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Abstract

A vision system for use in a mobile robot system, or in a
fixed multi-tasking industrial robot requires attentive control.
Attentive control refers to the process by which the direction
of gaze of the visual sensors are determined, along with the
determination of what processing is required to be applied to
the sensed images based on the goals of the robot and the
tasks it is performing.

This paper describes the implementation of a motion con-
trol system which allows the attentive control of a binocular
vision system. Attentive inputs to the system specify the type
of visual feedback that the oculo-motor control system will
use, The MDL language developed by Brockett [7] is used to
communicate between the attentive planner and the motion
controller.

1 Introduction: Active and Attentive Vi-
sion

An emerging theme in current vision research is that of
“Active Vision” [1,8,4,10], in which the vision process is
dynamic rather than static. Instead of applying image
analysis operations to a single “snapshot” of the environ-
ment, the active vision process in its most general imple-
mentation applies image analysis operations in an purpo-
sive and integrative manner on a temporal and spatially
disparate sequence of images.

There have been put forth a number of definitions for
active vision. Active vision in the sense used by Aloi-
monos et al [1] is used to make a vision problem that
is ill-posed in the single image case into a well posed
one. This is possible due to the availability of extra con-
straints from the additional images obtained in the active
vision process. These added constraints may be enough
to convert an underdetermined problem into an overde-
termined one, and hence allow a robust solution to be
obtained. Geiger and Yuille [19] describe a stereopsis al-
gorithm which relies on small controlled eye movements
to simplify the binocular feature correspondence problem.
This is an example of a class of active vision algorithms in
which eye or camera movements are used to provide con-
straints that simplify the computation of visual features
[8]. Controlled eye movements can also be used to help
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in a calibration process, wherein geometrical information
regarding the imaging system is obtained (8].

In each of the above types of active vision one must be
able to control the position of the cameras so as to ob-
tain independent visual constraints as required to make
a given visual processing operation well posed, or to sim-
plify a given visual processing operation. There are; how-
ever, situations in which one would like to change our field
of view for reasons other than the ones given above. For
example, Burt [10] describes active sensing (or “smart”
sensing) as the selective, task oriented gathering of in-
formation. In this form of active vision one focusses the
“attention” of the visual system on a portion of the scene
that is important to the task at hand. As the demands of
the robotic task evolve this focus of attention may shift.
Such a form of active vision could be referred to as atten-
tive vision to distinguish it from the active vision in which
movements are made in order to provide additional con-
straints for solving a given vision problem. Bajcsy [4,5]
extends the concept of active perception to include the
presence of feedback. In this extension, information ob-
tained through the visual process, both high and low level

information, is used to control the data acquisition pro-
cess.

Changing of the focus of attention can refer to changes
in the spatial region in the scene upon which our visual
system is concentrating (or “foveating” at a high resolu-
tion). Much of the information in the field of view is not
needed to perform many tasks. This is witnessed in the
human eye where much of the field of view, the periph-
ery, is viewed at a very low resolution. Only the fovea, a
small percentage of the total field of view, contains high
resolution detail. By acquiring a part of the scene within
the fovea, a detailed analysis can be made of this region.
Visual tasks require the movement of the eyes to closely
examine areas of interest for the particular task, paying
little attention to the rest of the scene which is viewed pe-
ripherally. Since we want to devote computational power
only to regions containing salient information, these re-
gions must be identified and then foveated. As the envi-
ronment changes we want attention to move so that we
are constantly acquiring the regions with salient informa-
tion in the fovea. (There is evidence that attention can
be directed to a location other than the point of fixation,
such a mechanism will only be useful for simple tasks as
the low resolution in the periphery will not be adequate



for complex visual tasks [3]). Foveation can be accom-
plished by mechanically adjusting the direction of view of
the image sensor or it can be accomplished by moving a
processing window about in an internal representation of
the image (e.g. see the multiresolution foveator of Burt
[10]). This mode of attention forms the basis for Ull-
man’s visual routine paradigm [40], in which sequences
of elementary image analysis operations are performed to
obtain properties of, and relations between objects, in a
scene. Focus of attention may also refer to the selection of
a given set of image processing operations that are to be
used to extract information from the scene. For example,
a given visual task may require that corners of objects
be detected, while another visual task may require that
the colour of objects be determined. In each of these two
cases different features would be attended on.

In all of the proposed active and attentive vision paradigms

there are two common tasks to be performed. One is to
figure out where to look next, and the other is to then
carry out the motion that will let one look there. The
question arises as to how to determine what is the salient
information in a scene. Treisman [39] identified a “preat-
tentive” stage wherein certain features, primitives, are
detected in parallel across the visual field. Possible prim-
itives include colour, line ends (terminators), spatial fre-
quency, motion, line orientation, binocular disparity, and
texture (see [39,6,21,41,18,27,9]). However, detection of
conjunctions and more difficult recognition tasks are be-
lieved to require serial processing. Experiments show that
a conspicuous feature such as a red T amongst a field of
green P’s will quickly “pop out”. This is not true of a
red T in a field of red and green P’s since the detection of
the red T requires detection of a conjunction of features.
Also, subjects can selectively attend on a specific feature
or “suppress” a feature, such as when subjects “ignore”
features performing over a long period of time. The atten-
tional mechanism can thus be dynamically changed and
consciously programmed.

Experiments have shown that directing attention to
a location for one task increases visual capabilities for
other tasks in that region [38,37]. This region of increased
visual attention has been likened to a spotlight or variable
powered lens [21,17]. Such capabilities are desirable in an
active vision system. An efficient vision process would
benefit from such a “spotlight” in which to devote most
of its computational power, while processing the rest of
the field at low resolution.

We propose a model of attention that captures the
above aspects of attention. The most salient feature is
found and centered on the field of view. At this point
a region of interest (ROI) processor may perform more
complicated visual tasks. We describe how our system
can be applied to implementing changes in visual atten-
tion, and to controlling the motions of a binocular im-
age acquisition system to change gaze directions based
on these changes in focus of attention. The control tech-
nique used in our system is based on MDL [7] which is a
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high level motion description language that allows device
(actuator) dependent control of the robot’s oculomotor
system. This system uses selective visual feedback, based
on a high level description of the sequence of foci of at-
tention or “modes” of activity, to control the position and
velocity of the cameras in a binocular image acquisition
system. The primary purpose of this system is to allow
the specification of attentive behaviour of an oculomotor
system at a high level, independent of the type of actuator
used in the system.

2 The MDL Motion Description Language

The role of any motion control system is to allow the
motion of a mechanical system to be specified to a desired
level of precision.

One can describe the control of a mechanical system
through a differential equation relating the effect of con-
trol inputs to the state of the system as follows:

£(t) = f(=z() + Gle(t))v(t) ; y(t) = h(=z(2)) (1)

where z(t) is an n-dimensional state vector, v(t) is a m-
dimensional vector of controls and y(t) is a p-dimensional
vector of sensor signals (which depends on the system
state ). The system state usually includes the positions
of the various mechanical degrees of freedom of the struc-
ture. The function G(-) relates the effect of the control
vector v(t} on the system state. The control vector can
be independent of the sensor variables y(t) in which case
we have open loop control, or it can depend on the sensor
variables in which case we have closed loop control (as-
suming, of course, that the sensor variables are functions
of the system state).

To make the open loop/closed loop distinction more
explicit one can write the control vector as the sum of
an open loop component and a closed loop component as

follows:
v(t) = u(t) + k(y(t)) (2)

The term u(t) represents a vector of open loop control
inputs, or setpoints, that we wish the system to follow.
The function &(-) operates on the sensor variables y(t) to
provide the state feedback required for closed loop con-
trol.

The above formalism captures both the physical na-
ture of the system (through the G and f functions) and
the activities the system is to undertake (through the u,
k, and y functions). One can absorb the definition of
the y(t) functions into the k& function by assuming that
all possible observations are available and that the k se-
lects the observations that are used in any given control
scheme.

The k function can bethought of as a generalized com-
pliance. For example consider the case where z is a po-
sition of some kind, and y is a sensed force. Then k
converts forces to changes in position. Thus the system



acts as a spring with compliance (1/stiffness) k. If force
components are sensed in different directions and differ-
ent positional degrees of freedom are controlled by these
sensed forces, then k is a matrix which relates the effect of
a force in a given direction to a change in position in some
other direction. This system is then a generalized spring
system. If k is diagonal, then its elements determine the
compliance of the system in different directions. Such a
system could be more stiff in one direction than in an-
other. In general, one may not have force sensors, or use
position control. In such a case the k’s will not represent
compliances, but will still relate the effect of the individ-
ual sensory inputs on the control of the system. This is
an important point as it shows that, by controlling the k’s
one can select different types of feedback mechanism. A
simple example is that of hybrid position and force control
used in some robotic manipulators [33]. In hybrid control
both force and position is sensed and motor torque is con-
trolled. The level of motor torque affects both position
and applied force of the robot manipulator (through the
motor dynamics and manipulator kinematics which are
modelled with the f and G terms in the above differen-
tial equation). If the k values are such that the position
sensor information has a much greater effect on the motor
torque than the force sensor information, then the manip-
ulator will act as a very stiff spring and the manipulator
will track position (the position setpoint component of )
very well, but the desired force will not be followed as
closely. In the opposite situation, the system will act as a
very loose spring and force will be controlled accurately
but position will not. This example shows how one can
select between two types of feedback using the k func-
tions. In section 4 we will extend this idea to the control
of visual attention, wherein we change the values of the
k’s that select for different visual sensing operations in
order to attend on a given scene element.

Based on the above control scheme Brockett {7] pro-
posed an MDL (for a Motion Description Language) de-
vice which would accept the open loop controls u and the
feedback processing functions k and produce the correct
actuator signals which would force the state vector z(t)
to be a solution of the equation:

¢ = f(z(t)) + G(2(t)) (u(t) + k(y(t)) (3)
In most complex robotic activities such those encoun-
tered in industrial assembly tasks or in mobile robot nav-
igation, different actions must be performed at different
times. Thus we will want a control system that allows
for the changing of the user definable parameters of the
control system in order to allow the carrying out of the
various desired operations. As we have seen, the im-
portant user definable parameters are the setpoints u,
and the feedback selection functions k. The MDL de-
vice of Brockett consumes (u,k,T} triples which spec-
ify the adaptive nature of the control. Each (u,&,T)
triple describes the type of control law that is to be used
over the epoch T. Thus given a string of triples such
as (uy, k1, 1), (uz, k2, T2), . . . (Un, bn, T,) an MDL device

would execute a motion which follows the state z() given
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Thus, in order to produce a given complex motion, one
would supply a string of (u,k,T) triples to the MDL con-
troller. Brockett [7] refers to these strings as modes. One
could store a number of modes, each of which corresponds
to a certain complex motion, in a table where they would
be available for accessing when required. These modes
could be hardwired, or they could be learned through
some optimization process (training and practice). A con-
trol system using motions defined as modes, that are in-
put to an MDL controller can be called a modal control
system. Note that the modes are described at a high
level, and hence the modal definition of a complex mo-
tion is “device independent”. Only the MDL interpreter,
which converts the (v, k, T’} strings into actuator signals,
need be designed for each mechanical system.

In the remainder of the paper we present an MDL
based implementation of an attentive vision system. This
system will control the motion of a pair of cameras in
such a way as to facilitate the execution of varying robotic
tasks. The system that we are proposing is a dual level
system. The first, or inner, level performs automatic ver-
gence and pursuit operations based on set points and
mode controls supplied by the outer level. The outer level
sends (u,k,T) triples to the inner level based on a set of
(u,k,T) triples provided by the user as input to the outer
level. In this case the outer level k’s describe what visual
routines, or modes, are to be applied to the binocular vi-
sual input (the y(t)’s) to generate the control signals (the
v(t)’s}). Changes in attention are implemented by supply-
ing the outer level motion control cornponent with a new
(u,k,T) triple. Visual routines which involve many shifts
in attention are implemented by sending the controller a
mode containing a string of (u,k,T) triples. The imple-
mentation of the outer level component is described in
detail in section 4.

3 Oculomotor Control Systems

In this section we describe the physical configuration of
our robotic “head” and describe the implementation of
the low level oculomotor control system for our attentive
binocular vision system. This control system is based on
models of mammalian oculomotor control systems.

The physical motion required to adjust the positions
of cameras attached to a robot can be obtained in many
ways depending on the mechanical structure of the robot,
For example, if the robot is mobile and can move with
three degrees of freedom (translation in x, and y and ro-
tation abous the z axis) in a plane, then the direction of
view of a camera, fixed to the robot, can also be con-



trolled with these three degrees of freedom. In general,
however, it is more convenient to decouple the attitude
of the camera(s) from the attitude of the body of the
robot. This allows the camera to look in a given direc-
tion independently of the direction in which the robot
is pointed. Furthermore, the time constants of a system
that positions the camera alone will be, in general, much
smaller than that of a system that positions the robot.
So, by controlling the camera orientation independently
of the orientation of the robot one, obtains an increase in
flexibility and speed, over the case in which the camera
orientation is rigidly coupled to that of the robot.

The mechanical structure of our binocular image ac-
quisition system is shown in figure 1. This mechanism
can be attached to a mobile platform or it may be rigidly
fixed to a worktable overlooking the workspace of a robot
for assembly or inspection tasks. The “head”, shown in
figure 2, has seven degrees of freedom that must be con-
trolled. Three of these degrees of freedom are associated
with the orientation of the cameras, while the other four
have to do with the state of the cameras’ aperture and
lens focus. The three mechanical degrees of freedom are:
1) Pan, which is a rotation of the inter-camera baseline
about a vertical axis, 2) Tilt, which is a rotation of the
inter-camera baseline about a horizontal axis, and 3} Ver-
gence, which is an antisymmetric rotation of each camera
about a vertical axis. With these three degrees of freedom
one can theoretically place the intersection of the optical
axes of the two cameras (what we will refer to as the fix-
ation point) anywhere in the three dimensional volume
about the head. In practice, the volume of accessible fix-
ation points will be restricted due to the limited range of
motions of the degrees of freedom.

The distance to the surface of exact focus can be con-
trolled with the electronic focus on the lens. This distance
ranges from a near distance of about 30 ¢cm to essentially
an infinite distance away. The focus control is an inte-
gral part of any attentive vision system as it allows us
to focus on the point of fixation. With no focus control,
the features that we are fixating on may be out of focus.
The ability to control lens focus also allows us to obtain
depth information monocularly through focusing [25], or
through defocus measurements [22,29]. Our system also
allows control over the lens aperture, which affects the
amount of light received by the image sensor, and the
depth of focus (not to be confused with the depth of the
surface of exact focus). It is important to be able to ad-
just the aperture to maintain sufficient light levels for the
image sensor. The aperture control in our system is au-
tomatic, and responds to changing light levels, and is not
dependent on any attentive inputs. DC motors are used
to drive the pan, tilt, and vergence axes. The pan axis is
driven directly, while the tilt axis is belt driven, mainly
due to space considerations. The vergence motor drives
a lead screw, which then causes the camera rotations
through a kinematic chain. The relationship between the
vergence motor rotation (or the lead screw displacement)
and the camera vergence angle is approximately linear
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(within 1 percent over the range of travel) which makes
the programming of the vergence control simple. The fo-
cus motion is generated via a motor encased in the lens
housing. Control signals to this motor are generated by
an integrated circuit also located in the lens housing. A
digital data stream, suitably encoded, must be sent to
the focus motor driver I.C., to command a change in fo-
cus. The manufacturer of the lens, Canon, would not
release details on the specifications of the required com-
mand data streams, so we determined the proper data
sequences ourselves. These details are available from the
authors, subject to certain disclosure conditions.

One can partition the control of the pan, tilt, and
vergence axes of the head mechanism into three descrip-
tive regimes. These are, saccades, pursuit, and vergence.
Taken together, these three modes of operation allow con-
trol over shift in attention, and maintenance of attention.
A saccade is a rapid motion of the pan and tilt axes which
causes a coupled motion of the optical axes of the two
cameras, resulting in a change in the direction of gaze
of the cameras. In a saccade, both cameras move in the
same direction. This motion is not enough to allow in-
dependent control of the gaze direction of each camera.
To obtain this one uses a vergence movement. A ver-
gence movement is a coupled motion of the two cameras
wherein the the two cameras rotate in opposite directions.
Taken together, the saccadic and vergence systems allow
the fixation point of the binocular camera system to be ar-
bitrarily controlled. Once the saccadic and vergence sys-
tems have fixated the cameras on a feature in the scene,
the pursuit system is then used to track the feature. The
pursuit system adjusts the velocity of the pan and tilt
axes so as to minimize the retinal velocity, or optic flow,
(the velocity as measured in the camera images) of the
fixated feature. This will keep the feature fixated as long
as it does not move in depth. If it moves in depth the ver-
gence system will adjust the vergence angle (the relative
angle between the two cameras) to maintain fixation.

In humans, the physiological evidence indicates that
saccades are controlled with a sampled data system, while
pursuit motions are continuously controlled {35,36]. The
latency, or reaction time of the human saccadic system
has been determined to be about 200 milliseconds [35], al-
though 1t has been observed that anticipatory behaviour
can reduce this latency time [12]. This latency is the
time it takes from the moment of change in retinal posi-

tion of an attended feature to the moment that a motor
command is given to generate the saccade. Presumably

the bulk of this time is taken up in processing the retinal
image to determine the position of the feature. During
this time the oculomotor system is insensitive to further
changes in the retinal position of the feature, and the sac-
cade that is generated is that appropriate to the retinal
position of the feature as it was 200 milliseconds prior
to the generation of the saccade. If the feature moves
during this refractory pericd the saccade will result in a
position error. From this observation came the sampled
data model of the oculomotor control system, originally
proposed by Young and Stark [45].



Young and Stark treated the pursuit system as a sam-
pled data system as well. Upon further psychophysical
examination (e.g. see [34]) this assumption turned out to
be incorrect, and the pursuit system is now thought to
use a continuous time data system, or at least a sampled
data system in which the sampling rate is much higher
than the sampling rate for the saccadic system [34]. It
has been observed [11} that pursuit movements are not
always smooth, but will include saccadic components if
the visual feature being pursued has a large retinal ve-
locity. Presumably these saccades are necessary if the
pursuit system can not keep up with the moving object.
In this case a cumulative position error builds up, and
when this error reaches a certain threshold a saccade is
generated in order to reduce the position error.

Vergence motions are the motions by which the direc-
tion of gaze of two spatially disparate eyes or cameras are
brought to intersect at a given point in space. Coordi-
nation of the movement of the two cameras is of obvious
importance in this regard. Ditchburn [14] has suggested
based on his experiments that saccades are generated in
both eyes at the same time and that the decision to make
a saccade is based on information from both eyes. How-
ever, the magnitudes of the saccades can be different in
the two eyes, and these magnitudes are determined wholly
on the information from the individual eyes. Enright [16]
presents the results of experiments which indicate that
relatively large vergence movements are superimposed on
saccades (if required) followed by slow vergence motions
after the saccade. This is in opposition to the long held
view of Yarbus [44], Alpern [2] and others, who postu-
lated that vergence motions were slow and symmetrical,
and were superimposed on balanced saccades {saccades
of equal magnitude for each eye). In our system, how-
ever, we cannot independently control the magnitude of
the saccades of the two eyes, as they are, by the phys-
ical nature of our mechanism, balanced. Likewise, our
vergence rates are constant so that the model we will be
using to control vergence will be that of Yarbus, and not
of the currently held models of human vergence control.

There is evidence that the control of focus in humans
is linked to the vergence mechanism. When vergence
changes, the depth to the plane containing the fixation
point also changes. In order to keep the fixation point
in focus, the focus must change as the vergence changes.
The focus control cannot be completely slaved to ver-
gence, however. One often wants to control the focus
independently of vergence in order to obtain monocular
depth information (via focusing or defocus information
[22,25,29]). In addition, precise control over the focus al-
fows one to bring fixated features into exact focus, when
the focussing due to slaving of the vergence results in only
near exact focus conditions.

The control scheme that we use to control the pan,
tilt, and vergence degrees of freedom of our head system
is based on the model of human oculomotor control de-
scribed by Robinson in [35]. This model postulates sepa-
rate subsystems for pursuit and saccadic motion. These
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subsystems are depicted in figure 3 (adapted from [35]).
There are two interesting features of Robinson’s model.
The first is that the sampled data nature of the saccadic
system. The desired retinal position, Ep is sampled (with
a pulse sampler), and held by a first order hold (an in-
tegrator). The output of this sample/hold is then used
as a setpoint to the plant {in this case the local motor
controller). The actuator will then try to move the cam-
era to the desired position. During the period between
sampling pulses, the output of the sample/hold is being
held constant, and hence the desired eye position is being
held constant, even though the image of the feature to
be attended to may be moving. A sample/hold does not
appear to be present in the pursuit system.

The second feature of Robinson’s model to be noted
is that there is internal positive feedback in the control
loop. This positive feedback is necesary in the case of the
pursuit system (figure 3b) to prevent oscillations due to
delays in the negative feedback loop. The negative feed-
back is provided by the vision system which, in the case
of the pursuit system, detects the velocity of a feature,
computes the retinal velocity error (which is equal to the
retinal velocity since the desired retinal velocity is zero for
tracking purposes), and causes the eye to move in a man-
ner to reduce this error. However, these computations can
not be done instantaneously, so there is a delay between
the time at which an visual observation is made and the
time at which the control command based on this obser-
vation is available. To eliminate the oscillations that can
occur with this feedback, a compensatory internal posi-
tive feedback is inserted into the loop. This is done by
adding a delayed “efference copy” of the current eye ve-
locity to the computed retinal velocity error. The delay is
such that the efference copy that is added to the velocity
error is that measured at the same time that the visual
observation (that the retinal velocity error is based on) is
made. The sum of the retinal velocity error and the de-
layed efference copy gives a new desired eye velocity which
is input to the plant {eye muscles or motor driver). The
effect of this positive feedback path is to essentially elimi-
nate the negative visual feedback. The saccadic system is
modeled in the same way, except that position control is
being done instead of velocity control. In the saccadic sys-
tem, however, the internal positive feedback is not really
needed to ensure stability, as stability is gained through
the use of the sarmple/hold. Nontheless, the available evi-
dence indicates that the human saccadic system does use
internal positive feedback to compensate for delays.

Note that the internal positive feedback scheme im-
plies that the saccadic system directs the eye to move
to an absolute position, in head coordinates, rather than
to move by a certain displacement in a given direction.
The issue of whether saccadic control of eye movements
is head coordinate based or retinotopic coordinate based
has been long a subject of discussion among neurophysi-
ologists. Recent evidence, according to Robinson [35] and
others, suggests that head based coordinates are used.

Details on a model for the vergence system are sketchy,
but Robinson [35] indicates that the vergence system is



continuous (no sample/hold is used) and uses internal
positive feedback (although this is by no means certain).
This is similar to the pursuit system save that position
control is being done instead of velocity control and that
the vergence system responds more slowly than the pur-
suit system.

Based on Robinson model as described above we have
implemented the control scheme that is depicted schemat-
ically in figure 4 for the Harvard head. The pan, tilt, and
vergence motors are driven by a pulse width modulated
MOSFET amplifier. The input to this amplifier is de-
rived from the output of a Dynamation motor controller
board [15]. The Dynamation board is indicated in figure
4 by the box taking in the shaft encoder position from
the motor and which outputs a drive signal to the motor
amplifier. The Dynamation board takes set point inputs
over a VME bus connection to a SUN computer. These
setpoints can either be position setpoints (in the case of
vergence or a saccade) or velocity setpoints (in the case of
pursuit). The Dynamation can output to the VME bus
(and then on to the SUN computer) an efference copy
of the current motor position. This efference copy is de-
layed, in the SUN computer, by a time equal to the time
taken to perform visual feature localization, and added
to the current position errors, determined by the visual
feature localization process. The Dynamation board does
not have a tachometer, so that an velocity efference copy
is not available. Thus we generate one by differentiating
the position efference copy. The sampling rate of the Dy-
namation board is very high (more than 1000 samples per
second), however, so that this estimate of velocity should
be accurate.

The feature detection and localization is performed in
a special purpose image processing system, manufactured
by Datacube [13]. This system can do image processing
operations such as 8x8 convolution, histogramming, and
logical neighborhood operations on a 512x512 pixel image
at video rates (30 frames per second). Thus the latency
per operation is 33 milliseconds. Most feature detection
operations require more that one frame time however. In
our initial experiments we implemented a feature detector
that could detect black blobs or white blobs, in about 3
frame times. Therefore the latency of our feature detec-
tor was about 100 milliseconds. The Datacube system,
after it detected the presence of a feature, would output
the position and velocity of the feature over the VME
bus to the SUN workstation. The SUN workstation then
computes the quantities 0g, + 01, 01}] + 0,;1, Or, + 01,
01}” + 6’,',“, and fg, — 0., where 8, is the x component
of the retinal disparity in the right camera, dp, is the y
component of the retinal disparity in the right camera,
0., is the x component of the retinal disparity in the left
camera, 8, is the y component of the retinal disparity

in the left camera, and § indicates a retinal velocity. The
difference in the left and right x components of the retinal
position is added to the delayed position efference copy
of the vergence motor. Thus this difference will be driven
to zero. The sum of the left and right retinal position
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errors in both the x and y directions are added to the
delayed position efference copies of the pan and tilt mo-
tors respectively. This will, during a saccade, drive these
sums to zero. Combined with the driving of the difference
of the x retinal position errors to zero by the vergence,
the result will be that the x and y retinal position er-
rors in both cameras will be driven to zero, as desired. A
saccade trigger signal (that opens up the sample/hold) is
generated by the feature detection system when the reti-
nal position error is greater than threshold value. During
the saccade, visual processing is turned off to prevent sac-
cades being generated while the saccadic motion is being
performed.

During pursuit the sum over the two cameras in each
of the x and y retinal velocity errors will be driven to zero.
If the system has the correct vergence, then the x and y
component of the retinal velocity error will be driven to
zero in each eye, and not just the sum of the errors in the
two eyes.

We have performed simple blob tracking experiments
which show that the system operates as desired, in that
the vergence and saccadic modes result in fixation of the
feature as we move it about in space.

4 Modal Control of Attention

The inner level control loop described in the previous sec-
tion is controlled by an outer loop which implements at-
tentional shifts in camera positions.

The first stage in our visual attention model acquires
the images and extracts “primitives” in parallel across
the visual field. The results from this stage are a set
of feature maps yi(z,y,t) which indicate the presence or
absence of a feature at each location in the image. Simple
feature maps may indicate the presence of a specific colour
or line orientation. Complex feature maps may perform
texture and figure-ground segmentation or more complex
feature maps may implement inhibition from neighboring
regions to compute which regions are different from their
surroundings.

The next stage of the model combines the results from
the feature maps. The output from the feature maps are
“amplified” with different “gains”, k;(t) for each map y,
and then these amplified values are summed to form the
saliency map, S(z,y,t). The value of the map at each
location is a numeric indicator of how “salient” is the in-
formation at that location. Hence finding the location
with the maximum value will give the most salient loca-
tion with respect to the given amplifier gains, k;(t). As
the notation indicates, these gains may vary over time,
thus changing the location of the most salient feature. If
more than one location shares the same maximum value,
one location must be chosen (it does not make sense to
attend to a location in the middle of two salient features,
one or the other location must be picked. However, there
is psychophysical evidence that humans will, under cer-
tain conditions, attend to a location in the middle of two
salient features). Figure 5 shows this attention model.



It can be seen that this model incorporates many of
the psychophysical results observed earlier. Adjusting the
gains of a particular feature map will direct attentional
resources to occurances of that feature. A decaying gain
function, k(t), will decrease the saliency of a location over
time and hence another location will become more salient
and attention will change to a new location. In the exam-
ple of the red T in the field of green L’s, attention will first
be directed at the red T. As the gain decreases, attention
will change locale. Since the red T is the only different
feature and thus has a high saliency value, attention will
go back to the T. The brief saccades to other areas of the
visual field are found when subjects fixate on one target
for a long time. Another psychophysical result which is
captured in our model is that higher cognitive levels can
actively select which features to attend to by adjusting
ki(t). Human attention can be consciously applied to a
visual task so humans must be able to consciously select
the more salient features.

Koch and Ullman [24] describe the Winner-Take-All
(WTA) network which will locate the most conspicuous
location (one whose properties differs most from the prop-
erties of its neighbors). The locations which differ signifi-
cantly from their neighbors are singled out and a numeric
value representing the “conspicuousness” is assigned. The
results from each primitive detector are combined into a
global saliency map which combines the value from each
feature map and assigns a global measure of conspicu-
ity. The WTA network finds the maximum value of “con-
spicuity” and locates that maximum. Attention can be
allocated to the position which gave the highest value for
further processing.

It can be seen that the WTA scheme uses the same
models of attention. The values assigned in the global
saliency map of Koch and Ullman corresponds to the
saliency map of this model when using an appropriate set
of gains. The WTA scheme is an implementation which
deals with the problem of finding the maximum of the
saliency map and localizing it. The notion of winner-take-
all is appropriate since only one location can be attended
to at one time. Koch and Ullman actually suggest the
idea of a higher cognitive process adjusting the “conspic-
uousness” of a feature to selectively inhibit or attend on
a specific feature, which corresponds to changing k(t) in
this model.

We have chosen to express this model in the paradigm
of the motion control language (MDL) described earlier.
This paradigm allows a description of motion control of
the head/eyes based on visual feedback which is “inde-
pendent” of the underlying hardware or implementation.
Using the MDL will allow a mechanism to control atten-
tion as a “high level language”.

The gains of the inner feedback loop which is concerned
with setpoint control of the head positioning motors re-
mains constant, as the load on the head motors remain
roughly constant. One need only determine the position
feedback gains k once, such that the step response of the
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motor to the inner level setpoints is critically damped.
These gains are set in the Dynamation controller board,
which handles the inner level control loop. The sensory
input to the inner level is the motor shaft position, mea-
sured with the shaft encoders. The velocity of the motor

shafts are not measured directly but are computed from
the position measurements through differentiation as de-

scribed in the previous section. The inner control loop is
switched between position control and velocity control by
the outer control level. This is done, in effect by sending
a (u,k,T) triple in which the k’s decide which measure-
ment (position or velocity) will be used to control the
motor. The setpoints v that are input to the inner level
control loop also come from the outer control loop in these
(u,k,T) triples.

The k’s in the (u, k,T) motion control system defini-
tions concerned with the outer, visual, feedback loop will
change due to changes in the focus of attention. The feed-
back selection process at this level is much more compli-
cated than the inner level feedback selection in which only
direct position or velocity feedback was being selected for.
In the outer level, one still selects for position or velocity
feedback but, in addition, one must select the feature(s)
to be used to detect the scene element whose position or
velocity is fed back. This feature selection is performed,
in the MDL paradigm, by adjusting the weight we apply
to a given feature in the control feedback loop.

The outer control level consumes modes which allo-
cate attention to specific features and produces different
modes for the inner loop. The output modes consist of po-
sition and velocity setpoints and a time interval in which
to apply these setpoints. The modes consumed by this
second level are again of the form (u,k,T) where u is the
desired position (always 0 for foveation — to center tar-
get on visual field), k is a vector which represents which
features to detect (the amplifier gains) and T' is the time
period in which the mode is to be applied.

In the language given earlier, y(t) is the feedback vec-
tor. In this case, y(z,y,t) is a pair of images {left and
right “eyes”). Referring to the model given earlier, k(t) =
(k1(t),kalt), ..., kn(t)) is a vector containing the “weights”
to be applied to the results from the primitive operations
(feature maps). With these gains, the saliency map can
be computed and the maximum found. The location of
the maximum must then undergo a coordinate transform
in order to obtain the setpoints in head coordinates. This
transformation will depend on the camera parameters and
the particular configuration of the “head” and hence can
be absorbed in the G(.) term in equation (1). The idea
that alteration of the gains of visual feedback paths re-
sult in shifts in attention, (or vice versa) has some support
from physiological studies {20,28,30,42,43] which indicate
that the responses of neurons involved in visual percep-
tion are modulated by changes in the focus of attention.

Figure 6 shows the lowest two stages of the modal con-
trol. A mode, (u,k,T), which was generated at a higher
level, is “fed” into the intermediate level (denoted M2).



Over a time period, 0 < t < T the weights associated with
the feature maps will be k(t) = (ki(2), k2(t),..., kn()). At
each instant of time, ¢, a location (z,y) will be output as
the “most salient feature” of the image. These positions
are output to the inner loop (denoted M1) where they
generate positional errors used to drive the head motors.

There are advantages in using the MDL description
for the control of attention. The same description can
be used with simple vision routines or with more com-
plicated algorithms depending on the available hardware.
The complexity of the feature maps used will determine
what tasks can be performed. A large set of feature maps
with maps at many scales detecting a large group of prim-
itives will allow for sophisticated visual processing.

5 Experiments

Two experiments have been performed to demonstrate
modal control of attention.

The first experiment involved tracking “blobs”, regions
of a range of intensity values. The features are black or
white blobs against a neutral background. We used paper
objects suspended on fish line. The task was to locate ei-
ther the black or white feature and follow it. The objects
were placed 0.5 to 2.0 meters from the head. The head
was able to fixate on an object to within 2 pixels. The vi-
sion system for simple blob detecting tasks could process
on the order of 5 frames per second. Taking into account
the communication time between the vision system and
the head control system, an overall rate of 3 frames per
second could be achieved.

The second experiment was designed to demonstrate
the attentive control system on a more complex scene.
The features used are the 0**, 1°* and 2™ moments of each
object and the intensity value. The scene is segmented
into connected components, the various features are com-
puted and the saliency map is built (as described in pre-
vious sections). Stereo correspondence is performed using
the peak saliency values. As the task is to find the most
salient feature with respect to the feature gains, k;, the
most salient points are the only ones that need to be con-
sidered in computing stereo correspondence. Since only a
few points will be maximal (with well chosen gains), the
correspondence problem is easily solved. With this done,
the disparity values are computed and used to drive the
head motors as described above. Using a combination of
black and white, circular and rectangular objects, the at-
tention system can successfully locate geometric shapes
at different orientations and fixate on them. Altering the
feature map gains, k;, alters the direction of gaze to fix-
ate on the object most salient with respect to the new
gains. This experiment is much slower than simply distin-
guishing between a black and a white object. At present,
depending on the complexity of the scene, the attentive
system may between 1 to 10 seconds to fixate on the most
salient object. The vision system is the culprit. This im-
plementation uses a hybrid vision system employing both
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Suns and the Datacube and is not yet optimized. Future
work to incorporate the entire vision system on the Dat~
acube is already underway. Given that the vision system
could work arbitrarily fast, the attentive control system
is successful at tracking objects of interest.

6 Summary

We have described a control system for a binocular im-
age acquisition mechanism which allows shifts in focus of
attention to be made in a natural, device independent
manner. The control method is based on the modal con-
trol technique proposed by Brockett [7]. Shifts in focus
of attention is accomplished via altering of feedback gains
applied to the visual feedback paths in the position and
velocity control loops of the binocular camera system. By
altering these gains we can perform a feature selection op-
eration, by which the saliency, in the sense of Koch and
Ullman [24], of a given feature is enhanced, while the
saliency of other features are reduced.

The control system that we have described in this sys-
tem is a two level one. The first, or inner, level performs
the direct control over the position and velocity of the mo-
tors attached to the cameras. This level is based on mod-
els of the human oculomotor control system. The outer
level controls the focus of attention, in that it determines
what features are going to be used in determining where
to look next.

The advantages of using active and attentive vision in
a mobile robot application instead of “snapshot” vision
are obvious; active vision algorithms can be more robust
than static algorithms, and are often computationally ef-
ficient since irrelevant information is ignored. Further-
more, there are some tasks which are naturally suited to
active vision, and for which conventional vision systems
find very difficult to perform. An example is object recog-
nition. The ability to obtain multiple views, and multiple
views that are intelligently selected, helps enormously in
performing model based object recognition. One of the
drawbacks of active vision has been the requirement that
real-time image processing operations are necessary to
maintain real-time operation. However, recent advances
in image processing hardware, exemplified by Datacube’s
[13] Maxvideo system, and the Pipe system [31] produced
by Aspex, have made it possible for researchers to perform
dynamic image processing operations at video rates on se-
quences of images obtained from video cameras, so there
are few practical reasons why vision systems for mobile
robots should not use active vision techniques. The con-
trol system we have described in this paper will extend
the abilities of active vision systems in that it provides a
method by which attentive behaviour can be conveniently
obtained.
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Figure 1: The mechanical structure of the Harvard head illustrating
the positional degrees of freedom.
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Figure 5: The feedback selection model of attention.
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Figure 4: The control system used in the Harvard head system.
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Figure 6: The two levels of the attentive control system.



