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Abstract

Optical flow is traditionally found by working
on two input images. On the other hand, most edge
detectors locate edges only on static images. As
we have more and more computational power, it is
natural to consider optical flow extraction and edge
detection in the spatio-temporal domain to utilize
as much temporal information as possible. In this
paper, image edges are assumed to be stochastic in
time and Canny’s edge detector is generalized to
the spatial-temporal domain. Some properties of
this generalized edge detector are presented.

1 Introduction

People have proposed various algorithms in edge detection.
Some of them employ high spatial frequency enhancement
and thresholding; some of them fit the image with small
planar surfaces or facets; some of them attempt to enhance
edges by linear filtering; some of them use statistical classifi-
cation approaches; regularization theory and mathematical
morphology were also used. All of the above algorithms op-
erate on a single static image, or a snapshot, and try to ex-
tract ‘edges’ according to their definitions of edges. Another
important low-level vision task is motion detection. There
are basically two motion detection schemes in computer vi-
sion, namely, the intensity-based gradient scheme and the
token-matching scheme. These algorithms mainly operate
on two images sampled at different but close time epochs.
The intensity-based gradient scheme recovers a dense op-
tical flow and avoids the correspondence problem. On the
other hand, the token-matching scheme provides more ac-
curate but sparser optical velocity data over the input im-
ages. A number of biological motion models have been de-
veloped, e.g., Reichardt’s correlation models[12], the direc-
tionally tuned linear filter models(1], and Adelson’s energy
models[l]. They are basically built on the spatio-temporal
domain, not just on two image snapshots only. They are
local (use local image information only), and therefore suit-
able for explaining short-range motion detection. Some ex-
perimental evidence also supports uniformity (similar oper-
ations in different image locations) in motion detection.

The oldest edge detector is virtually a simplest local spatial
filter of a minimum size. In retrospect, the more compu-
tational power we had or the more accurate estimation of
the edge location we wanted to achieve, the more complex
was the edge detector proposed. As we possess more com-
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putational power, it is natural to consider edge detection
and velocity flow extraction in the spatio-temporal domain.
This trend actually leads us to develop computational algo-
rithms compatible with the above spatio-temporal biology
models. A subclass of simple cells (.S type) are known to re-
spond preferentially to edges of light when the edge has the
appropriate location, orientation, polarity or the direction of
motion(11]. This also motivates our investigation in combin-
ing edge detection and velocity estimation which could be
useful in understanding the cooperative behavior of the sim-
ple cells. To make the most use of SIMD parallel machines
and special purpose image processors, the proposed low-
level vision algorithms should be local and uniform, which is
compatible with the biology studies as well. Recently, some
local, uniform, and spatio-temporal algorithms have been
proposed to obtain the image flow. For instance, Heeger
used the Gabor filtering to extract the velocity flow of a
local image pattern possessing a flat power spectrum[6]. In
a different approach, employing the d’Alembertian opera-
tor, 58?2, + % — % - 25, Buxton and Buxton were able to
detect the velocity of the zero crossings in a sequence of
images(3]. In our research, we consider an image edge as
a locally straight line with an abrupt intensity change and
intend to extract the location and the velocity of the edge.
As a first step, we generalize Canny’s edge detector to the
spatio-temporal domain and discuss its properties in this
paper. As a continuation, in a companion paper, [7], we
present a spatio-temporal data-fusion framework which is
able to provide continuous edge location and local (with
aperture problems) velocity outputs perpendicular to the
edge orientation.

2 Generalizing Canny’s Detector

Canny(4] assumed that edge detection is performed by con-
volving a step edge (with Gaussian noise) with a spatially
antisymmetric function foenny(z) and marking edges at the
maxima in the output of the convolution. He formulated
three performance criteria, namely, (1) good detection, (2)
good localization, and (3) one response to a single edge.
The general optimal solution on the interval [0, W] turns
out to be foanny(z) = a1 - €**sin(wz) + a3 - € cos(wz) + az-
e™**sin(wz) + a4 - €7°% cos(wz) + C. Deriche[5] pushed the
boundary conditions to the infinite extent as Seanny(0) =
0’ fca""y(+oo) = O’f(,i‘anny (0) = Si fé‘anny(+°o) = 0! where
S is a negative real number and obtained the solution fp(z) =
—c - e~*Flsin(wz), with @, w, and ¢ positive reals. Actu-
ally, the Lagrange multipliers in Canny’s original deriva-
tions were not solved analytically, otherwise we could have



determined the optimal relationship between « and w. In
the case that a >> w, the optimal filter can be approximated

by
foi(z) = —c- ze—olzl

fp1 performs better than the Gaussian function that Canny
used as an approximation[5]. Also, fp; is very simple and
depends on only one parameter . Decreasing o will lower
the edge localization, but yield better signal-to-noise ratio
and vice versa. Boie et al.[2] formalized the edge detection
problem from a matched filter perspective and showed that,
despite common belief, good detection and good localization
need not to be in opposition to each other. The reason
is that the optimal criteria they chose are different from
Canny’s. However, the implementation results from both
perspectives are comparable[2].

Consider an edge in a sequence of sampled images. If the
edge is a physical edge belonging to some part of an object in
the world space, a contour edge or an internal edge, it only
disappears when that part of the object is occluded by other
objects or when it gets out of the scene that is imaged. If
the edge is a boundary of illumination differences, it would
persist like physical edges unless there is an abrupt change
in the lighting condition. Moreover, even if the edge exists
in the images, its velocity and shape might change as time
goes by. If the accelerations of the world-space objects and
the light sources are finite and there are no light flashes, the
velocities of image edges would change continuously in most
cases. The edge detection problem that used to be consid-
ered was on a snap-shot static image, so it is plausible to
use deterministic functions to model them. For the edge de-
tection in the spatio-temporal domain, the use of stochastic
functions to model the uncertain temporal behavior of edges
appears necessary. We will consider the optimal detection
for one dimensional edges only.

Definition 1 In the two-dimensional spatio-temporal do-
main, let one-dimensional edges be modelled by A(t) - Io(z —
vot) around t = 0, where vo is a fizred edge velocity and
Io(z) is the deterministic spatial description of the mov-
ing edge. A(t) is a stochastic function with a value 1 when
t € [~tm,tp), tm > 0 and t, > 0, and 0 otherwise.

Because we do not know when the edge might disappear and
when its velocity might change, t,, and t, are considered as
random variables with some probability distribution. The
random interval [~t,,,t,] would be the period of time when
the velocity v and the shape Ip(z) of the one-dimensional
edge assumed fixed. In [—t.,%,], moving edges not only
have to exist (temporal persistence), but also maintain the
same velocity. This is a stricter constraint than the speed
coherence, path coherence, and consistent edge motion con-
straints described by Kahn[9)].

Let the variance of the additive uncorrelated white Gaussian
noise be n2, then the input signal I(z,t) can be represented
by A(t) - Io(z — vot) + n(z,t). Assume that the moving step
edge is centered at z = 0 when ¢t = 0. There should be a
local maximum in the response at o = vty in the plane
t = 1o, in the absence of noise. The expected mean-squared
output of the filter E[02(0,0)] to the edge signal would be

af [32 [33 [3% f(a,t)da [X87 f(a', )do' Raa(~t, ~t)dt!

dt, where Raa(t1,t2) is the autocorrelation of a stochas-
tic process A(t), i.e., Raa(t1,t2) = E[A(t1)A(t2)]. The ex-
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pected mean-squared response of the filter E[02(0,6)}. to
the noise would be n2[[*® [*% f?(z,t)dzdt]. Hence, the
output signal-to-noise-ratio is SNR = | g*- | = &5, where
E(f 3 ’Uo) is

A2 22 [20 e )ia [0 ot Rani—tm it

UFe [+ fr(otydzai?

s 2, .
This is in contrast to [2] where | 9+ |* is maximized.
"

We will mark edges at local maxima of the filter output on
a particular plane, say to. Suppose there is a local maxi-
mum in the total response at the point z = z; at #;, then
80s (14, %0) + 80 (zy,t) = 0. The Taylor’s expansion of
8:(zy,10) about the track of the moving edge, z = wvt,
gives 22 (z1,10) = 22+ (voto, to) + (21 — vato) 53¢ (voto, to) +
o((z1 — voto)?). The response of the filter to the edge sig-
nal should have a local maximum at = = wvoty at any i,
i.e., aToz“(voto,to) = 0. Taking expected values, we obtain
E| &)2(31,%)] ~ E[(z, — voto)z]'E[(aa—?%‘)z(voto, tg)]. Defin-

Bzg

ing fo(z,t) = i%—:ﬁ and simplifying, E[(z; — veto)?] &

+o0 4
ng f_:’ f_:: f:(a:,t)d.z'dt
T (¥
a3 fr [ S2(20) |z vt RAa(to =120 =t} £ (') |1 = g g dtE!

Let the spatio-temporal edge localization be the reciprocal

of \/E[(z, —voto)z] at to = 0, i.e., localization = ﬁ% A,

where
A(f vO) = [ j: j: f'(z't)|’="O'RAA('tv—t')f,»(z’,t')l:/:vo.ldtdt’]}
[fj: f_+: fi(zyt)dzdz]'}
and,

00, +oo
E(’Uoto,to) =[m A(to—t)f(!)ot,t)dt: 0, v A(t), to
(1)

Just as Canny did in one dimension, we seek to maximize

II(f,v0) = Z(f,v0) - A(f,vo) subject to (1). Therefore, we
have shown!

Theorem 1 Let the two-dimensional spatio-temporal edge
s?_qnal be apA(t) - u_y(x ~ vgt) and the variance of the addi-
tive uncorrelqtfzd white Gaussian noise be n2. The optimal
ﬁ'lter ift(z’t) Jjointly mazimizing the edge localization and the
signal-to-noise-ratio mazrimizes II(f,vy) = & ‘A

subject to ( 1). (f,v0) (f,v0)- Al )

Coroll‘alry L1 If fu=(z,t) = (&, wik), where w,, w;
are positive constants, then for all stochastic processes At),

TI(f=%, vp) = TI( 1, t.).

Unlike Canny’s edge detector, the optimal step edge detec-
tor 1n'the spatio-temporal domain is not spatially scalable.
Examining these scaling effects on IT suggests us to use a
more suitable coordinate system. Let us define the new co-
ordinate system (s, ) as follows:

1[Fi)r all of the missing proofs and the details in this paper, please
see [8].



s=r—vot, t=t

Assume that the optimal filter in this new coordinate system
is called h(s,t), i.e., h(s,t) = f(s + vgt,t). For a moving
step edge centered at = = wvot, h(s,t) can be assumed to
be antisymmetric with respect to s. Therefore, R(0,¢) =0
and the boundary condition ( 1) is automatically satisfied.
The scalability of A(s,t) along the spatio-temporal axis s
suggests us to investigate the general product-form solutions
of h(s,t), that is, h(s,t) = k(s)g(t). Therefore, we have
I1(f,vg) = £ - IF(A) and TF(h) = (k) - T().

H:(k) - I fi)oo k‘(S)dS ! . I ks([]) l .
(o K¥(s)ds]® (2 k2(s)ds]?

+00 400 ’ , .
T(q) = J=o0 J=e0 9(t) Raa(—t, ~t)g(t')dtdt
+(9) _*’0"0" PO (3)

To limit the number of peaks in the response so that there
will be a low probability of declaring more than one edge,
we like to make the distance between peaks in the noise
response at particular time epoch approximate the width
of the response of the operator to a single step. By Rice’s
-theorem[10] and following Canny’s arguments[4], the dis-
tance between adjacent maxima in the noisy response of
f(z,t) at the time epoch ¢ = 0 would be N

o k2 (s)ds | 2

)

)

1
Z R.z'z" 5—
Zmaz — (— ;;(00))) _(f

2 8R (0,0 Foo
" Fries 00 T2 B, ()

We set the distance to be some fraction of the operator
spatial width W, i.e., Zar < W,. Hence,

JH k2(s)ds
(F”—qu,s):i—;) o« W, (4

-0

The equations ( 2) and ( 4) comprise the optimization prob-
lem Canny solved for the one dimensional case[4].

Theorem 2 If h(s,t) = f(s + vot,t) is the optimal spatio-
temporal filter in detecting a moving step edge with a veloc-
ity vo and h(s,t) can be written as a product form, namely
k(s)g(t), then k(s) is the one-dimensional version of Canny’s
edge detector fcanny(s) and g(t) mazimizes Il(g) in ( 3).

To determine g(t), we need to maximize IIi(g) in which
R44(t,t'), i.e., the stochastic behavior of the step edge,
has to be assumed or experimentally determined in ad-
vance. Referring to ( 3), maximizing II}(g) is equivalent
to maximizing [T [*%° g(t)Raa(—t, —t')g(t')dtdt' subject
to [12 ¢*(t)dt = c, where c is a constant. That is, we
seek some g(t) from a space of admissible functions that
maximizes ¥(g) = [T g(t) [T g(t')Ran(—t,—t")dt'dt ~
M2 g*(t)dt — c), where X is the Lagrange multiplier. By
the variational approach, one necessary condition is that

+00
/ g(tYRaa(—t, —t)dt’ = Ag(2) (5)
i(g) in ( 3) is known as the Rayleigh quotient. Because
Raa(t,t') is symmetricin the sense that Raa(t,t') = Raa(t',1),
the linear operator in ( 5) is Hermitian and hence all of the
eigenvalues are real and the eigenfunctions are orthogonal
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to each other. Furthermore, when g(t) is the eigenfunc-
tion, say go(t), corresponding to the largest eigenvalue g,
in the eigenvalue problem ( 5), the Rayleigh quotient IT}(g)
1s maximized at A.

In the definition for moving edges, if ¢, = t, = ¢, where ¢
is a very small positive number, then the edge only exists
around ¢ = 0 or we are dealing with a single image only. For
—€ <t < €&, Raa(—t,—t') = E[A(=t)A(-1")] = E[A(-1")]
and then [¥ g(#')dt' = Ag(2), i.e., g(t) is a nonzero con-
stant within the small interval [—¢;, ¢;] and the correspond-
ing largest eigenvalue (Rayleigh quotient) is 2¢;. For t < —e;
ort > &, Raa(—t,—t") = E[A(—t)A(—t')] = 0 and then
g(t) = 0. Detecting the edges on a snapshot can be consid-
ered as the case that ¢; is a small fixed number and the edge
velocity is zero. Hence, A(s,0) o k(s) = k(z) which reduces
to Canny’s edge detector in one dimension.

Theorem 3 Canny’s edge detector fcanny 5 an optimal
spatio-temporal edge detector on the condition that (1) A(t)
=1 when —e <t < &; A(t) = 0 elsewhere, where ¢; is a
very small number, and (2) the edge velocity is zero when
—€; S t S €.

Generally speaking, there is a period of time between now
and the future that edges would not disappear or change the
velocities. Similarly, this ‘waiting time’ also exists between
now and the past that edges appeared or had different ve-
locities from now. Researchers in the field of the queuing
theory and reliability engineering have been using the expo-
nential function extensively to model waiting times between
the job arrivals and the life span of the products. Thanks
to the neatness and the simplicity of the exponential func-
tion, it become easy to work with some of the problems in
these two fields. If we courageously adopt the exponential
function as the probability density functions of the waiting
times?, then we have the following definition:

Definition 2 Both t,, and t, follow the ezponential func-
tion P(z) =1e™™,7 >0,z > 0.

A(t) can only be either 0 or 1, so Raa(t,t') = E[A(t)A(t)] =
1- Prob[A(t) = A(t') = 1] where Prob[E] is the probability
that the event E is true. Under the above definition, if ¢
and #' are both positive, R44(t,t') = Prob{A(tmez) = 1] =
t’::; Te dz = e "maz where {4, is the larger number
between ¢ and ¢'. Similarly, if ¢ and ¢’ are both negative,
Raa(t,t') = e™min where tmin, is the smaller negative number
between ¢ and #'. If { < 0 < ¢, by assuming independence of
two random variables t,, and t,, Raa(%,t') = Prob[A(t) = 1]-
Prob[A(t") = 1] = [[*, Te™%dz] - [[F® 7™

dz] = ™), Similarly, if #' < 0 < #, Raa(t,t) = ™9,
If different probability distributions are assumed for ¢,, and
tp, we can still calculate Raa(2,t').

I} (g(t)) = I}(g(—t)) (since Raa(t,t') = Rya(—t,—t")) and
the eigenfunction go(t) corresponding to the largest eigen-
value A is unique for the Hermitian linear operator, so
go(t) = go(—t). We only have to solve g(t) for the case

*We notice later that in an one-dimensional multi-edge model pro-
posed in [13], the number of the edge points in a fixed interval is as-
sumed to have a Poisson distribution, which is equivalent to assuming
that the interval between the adjacent edge points has the exponential
distribution. This is another example where the exponential function
is used in the stochastic model.



that £ > 0. Substituting known R44(¢,¢) into ( 5) and sim-
plifying, we obtain %ﬂ + T%(tﬂ + e~ "g(t) =0, for t > 0.

Let z = e "' and A; = A™!, then
2 4 dzg(z) = 0

where z € (0,1), known as the Sturm-Liouville equation.
It is actually the transformed Bessel’s equation of order 1.

The solution is g(z) = Z%{01J1(2\/:\;$%)+CQK(2\/¥$%)}.
The set of A;’s that provide nontrivial solutions to the in-
tegral equation ( 5) can be shown to consist of the roots of

the equation Jl’(2\/;) = 0. The smallest z that makes
Ji(z) = 0 is about 1.84118, so the smallest ); is about
0.8474867. Therefore, the largest eigenvalue in ( 5) is about
Ao = 1.179967"1. The corresponding eigenfunction go(t)
that maximizes ( 3) is go(t) = ce™77.J;(1.84118¢~5%). No-
tice that ITj(e™*) = 1.166677*, so the approximation e~
is in error by about 1.1 % in terms of IT}.

L

It can be shown that ce‘%"Jl(2.40483e‘2") is the optimal
noncausal filter and the approximation e~ is in error by

3.6 %.

Theorem 4 If h(s,t) = f(s + vot, t) is the optimal spatio-
temporal filter in detecting a moving step edge with a veloc-
ity vo and h(s,t) can be written as a product form, namely
k(s)g(t), then k(s) = fp(s) o e *lsin(ws) and g(t) =
got) o e 371y (1.84118e=37M).  Therefore, the optimal
spatio-temporal filter can be written as —ce=* ! sin(w(z—
vot))e‘%"”J](1.841186‘15"“'). If the optimal spatio-temporal
causal filter in the product from is sought, then it can be writ-
ten as —ce™1 ! sin(w(z — vot))e~ 77 Jy (2.40483¢~ F™1), for
t>0.

Corollary 4.1 If we choose the function fpi(s) for k(s),
and e~ (noncausal) or e~ (causal) for go(t), then the
approzimated optimal filter would be f(z,t) = —c- (z —
vot)e~ele—wtle="l The approzimated causal one is f(z,1) =
—c- (z — vot)e~olewtle=Tt for ¢ > (),

3 Some Properties

The following theorems are derived by using the approxi-
mated functions —c - (z — vot)e~*=~"te " as the optimal
edge detector in the spatio-temporal domain.

Theorem 5 The absolute value of the Fourier transform

F{f}(u,w) of the optimal spatio-temporal edge detector f(z,t)

is mazimized at the line uvo +w = 0 in the frequency do-
main, particularly mazimized at (?’5, —%) and (—?"5 %’3\1)

Corollary 5.1 The optimal spatio-temporal edge detector
is a bandpass filter. The expected convolutional output with
a stochastic step moving edge would be mazimized when the
edge velocity is the same as the velocity the edge detector is
tuned to.

Theorem 6 Let the optimal noncausal filter be f(z,t) =
—c(z—vot)e~*2=wte=" and the nonideal step edge be A(t)-
aou-1(z +d —vit). Let Dy =| vy — vy | and Dy =| d|. The
expected output E[O,(z,t)], at = 0 and t = 0 would be
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_2rDy
4 —a®D3e” Dv +[(a*rDa+3027)D2—4ar3Dy—4713]e~*Pa

(—4cao) o2(c?Dt—8a? 12 D2+1677)
27

for YDy and YD, except when D, = £

o e—aD
E[0,(0,0)] = “elteDate?Dpe=0e.

When D,

2z
o !

When D, = 0, E[O4(0,0)] becomes :2%(1%";:);. When D, =

0, it becomes “—°(M3f)f:ﬂ. Finally, when Dy = D, = 0,
it becomes - which is the expected output on the ideal
edges satisfying the original assumption. We can work out
the sensitivity analysis for the causal filters similarly[§]. No-
tice that the expected noncausal or causal outputs are not
monotonically decreasing with respect to Dy or D, for some
o’s and 7’s. However, they are monotonically decreasing
when D, =0or D; = 0.

Theorem 7 The optimal causal edge detector is realizable
recursively in the temporal domain.

The optimal spatio-temporal edge detectors are optimal only
when they are exactly tuned to the edge velocity. An opti-
mal edge detector would not produce a maximized output
at the edge position large enough to be claimed edges in the
case that the real edge velocity is very different from the
assumed velocity. Therefore, several edge detectors tuned
to different velocities and employed at the same time ap-
pear necessary to detect the edges moving with different
unknown velocities.

To derive optimal three-dimensional spatio-temporal filters
for two-dimensional image edges, we need one more stochas-
tic function, say B(), independent of A(), to model the spa-
tial direction along the image edge lines. Let n be an axis
perpendicular to the edge lines and n' axis perpendicular
to the n axis. Just like A(¢), B(n') has a value 1 when
nt € [-ng,ny], ns > 0 and n) > 0, and 0 otherwise. Also,
let us assume the random variables ny, and n; follow the ex-

ponential function P.(nt) = ret ™t r 50,0t > 0.

Theorem 8 The optimal causal filter f(n,n*,t) is —c-(n—
votJeelrwtle=TaL It le=met  for ¢ > 0 and f(n,nt,t) =0,
fort < 0. The noncausal one is f(n,n*,t) = —c- (n —
vot)e_al"_v"tle"fﬂ“"I"Lle-T‘ltl.

Theorem 9 The absolute value of the Fourier transform
F{fHu,v,w) of the optimal edge detector f(n,n',t) is maz-
imized at a line, which is the intersection of two planes,
uvg +w = 0 and v = 0, in the frequency domain, particu-

larly mazimized at (%,0, —%’g) and (—7"‘5,0,%).

Because the optimal filters are tuned to specific edge orien-
tation and edge velocity, they are like the oriented receptive
fields of Hubel and Wiesel or the linear impulse response
of Ross and Burr[l], and it is natural and interesting to
compare them with the Gabor filters. Both of them are
band-pass filters, highly suited to parallel processing, and
the convolutional outputs are maximized only when they
are tuned to the right spatial orientations and the right nor-
mal velocities. Gabor filters minimize the joint localization
of the spatio-temporal domain and the spatio-temporal fre-
quency domain. However, the optimal edge detectors opti-
mize Canny’s criteria. They are optimal in different sense,



so they have different shapes in the frequency domain. Noise
robustness is enhanced in the optimal edge detectors and the
Gabor filters because the noise can be attenuated through
the temporal axis as well as the two-dimensional spatial do-
main. Multiple Gabor filters operating simultaneously but
tuned to different spatial orientations and different image
flows are used in some algorithms[6] to extract the image
flow. In a companion paper(7], we show how to achieve
edge detection and velocity estimation in the same time by
the optimal edge detectors. In order for the Gabor filters
to separate more velocities, their spatio-temporal supports
must also increase. The following is a similar theorem for
the optimal edge detectors.

Theorem 10 In order for the optimal edge detectors, f(n,
nt,t) —c-(n—vot)e_"|"‘"°”'e‘*nl'l"”e""]", to have higher
resolution in both velocity and edge orientation, 7, and 7,1
should be smaller. Increasing o increases the resolution.

4 Conclusion

We model the moving step edges as a product of a deter-
ministic function in space and a stochastic function in time
which captures the edge shapes and the temporal uncertain-
ties respectively. Under Canny’s original optimality criteria,
a set of optimal edge detectors are derived. They are in a
product form, i.e. a product of a spatial function and a tem-
poral function. The spatial function happens to be Canny’s
edge detector in one dimension and the temporal function
can be well approximated by the exponential function. Gen-
eralizing Canny’s edge detector to the temporal domain is
not only theoretically interesting, but also practically useful
and insightful. Our generalization of Canny’s edge detectors
provides better immunity to noise and can serve as one of
the tools in understanding the temporal behavior of mov-
ing edges. We use them in a data-fusion framework in [7]
to detect moving edges and their normal velocities simul-
taneously. For completeness, we derive some properties of

the optimal edge detectors and compare them with Gabor

filters.
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Figure 1: An example of the optimal noncausal filters —(z —
vot)e~ ==l with o =1, 7 = 2, and vy = —2.



