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Abstract

We examine the possibilitics afforded by the application of
active sensing principles at a microscopic scale.

Active point sensor systems consist of collections of simple
sensing elements that have motor, computational, and commu-
nication capabilities. Depending on the laws of motion pro-
grammed into these elements, complex operations can be per-
formed, as diverse as nonlinear diffusion, shape from shading,
and deformable template matching.

Active point scnsors systems represent an entirely new way
of implementing sensing devices. In contrast to sensor arrays
made using present tcchniques, they permit the integration of
complex information processing on the same substrate as the
sensing elements, and can be adaptive, altering their processing
based on changes in the state of individual sensing elements.
Furthermore their output is asynchronous and object oriented,
reducing communication bandwidths and easing interfacing to
other systems.

Principles of Active Sensing

Active sensing can be defined as a process that uses controlled motions
of an observer to aid in the performance of sensory information pro-
cessing tasks. Recent research into active vision [1] and ecological optics
[14] has made it clear that the ability to control the motion and associ-
ated processing of a visual sensor is extremely valuable in solving visual
information processing problems. For other sensory modalities such as
touch and smell, the connection between motion and sensing has been
known for a much longer time. Effective tactile sensing absolutely re-
quires that a tactile sensor be moved in a purposeful exploratory pat-
tern. For example, determination of object texture by tactile means
requires a movement of the tactile sensor across the object surface in
a direction that maximizes the temporal response of the sensor (i.e.
across the grain of the texture).

For descriptive purposes active sensing techniques can be catego-
rized as employing one or more of the following basic principles: Reg-
ularization of Sensory Processes; Exploration or Search for New Infor-
mation; Adaption. The first of these principles is that of the regulariza-
tion of sensory processes. Many standard computational vision tasks
are ill-posed in the sense that, given the input sensory data, there is
either no unique solution to the sensory information task, or if there
is a solution, the solution is unstable with respect to small perturba-
tions in the input data. Aloimonos et al [1} show that some of these
ill-posed vision tasks can be made well posed (and often linear as well)
if extra information in the form of images taken at diflerent times and
from different viewpoints is available. Thus, by using active vision
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techniques one can regularize an ill-posed vision problem, where reg-
ularization refers to the mathematical process of making an ill-posed
problem well-posed through the addition of a stabilizing process {19].

Perhaps the most widely used principle of active sensing is that of
exploration, or search, in which sensor motions are performed in order
to allow sensing of portions of the environment that were previously
out of the range of the sensing elements. This exploration can be done
in an unguided fashion, wherein the motions are arbitrary, or as guided
motion wherein the sensor motions follow some strategy aimed at op-
timally extracting the desired information from the environment. The
proposed active vision systems of Bajesy [2], Burt [5] and Stansfield
[23] are examples of exploratory systems that use navigation about the
world in order to obtain information about the world. In Stansfield’s
application; for example, tactile exploration is used to obtain informa-
tion about the shape of objects for object recognition. The purpose
of the exploration in this case is to extract features to be used in the
recognition process. Thus the exploration is guided by expectations as
to where object features are located.

The third principle of active sensing that we consider important is
that of (temporal) adaption. As a sensing system moves about the
information it gains can be used to alter the form of the information
processing that is done. This-alteration is typically one of two types.
In the first type, certain assumptions or constraints used in the sensory
processing algorithms can be changed based on consistency measures.
For example [8], the smoothness constraint used by some shape from
shading algorithms cause a distortion or flattening of the measured
shape of an object. As the imaging device moves about the space, and
the shape from shading process is repeated, the perceived shape of the
object will appear to deform and the object will appear non-rigid. The
inconsistency of the shape over time can be used to adapt the smooth-
ness constraint. The second type of adaption occurs when the goals
of the information processing changes in response to the new sensor
information obtained as the sensor moves. For example, an exploration
phase may change into an object tracking phase, or a more complex ob-
ject recognition process may be introduced once an “interesting” object
is found by more coarse object detection processes.

2 Active Point Sensor Systems

In this paper we wish to introduce the idea of applying the above prin-
ciples of active sensing to microscopic scale systems, with the intention
of constructing a new class of sensing device. To date, active sensing
principles have mainly been applied to robotic systems, whereby the
motion of sensors such as video cameras and tactile sensors are carried
out through the degrees of freedom of the robot. We want to extend
this process to systems wherein collections of very simple, microscopic,
point sensing elements having motion capability are used to implement
a new class of macroscopic sensing devices, which replace the video
cameras and tactile scnsors currently used in robotic systems.

The basic building block of this new approach is the active point
sensor. An active point sensor is an entity which consists of a single



sensing element, a motor system which allows it to move through space
in some fashion, and a communication system which allows it to transfer
information to and from other sensors or information processing units.
It has simple computing capabilities which allow it to determine its
motor behaviour based on its current state. The current state of the
active point sensor depends on external inputs, the previous state, and
the current measurement from the sensing element.

The task of an active point sensor is to take measurements with
its sensor, move in some prescribed fashion based on the measured
sense data, and conditionally, depending on its current state, transmit
information to other units in the system. The laws which specify the
dependence of the motion on the sense data and the active point sensor
state can change or adapt as a function of the sense data and the system
state. In general the overall behaviour of an active point sensor will
be dictated by the goals of the controlling sysiem of which the sensor
forms a part.

The operation of active point sensor systems can be illustrated by
examining an instance of such a system that occurs in nature. Current
models of vertebrate immune system functioning (the clonal selection
theory [4]) imply that the immune system contains an active sensing
component. In this system antibodies act as sensors that can detect (by
physical contact) foreign substances (antigens) in the body. When they
detect the antigen specific to the antibody, they signal cells known as
lymphocytes to create more antibodies of the same type. The motion
of the sensing elements (antibodies) is random in this case (basically
thermal diffusion) but the net effect is that the system accurately lo-
calizes the presence of antigens of a certain kind (sensory modality)
by the presence of large numbers of antibodies to that antigen. The
lymphocytes act as an adaptive mechanism to alter the dominant sen-
sory modality of the immune system. Although the operation of the
immune system may seem to be quite different than the operation of
usual image processing systems, we will see below that we can devise
image processing systems that are based on exactly the same principles
as the immune system: mobile sensing elements (antibodies) capable
of adaption of sensory modality (types of antigens detected) combined
with communication with control units (lymphocytes).

3 Stochastic Processing By Active Point
Sensors

As can be seen in the example of the immune system, the motion of
active point sensors need not be purposeful in order for them to be
useful information processing units. There is a wide range of sensory
processing tasks for which random (thermal-like) motion of active point
sensors will suffice. An example relevant to computer vision systems
is that of nonlinear smoothing or edge enhancement via nonlinear dif-
fusion. These image processing methods are currently of interest in
computational vision research [21]. In the process of Perona and Malik
[21} an image is input as an initial condition to a nonlinear diffusion
equation which is then allowed to evolve. After a suitable length of time
the solution to the diffusion equation is a new image that is a smoothed
version of the inital image, except that, unlike standard linear smooth-
ing algorithms, the edges, or regions of rapid change in image intensity,
are not smoothed away. The equation used in the process of Perona
and Malik [21] is:

Iy = c(z,y,1)AI+ Ve . VI (1)
where I is the (smoothed) image, and c(z,y,t) is a time and space
dependent conductivity factor. If we let ¢ be a function of the image
as follows:

C
o(z,y,1) = TTRVIE @
The conductivity is seen to be low when the image gradient is high.

This prevents the image from being excessively smoothed near edges.
Such a system can be implemented with a set of active point sensors
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moving in random thermal motion if we allow the freedom of specifying
the “effective mass” or “mobility” of the point sensors to be a function
of the sensed image gradient. The diffusion “constant” of the sensor’s
thermal motion can be identificd with Perona and Malik’s ¢(z,y,t)
function. Thus if we can adjust the sensor’s mobility according to the
equation for ¢(z,y,t) given above we will be able to duplicate Perona
and Malik’s edge enhancement method with our active point sensors.
Note that, in the active point sensor implementation, as time progresses
the sensors will tend to cluster near edges, as these are regions of low
diffusivity. Thus edges will be indicated by the location of high con-
centrations of active point sensing elements. The positions of the point
sensors can then be communicated in some fashion to other processing
elements.

The process of deriving the laws of motion for a general diffusive
system as described above can be implemented using the methods of
stochastic differential equations {11]. For example, suppose we wish to
implement the following generalized diffusion equation:

dp 1

70 =~V (f@) + 3V - Viea(2)) ®
This equation can be seen to be a general form of a Fokker-Planck
equation and hence we can find a stochastic system whose time evo-
lution is a solution of it. In fact, if we have a system of point sensors

whose motion is given by the following law:
)

then the function p in the Fokker-Planck equation can be identified with
the density of point sensors. The equation of motion is often referred to
as an Ito or Langevin equation. The w in the Ito equation is a Wiener
process and provides the stochastic behaviour. The first term in the
stochastic differential equation [11] is a “drift” term, while the second
is a “diffusion” term. By adjusting the form of the drift and diffusion
functions the solutions to many different differential equations can be
found by letting the point sensors move according to the Langevin
equation and measuring the point sensor density p.

dx = f(z)dt + g(z)dw

The function g(z) acts as a dillusivity or conductivity. If this is non-
uniform, the invariant measure (i.e. the steady state p), if it exists, will
be non-uniform as well. If g(z) is a function of sensory data, p will also.
One can use this to peform certain sensory processing applications,
such as edge enhancement. If g(z) or f(z) depends on p(z,t), then
the system will perform non-linear diffusion (such as the Perona-Malik
operation), which can be used for more complex image processing than
non-uniform diffusion. This approach requires that p be estimated, in
order to determine the form of the motion laws. This estimate of p is
termed the conditional density, as it is conditioned on the statistics of
the path, =(t).

The process of random thermal motion of active point sensors mod-
ulated by field measurements can be used to implement a wide range
of useful image processing operations besides edge enhancement and
image smoothing. Recent work by Yuille et al [26] has indicated that
the task of obtaining the solution to the minimization of energy func-
tionals can be converted into a task of solving an initial value partial
differential equation. These PDE’s are often similar in form to a non-
linear diffusion equation and can hence be solved by using the approach
described above.

4 Non-Stochastic Active Point Sensor Sys-
tems

The motion of our aclive point sensors need not be random and, in
general, will be purposeful, as their motion is intended to aid in the
sensing process. For example, a tactile sensing element whose role is to
find and describe ridges of objects would first look for a peak in pressure
by moving along the pressure gradient direction and then, once it has



found the peak, would move perpendicular to the pressure gradient in
order to chart the extent of the object ridge. When it comes to the
end of the ridge it should move away and look for another, possibly
remembering where it was so it doesn’t return.

In this section we describe a particular class of deterministic active
point sensor systems; one that has surprising information processing
capabilities.

There are classes of information processing problems which can be
expressed in terms of solving first order nonlinear differential equations
using the method of characteristics [13]. These equations can somne-
times be put into the form of the Hamilton-Jacobi equation:

()—J ! (0—] aJ 1) =0
[

a1 E,«L’,Uu
where H(p,q,z,y) is the llamiltonian of the system. The equations of
motion defined by the Ilamiltonian are:
de _dH dy OH dp _ 9H dy _ 3H
dt B di
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(6)

To solve a Hamiltonian based problem with an active point sensor
system one would initialize the position of the sensors along some curve
in the image on which p(z,y) and ¢(z, y) are known and let them move
according to the laws of motion. At intervals they would transmit
their estimates of p(z,y) and ¢(z,y) (updated using the differential
equations for p and ¢ given above). This approach is nol restricted to
Hamiltonian systems; many first order non-linear differential equations
can be solved using the method of characteristics. Hamiltonian type
systems are very common, however.

An example of the use of characteristic methods in image analy-
sis occurs in shape-from-shading where, for a Lambertian surface (one
whose reflectance function is given by R(#) = #i - § where 7 is the unit
normal vector of the surface and & is the illumination vector) the object
surface height function u(z,y) is related to the image shading, I(z,y)
through the following Eikonal equation {3, 16]:

2 M 2 1 £l
wl+ul =pi(x,y) + 4% (ay) = (m - 1) =E(xy) (7)

This can be solved using the method of characteristics where we get
the following equations of motion (that define the characteristics):

dr dy
L o) 2 = 2,
o = e = 2lesy) 8
and the update equation for the shape:
. . dl(z,
o 0B HER A _oE_ EEM o
dt oz B(z,y) dt dy Bz, y)

An active point sensor implementation of a shape from shading opera-
tion might function as follows: A set of active point sensors are initially
distributed randomly about the image field. The sensors initially move
to find a position where the p, ¢ values are known. This is accomplished
as follows. A given sensor assumes a value, perhaps randomly, for the
pair (p, ¢). In general, this pair will not be the same as the actual (p, q)
at the sensor’s current location. As a first step to finding the point in
the image where the actual (p,¢) values are the same as the assumed
ones, the sensor moves in such a way as to arrive at a point for which
the constraint that p? + ¢® = E*(2,y) is satisfied. This could be done
by a random walk, or with a spiral search pattern. Having reached
such a point it will generally be the case that the actual (p,¢) values
are not equal to the assumed values. But we at least know that the E*
constraint is satisfied. The sensor, once it has reached this stage, alters
it’s motion law to become a characteristic follower, using the equations
given above. It performs one step along the characteristic curve. If the
assumed (p, g) values were equal to the actual (p, ¢) values at the start-
ing point then the E* constraint will still be satisfied after the step,
otherwise it would not be satisfied. Thus we can check whether or not
we have the correct (p,q) value. If it is incorrect we move along the
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iso-brightness contour (which will maintain the validity of the E* con-
straint) a fixed distance and try another characteristic following step,
and again check to see whether the E* constraint holds. We continue
this process until we get tora point where the E* constraint holds after
a charactistic following step. At this point we know that our assumed
(P, ) pair is equal to the actual one. The sensor then continues follow-
ing along the characteristic (which will be a function of the image) and
periodically transmits it’s current value of the p, ¢ shape parameters.

5 Correlated Active Point Sensor Assem-
blies

Active point sensor assemblics are defined here as collections of active
point sensors that are distinguished by close correlation of activity. The
standard sorts of image sensor arrays, IR focal plane detector arrays,
tactile sensor arrays and so forth can be thought of as examples of
sensor assemblies. But these arrays use passive approaches to sensing
and are hence limited in their capabilities, and must be paired with
complex processing circuitry to obtain useful information from them.
In addition these sensor arrays are inflexible in that they have a fixed
spatial-temporal sampling pattern. Our vision of active point sensor
assemblies is to develop sensor arrays which have none of these draw-
backs. They are configurable, in that they can change sensory modal-
ities and sampling topology, and they perform sensing in a purposeful
and principled manner. These arrays produce only the information
that is required for a given task and are silent otherwise. They move
about in order to optimize the sensing process. The objective of active
point sensor assemblies is to coordinate activity between active point
sensors in order to extract spatially organized information which the
active point sensors themselves cannot independently provide.

As an example of the use of active sensor assemblies to visual in-
formation processing, consider the “Snakes” paradigm of Kass, Witkin
and Terzopoulos [17]. The basic “snake” model is a controlled conti-
nuity spline which is under the influence of forces derived from sense
data (such as tactile or visual imagery). The elements that make up
the snake move in a fashion that minimizes the following “energy”:

1
B= [ (Buncerna(T(6)) + Bimage(5s)lds (10)
where the vector function #(s) = (z(s), y(s)) is a parametrization along
the arc length s of the snake. The internal energy Einjernar repre-
sents the correlation between the elements of the active sensor assem-
bly (which are assumed to be located uniformly along the snake) and,
in Kass et al’s model, is given by:

2

+ B(s)

8*5(s)
9s?

Einternal = a(s)

(11)

The first order term makes the snake act as though it was made of an
elastic material, while the second order term makes the snake act like
a thin metal plate. Adjusting the relative values of o and 3 allow one
to tune the desired behaviour of the snake.

The image energy Ejpag. represents the effect of the sense data on
the shape of the snake. For example, if we wish for the snake to detect
edges (by aligning with them) then we could use the following energy:

(12)

This will tend to make the snake move to regions of high image gradient
value (i.e. edges). The internal energy term will act to keep the snake
from becoming too irregular in shape, and essentially imposes smooth-
ness on the snake’s contour. Kass et al propose other image energy
terms which allow snakes to be used for stereo and motion analysis.

Eimage = Eeage = —|VI(2,y)]?



Active point sensor assemblies can be made to implement snake
based image processing algorithms. Local communication between
neighboring elements in an active sensor assembly is maintained so
that the internal energy can be computed. The elements in the sensor
assembly move in directions that will jointly minimize the internal and
image forces. The assembly can change shape in two ways: the compo-
nent point sensors can move, or point sensors can be added or deleted to
the assembly. The most straightforward approach is a Monte-Carlo-like
method in which active point sensors are added and deleted to the as-
sembly randomly (at a relatively low rate) and existing elements move
thermally (randomly). If a given action (creation/deletion/thermal mo-
tion) results in a decrease in the snake’s total energy then it is retained,
otherwise the action is undone. In order to avoid local minima which
could trap the snake, annealing must be performed using the artifice of
randomly retaining a small proportion of the actions that increase the
snakes total energy. The information regarding the shape of the snake
could be transmitted in the form of a chain code [10] in which each
element transmits its own part of the code, tagged in such a way that a
receiver can sort out and reconstruct an number of such messages from
differerent snakes.

The active point sensor assembly idea can also be used to implement
deformable templates such as those described in [25] for face recogni-
tion. In the deformable template technique one tries to minimize an en-
ergy similar to that in the snake approach, but where the contributions
to the internal energy function come from parametrized descriptions of
the contours (e.g. parabolic sections). In an active sensor implementa-
tion of a deformable template, the active point sensors would move in
ways which attempt to maintain the particular form of the template,
while altering the parameters of the contour in ways which reduce the
total internal energy of the contour.

6 Architecture of Integrated Active Sen-
sor Systems

It is natural to consider how one might physically construct the ac-
tive point sensor based systems described in the previous sections.
Some ideas concerning important aspects of this implementation pro-
cess are discussed below. We feel that the construction of micro-scale
active sensing system provides a powerful alternative to the current
approaches to the implementation of smart sensor chips (e.g. Mead
and coworkers [15, 18, 20, 22] resistive grid based image sensing and
processing chips).

A major aspect of the active sensor design process is determining
how to get data out from the sensors and how to get commands regard-
ing sensor behaviour into the sensors. In standard fixed, non adaptive,
sensing arrays it is almost always possible to scan the array in an or-
derly fashion since the sensors do not change their position or function
relative to each other. In active sensor systems, however, the compo-
nent elements move about and do not maintain a fixed spatial relation-
ship to each other. Furthermore the type of information produced by
a given sensing element can be different from that of the others and
may change over time as well. In light of this it seems evident that
an asynchronous, object oriented method of transmitting information
is indicated for active sensing systems. That is, information is output
from the active sensor chip only when new information arrives, and the
interpretation of the output data depends on the type of sensory ob-
ject that is being output (e.g. visual edges, tactile texture, temperature
gradients etc.).

A suitable communications method is one based on message passing
techniques such as are used in computer networks (for example, Ether-
Net or the router on a Thinking Machines Corp. Connection Machine).
In this approach, when a sensor decides that it has detected something
some other unit should know about, it drops a message into a com-
mon transmission channel, tagged with information about the source
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and possibly the destination (or it might be broadcast to everyone by
default). The output port of the sensing system then would be this
common communications channel over which all sorts of different types
of messages are being passed. Such a system is seen in the human body
where biochemical messages (such as those used in the immune system)
all flow through the blood stream, and are ignored by most systems
and recognized only by those intended to receive the message. A typ-
ical computer vision sensor using this object oriented message passing
technique would output a stream of data asynchronously, containing
messages of various lengths and complexities; some would indicate the
location of edge segments, some would describe the shape of snakes
wrapped around regions of uniform texture, still others may signal the
presence of objects moving upwards and to the left. A message passing
based active sensor will clearly be more efficient than a set of fixed sens-
ing systems that do the same job, as one does not have to add in extra
circuitry to filter out irrelevant data (such as the velocity of points in
the interior of a static object), since information is transmitted only
when required.

In the basic form described earlier an active point sensor system
would contain a number of active point sensors or active sensor as-
semblies. Each of these elements would contain a motor unit for the
purpose of moving about in, and manipulating, its environment. In ad-
dition, the active sensor elements would contain sensing devices, limited
computational capability, and communication circuitry. These systems
can be constructed on a number of levels, from microscopic scale (such
as the elements of the immune system, or Drexler’s [9] molecular as-
semblers), to large scale (such as the attentive vision system for mobile
robots that we have developed [6]). Each of these different scales will
have their own particular technical challenges that must be faced in
constructing such systems. The molecular scale systems of Drexler’s
[9] nanotechnology are beyond the current capabilities of current day
technology. Work is proceeding in this area, however, and we should at
least be thinking about how the principles embodied in our approach
to active sensing can be put to use at molecular scales, and indeed, it is
in this area that our work in micro-scale active sensing may eventually
have its greatest impact. At the micron scale (i.e. at the scale of in-
tegrated solid state circuits) we have the technology for implementing
sensing and computing elements (see, for example, [7, 20]). Motor tech-
nology at this scale, however, is in its infancy, and only a few primitive
devices have been created [12, 24]. The outlook for the development
of such devices is promising, however, and we should begin to design
active sensing systems that take advantage of these microactuators.
Until such microactuators are available we can simulate the motion of
microscale sensors by implementing “virtual sensors” in a fixed array
on an integrated circuit die. In the virtual grid active sensor chip “at-
tributes” of a given active point sensor move through the chip via local
transmission between neighboring virtual sensors. The actual sensors
themselves do not move, just their “spirit” as it were. The attributes
vector includes information such as current sensor modality, current
velocity, and current sensor state (of its “program”, if present).

7 Some Simulations

We have implemented a simulation of an active point sensor system on
a SUN4 workstation, as well as on a MasPar 1024 node parallel com-
puter. Figures 1 through 4 illustrate the action of an active point sensor
nonuniform diffusion edge enhancement operation (i.e. the motion law
of the sensors is given by equation 4 with g(z) = 1/(1+ K|VI|?)). Fig-
ure 1 depicts the underlying image field I (what the sensors measure).
Figure 2 shows the initial (uniform) distribution of the point sensors.
The initial density of sensors is 0.2. Figure 3 shows the distribution
of sensor elements after 50 time steps and figure 4 shows the distribu-
tion after 100 time steps. The dark pixels represent sensors for which
the measured image gradient is greater than a certain threshold. The
lighter pixels represent sensors for which the image gradient is less than
the threshold. One could think of the sensors sending out a message
(their position for example) only when their gradient value exceeds this
threshold. In this way only relevant data, that of the position of edges,



is transmitted. Note that, even after 100 time steps, only a portion
of the image edges have been detected. This is due to the slowness of
the thermal diffusion process. We can speed this process up by using
the same sort of artifice as is employed by the human imniune system.
In this approach, whenever a sensor detects an edge (by exceeding the
gradient threshold) it “creates” a new sensor nearby. The idea behind
this is that edges will tend to be coherent in space, so that if there is an
edge pixel at a given point in space there is likely to be another edge
pixel nearby. Creating a new sensor in the neighborhood of a known
edge point obviates the need for a remote sensor to take the time to
thermally diffuse into the neighborhood. The action of this adaptive
edge detection system is shown in figures 5 through 7. Figure 5 shows
the initial distribution of sensing elements (with density 0.02). Figure 6
shows the distribution after 10 time steps, and figure 7 the distribution
after 100 time steps. It is seen that all of the edges have been detected
within 100 time steps.

8 Conclusion

We have introduced a new class of sensing devices, the active point
sensor array, which promise an increase in functionality for some ap-
plications relative to the current generation of sensing devices. Some
of the advantages of active point sensor arrays over conventional sen-
sor arrays are adaptability, efficient use of communication bandwidth,
object oriented output, and complex data processing integrated with
the sensing elements. Micro-scale analogs to our active point sensor
approach exist in natural systems. For example, chemical messaging
(e.g. hormones, neurotransmitters, pheromones etc.) demonstrates the
use of object oriented, asynclironous, communication, while immuno-
logical adaption and exploration illustrates the power of altering the
“program” of exploratory active sensors based on their current state.
The capabilities of our active point sensor arrays as compared with
standard sensor arrays can be thought of in terms of an analogy with
the comparison between neural networks and standard computers. The
processing power of neural nets is due in large part to the connectivity
of their constituents rather than due to the computational complexity
of these constituents. Likewise, in active sensor systems the bulk of the
computational power comes from the motion of the sensors and not
from the sensing elements themselves or from complex operations on
the sensory data.
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Figure 1. The image field 1.

Figure 5. The initial sensor distribution, adaptive case. Figure 7. The sensor distribution after 100 time steps.

Figure 6. The sensor distribution after 10 time steps.
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