ments between the circuit and detector must be minimised. A radical improvement is presently obtained by eliminating the parasitic beam due to the reflection at the back surface of the circuit (Fig. 1). For this purpose, the circuit plane is slightly tilted off the incident beam axis and an iris diaphragm is used for spatial filtering. The beam of interest (reflected at the front surface of the circuit) still propagates in the right direction owing to the use of a cat's eye configuration with the incident beam focused on to the metallic layer.

![Fig. 2 Evolution of potential difference between two faces of GaAs coplanar line versus translation in z-direction measurements deduced from current modulation depth i_{mod} measured from transient drain I-V characteristic.](image)

Measurements and simulations: To validate the method of calibration, measurements were performed on a simple circuit consisting of a 50Ω GaAs coplanar line (see inset of Fig. 2). The GaAs substrate was 450μm thick and 70μm wide, and the active electrode was separated by 50μm gaps from the 300μm ground electrodes. No special process was needed for electro-optic sampling. The back surface of the substrate was naturally frosted and the device was simply mounted on an x-y translation stage with a BK7 window. Potential mapping was realised by translating the device in the direction transverse to the electrodes (see inset of Fig. 2). The circuit plane was slightly rotated around this direction to avoid parasitic reflections at the front surface. A continuous readjustment of the beam focus during translation was thus not required in this condition. The translation accuracy was ±1μm. The beam spot size was 10μm at the focal point.

Following the calibration method, the DC and AC components of the detector currents were measured simultaneously. The AC component was amplified with a very-low-noise preamplifier (× 28) followed by a lock-in amplifier (× 1025). The DC component was amplified with a lowpass amplifier (selectable gain of 5 or 100). Figure 2 shows the measured evolution of i_{mod} measured when translating the device (full curve). The frequency is 3 GHz and the voltage amplitude is V_0 = 3.3 ± 0.3V. As seen, the noise level is less than 1%. The modulation depth of the photodiode current is Δ = 2.4 ± 0.15% at maximum. As the potential difference between the central electrode and the opposite face of the substrate represents >85% of the voltage amplitude, we can estimate V_int from (0.96Δ)/Δ, which gives V_int = 3.7kV (±15%).

The 2-D potential distribution was calculated with the FluxExpert program based on a finite-element model (broken curve in Fig. 2). The finite probe-beam size was simulated by using a convolution of results obtained at different positions with a Gaussian of width identical to the laser beam waist. As seen, there is an excellent agreement between numerical simulations and experimental results. The minor discrepancies are readily explained by weak irregularities of the electrode surfaces as well as residual parasitic reflections of the laser beam. Comparison between experiments and calculations confirms the previous value estimated for V_int which is not far from that used by different authors (≈ 3 kV).

Conclusion: An electro-optic sampler equipped with a 1.55μm gain-switched laser diode has been developed for precise voltage measurements on high-speed III-V integrated circuits. Using an original method of calibration, we have demonstrated that absolute voltage measurements are feasible by internal probing within an accuracy of ≈15%. Still better accuracy (a few percent) is expected with further optimisation of the optical configuration.

Acknowledgements: The authors wish to thank P. Crozet for valuable discussions, and D. Bouchon and S. Cabaret for their expert technical assistance.

© IEE 1995

References

Analogical system for eigenvalue computation and sorting based on an isospectral matrix flow

N. Saxena and J.J. Clark

Indexing terms: Analogical computer circuits, Eigenvalue and eigenfunctions, Matrix algebra

An analogous system for the computation of the eigenvalues of symmetric matrices and for sorting lists is described. The computation is based on an isospectral matrix flow. A fully parallel continuous time implementation of the equations is presented. The implementation was simulated using PSPICE, and the results of the simulation are described.

Introduction: Analogical IC design is especially suited for the implementation of nonlinear signal processing systems because several nonlinearity can be easily implemented in the analogue domain by using physical phenomena as computational primitives. This leads to smaller area, higher processing speed, and lower power consumption compared to a digital implementation of the same nonlinearity. However, these advantages are at the expense of accuracy. We present an analogy nonlinear system which can be used for eigenvalue computation and sorting. Applications for such a system can be found in real-time speech and image processing.
There appears to be no previous work on the analogue VLSI implementation of eigenvalue computation. Most of the implementations of sorting in the analogue domain are based on essentially digital algorithms [1]. In [2], the sorting system is based on insospacial matrix flow, which is a matrix flow in which the eigenvalues of the matrix are preserved. Although the algorithm is essentially analogue, the simulations described in that Paper assume the analogue computing elements to be ideal. This is unrealistic considering the fact that analogue circuits tend to be limited in accuracy, and hence we do not obtain an insight as to how a VLSI implementation of the system would behave. Our system is also based on an insospacial flow, called double bracket matrix flow, and is built at the transistor level. The implementation is continuous time and fully parallel. We first describe the matrix flow and how it can be used for eigenvalue computation and sorting.

Double bracket matrix flow: The double bracket matrix flow is described by the following matrix nonlinear differential equation:

\[H = [H, H, N] \]

where \(H, N \in \mathbb{R}^{n \times n} \) are symmetric matrices, and \([A, B] = AB - BA\). In [3], various properties of the flow have been described. It can be shown that when the flow acts on a symmetric matrix, it causes the diagonalisation of the matrix. The diagonal elements of the resulting matrix are equal to the eigenvalues of \(H(0) \) due to the insospacial property of the flow. Thus the system performs eigenvalue computation.

Moreover, if \(N \) is diagonal with distinct eigenvalues, it can be shown that the only stable equilibrium of the flow are those in which the diagonal elements of \(H \) and \(N \) are similarly ordered. If the matrix \(N \) is constructed so that \(N_1 < N_2 < \ldots < N_n \), then, once \(H \) is diagonalised, its diagonal entries will be ordered so that \(H_{11} < H_{22} < \ldots < H_{nn} \). Because the final \(H_{ii} \)'s are the eigenvalues of the matrix, the system not only finds the eigenvalues of \(H(0) \), it sorts them as well. This system can be used for sorting lists by choosing \(H(0) \) to be diagonal and setting the diagonal elements to the unsorted list.

If we have an \(n \times n \) real symmetric matrix \(H \), with elements \(h_{ij} \) (where \(i, j = 1, 2, \ldots, n \)), that is to be diagonalised, and we have a fixed diagonal \(n \times n \) real matrix \(N \) with diagonal elements \(n_{ii} = i \) (where \(i = 1, 2, \ldots, n \)), then the double bracket flow eqn. 1 can be written as

\[h_{ij} = \sum_k h_{ik}h_{kj}(i + j - 2k) \]

We implement the above equation using analogue integrated circuits. Fully parallel continuous-time analogue systems. The simplest and fastest implementation of the system would be to take the fully parallel continuous-time approach, in which we store the value of each \(h_{ii} \) in a capacitor \(C_i \), and this value is continuously updated by a current computed using eqn. 2. A schematic diagram of the \(3 \times 3 \) system is shown in Fig. 1. For an \(n \times n \) system, for the update of each \(h_{ii} \), approximately \(n \) parallel multiplications are performed using \(n \) multipliers and the summing is performed using an operational amplifier. The scaling by \((i + j - 2k)\) is achieved using two current mirrors in parallel, a \(p \)-type current mirror for positive currents and \(n \)-type for negative currents. The analogue multiplier is the most crucial computing element in our system. Its size in terms of silicon area limits the size of the matrix that can be diagonalised within a single chip. Therefore, a multiplier with small area is quite desirable. In addition, a multiplier with single ended inputs is better for our system compared to a multiplier with differential inputs because when we use the single ended input multiplier, our system takes up less area and requires less communication between nodes. We could not find a multiplier with the above mentioned characteristics, and so we developed a new multiplier. The details of the multiplier can be found in [4]. The simulated DC characteristics of the multiplier is shown in Fig. 2a.

![Fig. 2 Simulated DC characteristics of multiplier and initial output of 4 x 4 system](image)

\(a\) DC characteristics
\(b\) Initial output of system

Simulation of 4 x 4 system: We simulated the above system using PSPICE. As an example, we used the system as a sorter. As can be seen in Fig. 2b, the flow is unstable. This is because of the offset associated with the multiplier. Because of the offset, \(\delta_k \), for the diagonal elements is not zero even when the off-diagonal elements reach zero. This causes the diagonal values to move, which in turn makes the off-diagonal values move. This results in the system becoming unstable. By simulation we found that the range of the multiplier must be more than 1000 times the offset for the system to stabilise. Thus for a multiplier with a 10μA range, the output offset must be less than 10μA.

![Fig. 3 Modified output of 4 x 4 system](image)

This problem can be taken care of by forcing the \(\delta_k \)'s of the diagonal nodes to be zero when the output of the off-diagonal nodes is close to zero. In the case of the sorter, we know that the outputs of the diagonal multipliers are always positive because the multipliers are used for squaring. So, for the diagonal nodes, if we
remove the n-type current mirror from the scalers and force the
offset of the multipliers to be always negative (see [4] on how to
adjust the offset of the multiplier), we force the output of the mul-
tipliers to go to zero for inputs close to zero. Thus, the output
characteristic of such a modified multiplier is similar to the first
and second quadrants of Fig. 2a, except that the output is zero for
inputs near zero. The output of the system using this modifica-
tion is shown in Fig. 3. The output of the system is stable and the
output levels are within 15% of the desired values. In addition, this
system is smaller than the unstable system because of the reduced
circuitry.

For eigenvalue computation, the output of the multipliers can be
positive or negative. We therefore need to construct a multipli-
cr which performs the above mentioned truncation for negative
outputs as well. This is achieved by having for each multiplication,
a multiplier and an n-type current mirror (for the negative output).
In addition to the multiplier and P-type current mirror used
above (for positive outputs). This increases the size of the system
but makes it stable for eigenvalue computation. The output levels
are similar to the sorter, i.e. within 15% of the desired values.

Acknowledgment: This work was supported by the Joint Services

© IEEE 1995
7 November 1994
Electronics Letters Online No: 19950037
N. Saxena and J.J. Clark (Division of Applied Sciences, Harvard
University, Cambridge, MA 02138, USA)

References
1. L.F.I. and HOLMES, W.H.: 'Analog implementation of median
filters for real-time signal processing', IEEE Trans., 1988, CAS-35,
(8), pp. 1032–1033
2. PAUL, S., and HUPFER, K.: 'Analog rank filtering', Technical
University of Munich, Technical Report No. TUMS-LNS-TR-91-
21, November 1991
3. BROCKETT, R.W.: 'Dynamical systems that sort lists, diagonalize
matrices, and solve linear programming problems', Linear Algebra
and its Applications, 1991, 146, pp. 79-91
4. SAXENA, N., and CLARK, J.J.: 'A four-quadrant CMOS analog
multiplier for analog neural networks', IEEE J. Solid-State
Circuits, June 1994, SC-29, pp. 746-749

Improved switched-current (SI) bilinear integrator circuit

C. Psychalinos and C.E. Goutis

Indexing terms: Integrating circuits, Switched-current circuits

A bilinear SI integrator circuit with a reduced number of current
mirrors is presented. The realisation of the circuit is based on
the modification of the corresponding block diagram, to eliminate
the required current inversions without delay. The resulting circuit
has improved sensitivity performance to current mirror ratio
variations.

Introduction: Recently, switched-current (SI) circuits have excited
considerable interest in the domain of analogue sampled-data sig-
nal processing, due to the compatibility of these circuits with
standard digital CMOS process. Furthermore, SI circuits have a
low power supply voltage requirement and potential for high fre-
quency operation (1–3). On the other hand, the accuracy of many
SI circuits is quite limited. The main reasons are the ratio-matching
accuracy of the current mirror transistors, the clock feedthrough effect,
and the finite output impedance of the current sources used in basic SI memory cells [4, 5].

The most widely used design method for high-order SI filters of
low sensitivity is the functional simulation of analogue LC passive
circuits. In this way, the relationships between voltages and cur-
rents in the prototype circuit are simulated as transfer functions by
SI active circuits. These are then interconnected according to
the signal flow graph (SFG) of the LC passive prototype [1, 3, 5].
The basic building blocks for functional simulation are SI integrators,
inverting and non-inverting, with and without damping.

Another way to realise SI filters of high order is the cascade
connection of second-order sections (biquads). Using multifeed-
back structures, the sensitivity of the filters can be reduced. The
biquads are realised using two integrators, one inverting and the
other noninverting, connected in a feedback loop [1, 5, 9].

The transformation frequently used, between the s- and z-
domains, is the bilinear transformation because of the well known
advantages that it exhibits [5]. From the above discussion it is
obvious that the bilinear integrator is the basic building block for
the realisation of high-order SI filters, and so the quality improve-
ment of integrators has a direct influence on the quality of high-
order filters.

The purpose of this Letter is to present a new technique for
designing bilinear SI inverting integrator circuits, with reduced
sensitivity to current mirror ratio variations. This is achieved after
a modification of the block diagram of the integrator, which leads
to a reduced number of required current mirrors. The eliminated
current mirror is replaced by a single (without mirrored output) current
copier cell, in which no mismatch errors can arise [6].

Proposed technique: The proposed technique is based on transfer
function modification for some sub-blocks of the integrator, in
such a way that the transfer function of the circuit remains unaf-
acted while the total number of required current mirrors is reduced. This is achieved by sharing the delays, which appear in
the numerator of the transfer function of some sub-blocks of the
integrator, to eliminate the current inversions without delay.

The transfer function of an inverting bilinear SI integrator is the following:

\[
\frac{H(z)}{I_{o_{in}}(z)} = -K \frac{1 - z^{-1}}{1 - z^{-2}} \tag{1}
\]

where K is defined by the ratio of the corresponding transistor
aspect ratios (W/L). Eqn. 1 can be written as

\[
\frac{I_{o_{in}}(z)}{I_{d}(z)} = -K \frac{1 - z^{-1}}{1 - z^{-2}} \tag{2}
\]

A z-domain block diagram of an inverting bilinear SI integrator is shown in Fig. 1. For the realisation of the term \(-Kz^{-1}/(1 - z^{-2})\),
an SI delay cell with feedback is needed. The term \(Kz^{-2}/(1 - z^{-2})\)
can be realised by the combination of the same SI delay cell,
which in this case produces the term \(Kz^{-2}/(1 - z^{-2})\) and an extra
current mirror which produces the required current inversion
[2, 5, 7]. Note that both current copiers in the SI delay cell must
have mirrored outputs in order to perform the scaling operation.
The term \(-Kz^{-1}/(1 - z^{-2})\) can be written as

\[
-K \frac{z^{-1}}{1 - z^{-2}} = K \frac{z^{-2}}{1 - z^{-2}} - z^{-2} \tag{3}
\]

From eqn. 3 we find out that the term \(Kz^{-2}/(1 - z^{-2})\) can be
realised by using same SI delay cell, as in the case of term \(Kz^{-1}/(1 - z^{-2})\). The only difference is that we are sampling the corresponding
mirrored output of the delay cell, half a period earlier. For the
realisation of the term \(z^{-2}\) a current copier cell, without mirrored
output, is needed.

\[
\begin{array}{c}
1_{o_{in}} \\
1 \\
Kz^{-2} \\
1 - z^{-2} \\
1_{o_{out}}
\end{array}
\]

Fig. 1 2-domain block diagram of an inverting bilinear SI integrator

In this way, the number of required current mirrors is reduced,
and also the sensitivity of the circuit to current mirror ratio varia-
tions is reduced. This is due to the fact that, in the single current
copier circuit, matching of elements is not required. The block
diagram in Fig. 1 can be improved, as shown in Fig. 2.