be dominant in some situations and inferior
in others. Rather than dominant and inferior behaviors, such
systems are described in terms of competing behaviors.

Unlike the subsumption architecture, the S framework is ideal
for the specification of systems with competing behaviors. To il-
lustrate that, consider the following specification of “Buggy”, a
cockroach-like robot. Buggy has two actuators that allows it to
move in 2-D. The first actuator allows Buggy to either move for-
ward with a constant speed or stop, whereas the second actuator
allows it to rotate. Buggy has three sensors: a prorimity sensor,
a crack locator and a food detector. The proximity sensor pro-
vides Buggy with information about predators. In particular, it
returns the distance and direction of the closest detected obstacle
(wall). The crack locator informs Buggy about any cracks found
in its neighborhood. If such a crack is found (within a limited
distance), the crack locator returns the vector perpendicular to
the crack. The food detector continuously returns a boolean va-
lue that informs Buggy about the existence or non-existence of
food at its current position.

Buggy has two basically different and often competing beha-
viors, namely a conscious behavior and a subconscious behavior.
Consciously, Buggy searches for food and eats it. Experience
(or evolution) has taught Buggy that food is often found along
cracks. Thus, to eat, Buggy looks for and moves along cracks.
Subconsciously, however, Buggy tries to keep itself away from
predators.

For simplicity, we will assume that Buggy has only one goal:
to survive.!® Survival, however, requires both eating (to avoid
starvation) and escaping from predators (to avoid being crushed).

7 Absent can be interpreted in a number of different way. For example it
can mean the absence of any actions for more than a given time interval.
®by implementing the r-level priority scheme with a binary tree of
subsumption-S’s.
?Or any other priority scheme.
1°In a more realistic specification Buggy might have dynamically changing
goals.
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delays and constraints for the different actions, ... etc.
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4 Summary

This paper deals with the management of conflicting demands
on the use of the motor units of the robot from the active sensors
and manipulatory processes.

We introduced an “operating system” like facility for mana-
ging the conflicting motor requests produced by multiple active
sensing and manipulation tasks. We describe a proposed imple-
mentation of this sensori-motor management facility based on the
Input-Output-Timed-Automata (IOTA) abstraction. The JOTA
abstraction is general enough to allow the enforcement of tempo-
ral constraints and to permit the specification and modification
of task priorities based on the goals and current state of the ro-
bot. The IOTA based sensori-motor operating system acts as
a scheduler for various motor requests submitted by the active
sensor and manipulation systems. Our proposed sensori-motor
system is more general than the subsumption architecture of Bro-
oks [7] and can implement in a straightforward fashion alteration
of priorities.
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