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Abstract

A vision system for use in a mobile robot system requires at-
tentive control. Attentive control refers to the process by which
the direction of gaze of the visual sensors are determined, along
with the determination of what processing is required to be ap-
plied to the sensed images based on the goals of the robot and
the tasks it is performing.

This paper describes the implementation of a motion control
system which allows the attentive control of a binocular vision
system for use in a mobile robot. Attentive inputs to the system
specify the type of visual feedback that the oculo-motor control
system will use. The MDL language developed by Brockett [8]
is used to communicate between the attentive planner and the
motion controller.

Introduction: Attentive Vision for Mo-
bile Robots

In complex robotic activities such as those encountered in mobile robot
navigation, different actions must be performed at different times. Thus
we require a control system that allows for the changing of parameters
of the control system in order to allow the carrying out of the various
desired operations. A vision system for use in such complex robotic
activities will be required to change the field of view in order to best
accommodate the task at hand. The environment of a mobile robot
changes as the robot moves. The goals of the robot will typically give
it an idea of what it should be looking for. The robot will want to direct
its attention to objects pertinent to its task. For example, in navigating
a hallway, a robot will want to detect the orientation of the hallway,
identify obstructions, possibly identify doorways, and generally ignore
extraneous objects, such as pictures, which are not important to the
task at hand. Burt|7] . describes active sensing (or “smart” sensing)
as the selective, task oriented gathering of information. One focusses
the “attention” of the visual system on a portion of the scene that is
important to the task at hand. As the demands of the robotic task
evolve this focus of attention may shift. Bajcsy [2,3] extends the con-
cept of active perception to include the presence of feedback. In this
extension, information obtained through the visual process, both high
and low level, is used to control the data acquisition process.

The extraction of the salient information and redirection of compu-
tational resources to those areas will improve the efficiency of a visual
system. Changing of the focus of attention can refer to changes in the
spatial region in the scene upon which our visual system is concentrat-
ing (or “foveating” at a high resolution). Much of the information in
the field of view is not needed to perform many tasks. Visual tasks
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require the movement of the eyes to closely examine areas of interest
for the particular task, paying little attention to the rest of the scene
which is viewed peripherally. Since we want to devote computational
power only to regions containing salient information, these regions must
be identified and then foveated. As the environment changes we want
attention to move so that we are constantly acquiring the regions with
salient information in the fovea. Foveation can be accomplished by me-
chanically adjusting the direction of view of the image sensor or it can
be accomplished by moving a processing window about in an internal
representation of the image (e.g. see the multiresolution foveator of
Burt [7]). This mode of attention forms the basis for Ullman’s visual
routine paradigm (18], in which sequences of elementary image analysis
operations are performed to obtain properties of, and relations between
objects, in a scene. Focus of attention may also refer to the selection
of a given set of image processing operations that are to be used to
extract information from the scene. For example, a given visual task
may require that corners of objects be detected, while another visual
task may require that the colour of objects be determined. In each of
these two cases different features would be attended to.

We can define attentive visual control as the process by which the
desired direction of gaze of the visual sensors are determined and at-
tained, along with the determination of what processing is required to
be applied to the sensed images based on the goals of the robot and
the tasks it is performing. Attentive control is important for mobile
robots as typical mobile robotic activities are task and goal based and
the robot will be driven by these tasks.

Attentive vision control can be divided into two subproblems: 1)
deciding where in the visual scene to attend on and 2) deciding which
motions are required to redirect the visual sensors toward that loca-
tion. The second problem, one of oculomotor control, will be briefly
discussed; a fuller treatment of that subject can be found in (8] The
first problem depends on the task at hand and the visual environment.
The location to attend to varies with the task and will shift as the task
proceeds. The desired location should contain the information in the
scene which is salient to the task.

This paper presents a model of attention whereby the visual feed-
back pathways which control the direction of camera gaze based on
visual input, have adjustable gains. The most salient feature, with
respect to this weighting of the visual feedback paths, is found and
centered on the field of view (via movement of the vision sensors).
Our model of attention can be put into the modal control paradigm
proposed by Brockett(5], which uses a device independent modal de-
scription of motion. 'Modal control is adaptive and is thus useful for
mobile robots. In the modal control paradigm, attentive behaviour can
be specified device independently, in a manner which can be used in
unpredictable environments. The modal description uses selective vi-
sual feedback, based on a high level description of the sequence of foci
of attention or “modes” of activity, to control the position and velocity
of the visual sensors (cameras) in a binocular image acquisition system.
The sequences of foci of attention would depend on the particular task
the robot is performing.
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We have built a system incorporating this model of attention in
the modal paradigm. The system allows the specification of attentive
behaviour of an oculomotor system at a high level, independent of the
specific actuators used in the system. Experiments performed with this
system will be presented.

2 The MDL Motion Description Language

This section briefly reviews the motion description language introduced
by Brockett[5]. This language allows the motion of a mechanical system
to be specified to a desired level of precision in a device-independent
manner. adaptable to unpredictable environmental conditions.

One can describe the control of a mechanical system through a
differential equation relating the effect of control inputs to the state
of the system. Based on this, Brockett [5] proposed an MDL (for a
Motion Description Language) device which would accept the open
loop controls u and the feedback processing functions k and produce
the correct actuator signals which would force the state vector z(t)
(typically position of motor shafts) to be a solution of the equation:

&= f(z(t)) + G(z(t))(u(t) + k(y(t)) (1)

where y(t) = h(z(t)) is a vector of measurements of the state. In order
to perform different actions at different times, we will want a control
system that allows for the changing of the user definable parameters
of the control system. As we have seen, the important user definable
parameters are the setpoints u, and the feedback selection functions k.
The MDL device of Brockett consumes (u, k, T) triples which specify
the adaptive nature of the control. Each (u,k,T) triple describes the
type of control law that is to be used over the epoch T The time T
can be specified a priori or can be non-deterministic, such as provided
by a stopping or transition rule. Thus, in order to produce a given
complex motion, one would supply a string of (u,k, T) triples to the
MDL controller. Brockett [5] refers to these strings as modes. One
could store a number of modes, each of which corresponds to a certain
complex motion, in a table where they would be available for access-
ing when required. These modes could be hardwired, or they could be
learned through some optimisation process (training and practice). A
control system using motions defined as modes, that are input to an
MDL controller can be called a modal control system. Note that the
modes are described at a high level, and hence the modal definition of
a complex motion is “device independent”. Only the MDL interpreter,
which converts the (u, k, T) strings into actuator signals, need be de-
signed for each mechanical system. Such an interpreter has been built
for a four degree of freedom planar gripper(11,4}.

The k function can be thought of as a generalized compliance. For
example consider the case where z is a position of some kind, and y is
a sensed force such as in the hybrid position and force control used in

words by adjusting the feedback weights applied to various feature de-
tector outputs we force our oculomotor system to comply with different
features in the environment in much the same way that hybrid force
control allows a manipulator to comply with a bumpy surface.

In the rest of the paper we describe an MDL based implementation
of an attentive vision system. This system will control the motion of a
pair of cameras in such a way as to facilitate the execution of varying
robotic tasks. The system that we are proposing is a dual level system.
The first, or inner, level performs automatic camera movements based
on set points and mode controls supplied by the outer level. (The inner
level is a conventional actuator position/velocity control scheme.) The
outer level sends (u,k, T) triples to the inner level based on a set of
(u,k,T) triples provided by the user as input to the outer level. In
this case the outer level triples represent a series of foci of attention.
The outer level k’s describe what visual routines, or modes, are to
be applied to the binocular visual output (the y(t)’s) to compute the
desired camera positions and to generate the control signals to move
the cameras. Changes in attention are implemented by supplying the
outer level motion control component with a new (u, k, T') triple. Visual
routines which involve many shifts in attention are implemented by
sending the controller a mode containing a string of (u,k,T) triples.
The implementation of the outer level component is described in detail
in section 4.

3 Hardware Implementation of a Mobile
Binocular Camera System

To test our theories of control of visual attention in mobile robotic
systems we have constructed a mobile binocular camera system. This
is similar in spirit, if not in detail to systems constructed at UPENN
[13], MIT [15] and Rochester [6]. The oculomotor control system of our
binocular vision system is based on models of mammalian oculomotor
control systems. This control system is fully described elsewhere 18].
The head, shown in figure 1, is a seven degree of freedom mechanism.
Three of these degrees of freedom are associated with the orientation of
the cameras, while the other four have to do with the state of the cam-
eras’ aperture and lens focus. The three mechanical degrees of freedom
are: 1) Pan, which is a rotation of the inter-camera baseline about a
vertical axis, 2) Tilt, which is a rotation of the inter-camera baseline
about a horizontal axis, and 3) Vergence, which is an antisymmetric
rotation of each camera about a vertical axis. With these three degrees
of freedom one can theoretically place the intersection of the optical
axes of the two cameras (what we will refer to as the fixation point)
anywhere in the three dimensional volume about the head. In practice,
the volume of accessible fixation points will be restricted due to the
limited range of motions of the degrees of freedom.

The physical motion required to adjust the positions of cameras
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some robotic manipulators [18]. Then k converts forces to ch in
position. Thus the system acts as a spring with compliance (1/stiffness)

k. If force components are sensed in different directions and different
positional degrees of freedom are controlled by these sensed forces, then
k is a matrix which relates the effect of a force in a given direction to
a change in position in some other direction. This system is then a
generalized spring system. If k is diagonal, then its elements determine
the compliance of the system in different directions. Such a system
could be more stiff in one direction than in another. In general, one
may not have force sensors, or use position control. In such a case
the k’s will not represent compliances, but will still relate the effect of
the individual sensory inputs on the control of the system. This is an
important point as it shows that, by controlling the k’s one can select
different types of feedback mechanisms. This example shows how one
can select between two types of feedback using the k functions. In
section 4 we will extend this idea to the control of visual attention,
wherein we change the values of the k’s that select for different visual
sensing operations in order to attend on a given scene element. In other
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hed to a robot can be obtained in many ways depending on the
mechanical structure of the robot. For example, if the robot is mobile
and can move with three degrees of freedom (translation in x, and y
and rotation about the s axis) in a plane, then the direction of view
of a camera, fixed to the robot, can also be controlled with these three
degrees of freedom. In general, however, it is more convenient to de-
couple the attitude of the camera(s) from the attitude of the body of
the robot. This allows the camera to look in a given direction indepen-
dently of the direction in which the robot is pointed. Furthermore, the
time constants of a system that positions the camera alone will be, in
general, much smaller than that of a system that positions the robot.
So, by controlling the camera orientation independently of the orien-
tation of the robot one, obtains an increase in flexibility and speed,
over the case in which the camera orientation is rigidly coupled to that
of the robot. The system that controls the cameras should, however
have inputs from the system that controls the robot body, so that mo-
tions of the robot body can be compensated for by the camera system
automatically, much like the human vestibular system.
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The control scheme used to control the pan, tilt and vergence is
based on the model of human oculomotor control described by Robin-
son [17] which includes three descriptive regimes: saccades, pursuit,
and vergence. The first two control the position and velocity of the
pan and tilt axes, The third controls the plane of fixed focus by adjust-
ing the relative angle between the two cameras. We have implemented
the control scheme that is depicted schematically in figure 2 for the
Harvard head. The pan, tilt, and vergence motors are driven by a
pulse width modulated MOSFET amplifier. The input to this ampli-
fier is derived from the output of a Dynamation motor controller board
[10}. The Dynamation board is indicated in figure 2 by the box tak-
ing in the shaft encoder position from the motor and which outputs a
drive signal to the motor amplifier. The Dynamation board takes set
point inputs over a VME bus connection to a SUN computer. These
setpoints can either be position setpoints (in the case of vergence or a
saccade) or velocity setpoints (in the case of pursuit). The Dynama-
tion can output to the VME bus (and then on to the SUN computer)
an efference copy of the current motor position. This efference copy
is delayed, in the SUN computer, by a time equal to the time taken
to perform visual feature localization, and added to the current posi-
tion errors, determined by the visual feature localization process. The
Dynamation board does not have a tachometer, so that an velocity
efference copy is not available. Thus we generate one by differentiat-
ing the position efference copy. The sampling rate of the Dynamation
board is very high (more than 1000 samples per second), however, so
that this estimate of velocity should be accurate.

The feature detection and localization is performed in a special pur-
pose image processing system, manufactured by Datacube [15]. This
system can do image processing operations such as 8x8 convolution, his-
togramming, and logical neighborhood operations on a 512x512 pixel
image at video rates (30 frames per second). Thus the latency per
operation is 33 milliseconds. Most feature detection operations require
more that one frame time however. In our initial experiments we im-
plemented a feature detector that could detect black blobs or white
blobs, in about 3 frame times. Therefore the latency of our feature
detector was about 100 milliseconds. The Datacube system, after it
detected the presence of a feature, would output the position and ve-
locity of the feature over the VME bus to the SUN workstation. The
SUN workstation then computes the quantities 65, + 8., O, +0L,,
fr, + 0L, 0).3, + 9;:“, and 0r, — 0z,, where fg, is the x component
of the retinal disparity in the right camera, 0g, is the y component
of the retinal disparity in the right camera, 6, is the x component of
the retinal disparity in the left camera, 6, is the y component of the
retinal disparity in the left camera, and 6 indicates a retinal velocity.
The difference in the left and right x components of the retinal position
is added to the delayed position efference copy of the vergence motor.
Thus this difference will be driven to zero. The sum of the left and
right retinal position errors in both the x and y directions are added to
the delayed position efference copies of the pan and tilt motors respec-
tively. This will, during a saccade, drive these sums to zero. Combined
with the driving of the difference of the x retinal position errors to zero
by the vergence, the result will be that the x and y retinal position
errors in both cameras will be driven to zero, as desired. A saccade
trigger signal (that opens up the sample/hold) is generated by the fea-
ture detection system when the retinal position error is greater than
threshold value. During the saccade, visual processing is turned off to
prevent saccades being generated while the saccadic motion is being
performed.

During pursuit the sum over the two cameras in each of the x and
y retinal velocity errors will be driven to zero. If the system has the
correct vergence, then the x and y component of the retinal velocity
error will be driven to zero in each eye, and not just the sum of the
errors in the two eyes.

We have performed simple blob tracking experiments which show
that the system operates as desired, in that the vergence and saccadic
modes result in fixation of the feature as we move it about in space.
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4 Modal Control of Attention

The inner level control loop described in the previous section is con-
trolled by an outer loop which implements attentional shifts which re-
sult in movement of camera positions. This section will describe a
model of visual attention and present this modelin the modal paradigm.

The first stage in our visual attention model acquires the images
and extracts visual “primitives” in parallel across the visual field. The
results from this stage are a set of feature maps yi(z, y, t) which indicate
the presence or absence of a feature at each location in the image.
Simple feature maps may indicate the presence of a specific colour
or line orientation for example. Complex feature maps may perform
texture and figure-ground segmentation or implement inhibition from
neighboring regions to compute which regions are different from their
surroundings.

The next stage of the model combines the results from the feature
maps, building a saliency map, S(z,y, t). The output from the feature
maps are “amplified” with different feedback “gains”, k;(¢) for each map
¥ and then summed to form the saliency map, S(z,y, t). The value
of the map at each location is a numeric indicator of how “salient” is
the information at that location. Hence finding the location with the
maximum value will give the most salient location with respect to the
given feedback gains, k;(t). As the notation indicates, these gains may
vary over time, thus changing the location of the most salient feature.
Figure 3 shows this attention model

Adjusting the gains of a particular feature map will direct atten-
tional resources to occurrences of that feature. A decaying gain func-
tion, k(t), will decrease the saliency of a location over time and hence
another location will become more salient and attention will change to
a new location. Higher cognitive or planning levels can actively select
which features to attend to by adjusting k;(¢).

We have chosen to express our model of visual attention in the
paradigm of the motion control language (MDL) described earlier. This
paradigm allows a description of motion control of the head/eyes based
on visual feedback which is “independent” of the underlying hardware
or implementation. Using the MDL will allow a mechanism to control
attention as a “high level language”.

The gains of the inner feedback loop which is concerned with set-
point control of the head positioning motors remains constant, as the
load on the head motors remain roughly constant. In principal, one
need only determine the position feedback gains k once, such that
the step response of the motor to the inner level setpoints is criti-
cally damped. These gains are set in the Dynamation controller board,
which handles the inner level control loop. The sensory input to the
inner level is the motor shaft position, measured with the shaft en-
coders. The velocity of the motor shafts are not measured directly but
are computed from the position measurements through differentiation
as described in the previous section. The inner control loop is switched
between position control and velocity control by the outer control level.
This is done, in effect by sending a {u, k, T) triple in which the k’s de-
cide which measurement (position or velocity) will be used to control
the motor. The setpoints u that are input to the inner level control
loop also come from the outer control loop in these (u,k, T) triples.

The k’s in the (u, k, T) motion control system definitions concerned
with the outer, visual, feedback loop will change due to changes in
the focus of attention. The feedback selection process at this level is
much more complicated than the inner level feedback selection in which
only direct position or velocity feedback was being selected for. In the
outer level, one still selects for position or velocity feedback but, in
addition, one must select the feature(s) to be used to detect the scene
element whose position or velocity is fed back. This feature selection
is performed, in the MDL paradigm, by adjusting the weight we apply
to a given feature in the control feedback loop. Note that all features
are looked for in parallel, not just those we are attending to.



The outer control level consumes modes which allocate attention
to specific features and produces different modes for the inner loop.
The output modes consist of position and velocity setpoints and a time
interval in which to apply these setpoints. The modes consumed by
this second level are again of the form (u, k, T) where u is the desired
position (always O for foveation — to center target on visual field), k is
a vector which represents which features to detect (the feedback gains)
and T is the time period in which the mode is to be applied.

In the language given earlier, y(t) is the state measurement vec-
tor. In this case, y(z,y,t) is a pair of images (left and right “eyes”).
Referring to the model given earlier, k(t) = (k1 (2), k2(t), e kn(t)) is a
vector containing the “weights” to be applied to the results from the
primitive operations (feature maps). With these gains, the saliency
map can be computed and the maximum found. The location of the
maximum must then undergo a coordinate transform in order to obtain
the setpoints in head coordinates. This transformation will depend on
the camera parameters and the particular configuration of the “head”
and hence can be absorbed in the G(-) term in equation (1).

Figure 4 shows the lowest two stages of the modal control. A mode,
{u, k, T), which was generated at a higher level, is “fed” into the inter-
mediate level (denoted M2). Over a time period, 0 < ¢ < T the weights
associated with the feature maps will be k{t) = (k1 (t), k2(t), - ka(t)).
At each instant of time, ¢, a location (z,y) will be output as the “most
salient feature® of the image. These positions are output to the inner
loop (denoted M1) where they generate positional errors used to drive
the head motors.

There are advantages in using the MDL description for the control
of attention. The same description can be used with simple vision rou-
tines or with more complicated algorithms depending on the available
hardware. The complexity of the feature maps used will determine
what tasks can be performed. A large set of feature maps with maps
at many scales detecting a large group of primitives will allow for so-
phisticated visual processing.

5 Experiments

Two experiments have been performed so far with our system to demon-
strate modal control of attention.

The first experiment involved tracking “blobs”, or regions having
a specific range of intensity values. The features we used were black
or white blobs against a neutral background. The task was to locate
either the black or white feature and follow it. The objects were placed
0.5 to 2.0 meters from the head. The head was able to fixate on an
object to within 2 pixels. The vision system for simple blob detecting
tasks could process on the order of 5 frames per second. Taking into
account the communication time between the vision system and the
head control system, an overall rate of 3 frames per second could be
achieved.

The second experiment was designed to demonstrate the attentive
control system on a more complex scene. The features used are the 0%,
1°t and 27 moments of each object and the intensity value. The scene
is segmented into connected components, the various features are com-
puted and the saliency map is built (as described in previous sections).
Stereo correspondence is performed using the peak saliency values. As
the task is to find the most salient feature with respect to the feature
gains, k;, the most salient points are the only ones that need to be con-
sidered in computing stereo correspondence. Since only a few points
will be maximal (with well chosen gains), the correspondence problem
is easily solved. With this done, the disparity values are computed and
used to drive the head motors as described above. Using a combination
of black and white, circular and rectangular objects, the attention sys-
tem can successfully locate geometric shapes at different orientations
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and fixate on them. Altering the feature map gains, ki, alters the di-
rection of gase to fixate on the object most salient with respect to the
new gains. This experiment is much slower than simply distinguishing
between a black and a white object. At present, depending on the com-
plexity of the scene, the attentive system may between 1 to 10 seconds
to fixate on the most salient object. The vision system is the culprit.
This implementation uses a hybrid vision system employing both Suns
and the Datacube and is not yet optimized. Future work to incorporate
the entire vision system on the Datacube is already underway. Given
that the vision system could work arbitrarily fast, the attentive control
system is successful at tracking objects of interest.

6 Summary

We have described a control system for a binocular image acquisition
mechanism, for use in mobile robotic systems, which allows shifts in
focus of attention to be made in a natural, device independent manner.
The control method is based on the modal control technique proposed
by Brockett [5]. Shifts in focus of attention are plished by altering
the feedback gains applied to the visual feedback paths in the position
and velocity control loops of the binocular camera system. By altering
these gains we can perform a feature selection operation, by which the
saliency, in the sense of Koch and Ullman(12], of a given feature is
enhanced, while the saliency of other features are reduced.

The control system that we have described in this system is a two
level one. The first, or inner, level performs the direct control over the
position and velocity of the motors attached to the cameras. This level
is based on models of the human oculomotor control system. The outer
level controls the focus of attention, in that it determines what features
are going to be used in determining where to look next.

The advantages of using attentive vision control in a mobile robot
application are that different actions can be performed depending on
the foci of attention used. Attentive control works in an unpredictable
environment, and the foci of attention can be changed in order to carry
out various operations. Furthermore, there are some tasks which are
naturally suited to attentive vision, and for which conventional vision
systems find very difficult to perform. An example is object recogni-
tion. The ability to obtain multiple views, and multiple views that are
intelligently selected, helps enormously in performing model based ob-
ject recognition. One of the drawbacks of attentive vision has been the
requirement that real-time image processing operations are necessary
to maintain real-time operation. However, recent advances in image
processing hardware, exemplified by Datacube’s [9] Maxvideo system,
and the Pipe system [14] produced by Aspex, have made it possible for
researchers to perform dynamic image processing operations at video
rates on sequences of images obtained from video cameras, so there are
few practical reasons why vision systems for mobile robots should not
use attentive vision techniques. The control system we have described
in this paper will extend the abilities of active vision systems(1] in that
it provides a method by which attentive behaviour can be conveniently
obtained.
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A photograph of the Harvard Head.



Camera

Parameters

Figure 3: The feedback

R ol

Feature
Detector | what
toanrae

5 deteet

le— Aight vidma

[e— Lot vicwo

Vortica!
Componens

Figure 2: The control system used in the Harvard head

Acquire
Image

L (xy)

o e 0 0 |V xy

Salien
Sy | map <

MAX
S(x.y)

(x,y)

Coordinate
Conversion

Relative Head Coordinates
(B,.8,.8,)

1.

tion model of

™
P e '
' '
Foature ' :
Y - P¥ >
1 '
' 1
1 '
Foature ] position, ¥ y !
Selection ! ,
Weights

(UK,T)

°2 is a “attentionar” feature detector with gains K

Figure 4: The two levels of the attentive control system.
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