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Abstract

This paper describes an active vision technique for
determining the absolute depth of surfaces. The algo-
rithm assumes a very general model for the reflectance
properties of the surface, and is valid for most of
the shading models commonly used in computer vision
work. The algorithm relies on the controlled motion of
a point light source. In this approach the hight source is
not at infinity, but is relatively close to the surface and
1o the camera. The sensitivity of the computed depth
values to errors in the measured quantilies is derived
allowing a confidence measure for the depth to be de-
termined. These confidence measures can be used to
aid in the estimation of accurale depth values from
multiple image measurements taken over lime. We
present a method based on robust estimation that per-
mits an unbiased estimate of the depth values to be ob-
tained. Finally the results of experiments on synthetic
and real-world imagery are presented, illustraling the
efficacy of the active photometric stereo algorithm.

1 Introduction

It has long been a goal of computer vision re-
searchers to develop methods of obtaining 3D shape
information from photometric information only. Horn
[3] introduced the now classic shape from shading
technique which provided surface gradient informa-
tion from image irradiance. Subsequently, Woodham
[7] developed a method, which he termed Photomet-
ric Stereo, for obtaining surface gradient information
from a series of images acquired with the light source
in different positions. Both of these methods required
point light sources located at infinity, and do not give
any absolute depth information.

In [4] Iwahori et al presented a method for obtain-
ing absolute depth information from a series of images
of an object illuminated by a point source near the
object. Their method requires that the object have
a Lambertian reflectance and required solving a sys-
tem of nonlinear equations in four unknowns - depth,
albedo and surface slant and tilt. There was no analy-
sis of the uncertainty in the depth values provided by
their algorithm, although an experimental result was
given.

In [6] Wolff described an approach for extracting the
slant and tilt of a Lambertian surface given the pho-
tometric flow fields induced by angular changes in the
position of an illuminant. His approach assumes the
light source to be at infinity, and requires the solution
of a nonlinear set of equations (to find the intersection
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of conic sections). The absolute depth to the surface
is not computed with this approach.

In this paper we present a new method for obtain-
ing absolute depth values from a series of images of a
surface illuminated by a point source near the object.
Unlike the techniques described above,’ our method
involves solving a linear equation and we present a de-
tailed analysis of the uncertainty in the resulting depth
estimate. In addition, our approach is applicable to a
wide range of reflectance models and, in particular, is
not restricted to surfaces with Lambertian reflectance.

2 Depth From Light Source Motion
Let us begin the description of our algorithm by
considering the geometry of the imaging process, de-
picted in figure 1. The direction of the ray of light
emanating from a point source, located at a posi-
tion I = (ty,ty,t,)7 with respect to a coordinate
systoin centere(i/ on the focal point of the camera,
tha! intersects a surface at the point (X,Y,Z)T =
(=Zx/f,—Zy/f,Z)T = —Z¥ is given by

ZX+1
12X +1]

§ =

(1)
The vector ¥ = (z/f,y/f,—1)T indicates the position
of the image plane point # = (x,y)T with respect to
the world coordinate system centered on the camera
focal point.

W¢ take as a general model for relation between the
measired image irradiance and light source position:

R(3)
12X + 121 2P

E@) =K (2)

The |Zx+1]? term represents the reduction in light per
unit area over the distance from the light source to the
body, the | Zx|? represents the dimunition of light from
the body to the camera, and K is a proportionality
constant factoring in, among other things, the inten-
sity of the light source. The reflectance will in general
depend on the viewing direction and the surface nor-
mal, but as we are concerned with only a particular
point on the surface, the only variable quantity that

1Personal communication with Dr. Iwahori has indicated
that his group has developed a method that is similar to the
one described in this paper.



image plane

Figure 1: Geometry of the active photometric stereo
scheme.

the reflectance depends on is the light source direction,
5. Note that we are assuming that the reflectance does
not depend on the distance of the light source to the
surface point, and that the dependence of the image
irradiance on the distance of the light source to the
surface is handled by the |Z¥ + {]? term in the equa-
tion above. This assumption is not very restrictive and
is valid for most of the shading models currently used
in the Computer Vision and Graphics communities.

Let us examine how the image irradiance varies with
an infinitesimal change in the position of the light
source. We can create a vector V£ whose compo-
nents are the rates of change of the image irradiance
with respect to change in the components of the light
source position vector. That is:

OE OE OE\"
ViE=| —, —,—
o <atz "ot au) )
Differentiation of equation (2) yields:
vip=_ D) 2REOVAITHE
|ZX12|23X +112 |1ZRP1ZX + 1
where .
. ZxX+1
Vizg+i = XL g 5

If we take the dot product of both sides of the above
equation with the illumination direction vector, §,
scaled by |Z¥ + ], and then use equation (2) we get
the following relation:

(V.R(G)TS 2R(3)

Tglzv = 123123+ |Z32|25%+4)°
(ViE)Ts12% +1] = %X i (VtR(.‘?;)(Té izE
12312123 +1)

(6)
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Let us compute the quantity (V,R(8))T .

NT
(ViR(5)Ts = (V:R)T (a—i) $ (7)

ot

The transpose of the Jacobian matrix, (%?)T is given
by:
(%)T = (3)
or)  |Zy+1

From the vector identity (I — @a?)a = 0 (where a is
an arbitrary unit vector) we can see that:

(I —35TY

~ T~ — -
(ViR(35))" s = (V:R) Zird

(9)

Thus, from equations (6) and (9), we have the follow-
ing, rather surprising, result:
(VBT (25 +1) = —2F (10)

(where we have used $|ZX+1] = Zx +1). Solving this
linear equation for Z gives us:

V.E)Tt+2F :
7= L) t12F) SETT ) (11)

A intuitive explanation of the above result can be
had !y considering that the gradient of R with respect
to tlic light source motion can be broken into two or-
thoronal components, the first along the illuminant
dircetion § and the second perpendicular to this di-
rection. It is easily seen that, because of the shading
law ihat we have assumed, the component of the gra-
dient of R in the direction of s will be zero, as § is not
chanzed by motion of the light source in this direction.
Thus (V R)T.é is zero.

Not: that, with the above equation, the abso-
lute depth can be obtained without knowledge of the
surfact albedo or even the particular shading model
obeyed by the surface (as long as equation (2) holds).

3 Least Squares Depth Estimation

The depth measurement depends on a number of
image measurements (£ and V;F) and system param-
eters (f,¥,1) all of which are known only to within
some error level. If we assume that the errors in the
parameters and measurements are small, we can do
the following linearization to get the error in the depth

value: o0z
67 = ; 9:

where the ¢; are the parameters and measurements
listed above. If we assume that the parameter and
measurement errors are Gaussian distributed with zero
mean and variance ai (not a good assumption for some

of the parameters, but not bad for modelling the noise

6¢; (12)



in the image and its time derivative) then the depth
error is also Gaussian and we can write its variance as:

) az\?* ,
%ZZ(%) ‘Té‘

i

(13)

In general, the sensitivities of the computed depth
values to uncertainties in the camera parameters and
measured image quantities are such as to make the er-
ror in the depth values unacceptably high. In order
for the active photometric stereo process to be use-
ful one must provide some way to reduce the effect of
measurement noise and parameter uncertainty on the
result.

One possible approach is to get multiple images of
the same scene and average them to reduce the im-
age noise, then compute the surface estimate based on
the average images. As an alternative, one can com-
pute the depth using each of the individual image sets
and use some sort of estimation scheme to determine a
more accurate depth map. The most straightforward
way to do this is use a weighted least squares esti-
mate. In this approach we take as our estimate, Z,
of the depth to be that which minimizes the following
cost function (which essentially finds the estimate of
the mean which minimizes the variance):

N 5 9
(Z — 2(k))°
k=1 Z
where Z(k) = —2£ (’“Y),':'J(EZ:)E)(T’;.))T{ is the k** depth mea-
surement.

In the above, the X and { vectors are fixed and as-
sumed to be known (this means that we are looking at
a single point on the surface and estimating its depth,
and that the nominal light source position is fixed).

The Z which minimizes C' can be determined by dif-

ferentiating C with respect to Z and setting to zero.
This yields:

SN 2k
_ Li=1 Z(k)/oz(k)
S IRV (19)

This formula requires that all data points be available

before an estimate can be computed. One can also
implement the estimator in a sequential or recursive
fashion, where an estimate is available at each time
step. The variance, 0%(k) of the depth measurement
can be obtained from che sensitivities described in the
previous section, if we know the variances of the image
noise and camera parameter values.

4 Biases in the Depth Estimate

The weighted least squares estimate given above is
the optimal estimate when the error in the depth mea-
surements are Gaussian. The estimate is also unbiased
in this case (i.e. the mean of the estimation error is
zero). However, the error in the depth estimate is NOT
Gaussian, except in the special case when there is no
image noise and the vector x is known exactly. In
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the previous section we assumed that the parameter
and measurement errors were small, allowing a lin-
earizalion of the error, resulting in a Gaussian error.
In general, our errors will not be small and this ap-
proximation is not valid. We must therefore look at
the nonlinear relationship between the parameter and
measurement errors and the depth error. If all of the
image measurement errors and Imaging parameter un-
certainties are Gaussian, then the depth measurement
is the ratio of two Gaussian distributed random vari-
ables, each having non-zero mean. It is well known
that such a quantity is non-Gaussian {2, 3]. One of
the implications of this is that the estimate of the
depth obtained using the least squares approach will
be biased. This means that the mean of the esti-
mation error is non-zero. In the case where the vari-
ances of each of the depth measurements are equal
(ie. 0%(i) = 0%(j) = o%) the bias in the estimator
is equa{ to the mean of t%e distribution of the depth
measurements. Thus, if we could compute the mean
of this distribution we could still use the least squares
estimator and subtract off the bias.

In general, computation of the moments of the dis-
tribution of quotients of correlated Gaussian random
variables with non-zero means is difficult and only ap-
proximate expressions can be obtained [1, 2, 3]. An-
other possible approach is to do an empirical study
of the distribution of the depth measurements. This
is impractical in our application, as the form of this
distribution depends on the parameters i and ¥. We
would then have to do this empirical study for the
produ-t of every point in the image and every differ-
ent i it source position used!

T., handle the non-Gaussianity of the depth mea-
surcinent noise, robust estimation techniques can be
used [5]. In particular the median is useful in our ap-
plication since the median of a random variable formed
by the ratio of two Gaussian random variables is a good
approximation to the ratio of the means of these two
random variables. Thus the median of the sequence
of dcpth measurements will provide a nearly unbiased
estimate of the true depth. The use of the median es-
timator. although it handles the bias problem of the
mean «~timator, does not overcome the effects of the
non-siationarity of the noise.

5 Simulation of the Algorithm

We performed a series of simulations of this algo-
rithm on a synthetic surface. Figure 2¢) shows a depth
map of the surface that we used. It is an exponentially -
damped product of sine waves. It has a nominal depth
of 150 cm and an amplitude of 10 ecm. The camera
parameters used to generate the images were a focal
length of 5.0 cm and a pixel size of 17.2 microns. The
image shown in figure 2a) was mapped onto the surface
to provide the albedo variation. Figure 2b) shows the
image, obtained using a Lambertian shading model, of
the surface with this albedo variation, for the case of
= (0,0,0)T. Figure 2d) shows the result of integrat-
ing the results of 20 estimated depth maps, using the
least squares estimator. It should be noted that fig-
ure 2¢) and 2d) show only the variation of the surface
about the nominal depth of 150 cm. For the purposes



Figure 2: Clockwise from upper left: a) Albedo map;
b) image of surface; ) true depth map; d) estimated
depth map.

of gauging the amount of noise in the result one should
really display the depth maps over a range scale of 0-
160 cm or so, rather than the scale of 130-170 cm that
was actually used.

The following set of graphs depict the comparative
performance of the weighted least squares and median
estimators. Figure 3 shows the variation in the mean
of the estimation error for the weighted least squares
estimator, for six different levels of image noise vari-
ance (indicated in the box below the graph; these lev-
els were 1,2,5,10,20, and 50. To give some idea of the
scale of the additive image noise component, the im-
age values ranged from 3050 to 4550, with a variance
of 297. Hence for the case of the noise variance being
50, the signal to noise ratio (ratio of standard devia-
tions) was about 40). The experiments therefore show
the extreme sensitivity of the depth estimate to image
noise, even with the multi-image estimation processes.

Figure 4 shows the reduction in the (natural log of
the) variance of the least squares estimate. Figure 5
shows the mean of the depth estimation error when the
median estimator is used. Note the absence of a bias
in this case, as well as the rapid reduction of the mean.
The final graph shows the effect of the non-stationarity
on the estimation process. In the experiments that
provided the previous graphs the nominal position of
the light source was held fixed. In the experiments
that produced figure 6, the light source is moved in
a logarithmic spiral in the plane perpendicular to the
optic axis and including the focal point (or pinhole
position). Figure 6 shows the estimation error meaus.
Three different image noise variances were used. Note
that, in the case of the least squares estimator, the
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bias in the estimate does not settle down to a fixed
valie, but continues to grow. The bias of the median
estimate seems to remain near zero.

6 DExperiments on Real Imagery

L <irder to test our algorithm on real imagery the
following experiment was performed. A scene con-
taininy 3D objects of different reflectance and vary-
ing all.ndo were arranged in front of a standard video
cameri1. The camera had a lense with a focal length
of 501m and a pixel size of 17.2 microns. A high
stability bright light source was connected to a fiber
optic light pipe with a diffusing end cap to provide the
point light source. The extent of the light emitting
region was 3mm. The light source was affixed to a
Klinger high precision position stage (with a precision
of 0.lmm) to allow accurate movements of the light
source. The nominal light source position vector was
£ = (13.75,—124)T cm. The image of the scene with
the light source in the nominal position is shown in
figure 7a). The distance from the camera focal point
to the front of the basketball was 124 cm, while the
distance to the wall behind the ball was 172 cm.

The experiments were performed in a darkened
area, however, there was still a small ambient (dif-
fuse) illumination component. As this component was
presumably fixed, the image obtained from this com-
ponent alone was measured (by turning the point light
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source off) and was subtracted from all subsequent im-
age measurements. This technique could, in principle,
be applied for arbitrary ambient light conditions. If
the image sensor becomes saturated or otherwise loses
dynamic range due to the common mode ambient il-
lumination then one may need to reduce the ambient
light level.

To obtain the derivatives with respect to the light
source position the light source was moved by an incre-
ment of 1 cm in the positive and negative directions of
the X,Y, and Z axes. A first order central difference
approximation to the derivatives was used. Thus, for
each depth measurement, seven images were needed.
Because of time and memory limitations only two sets
of images were acquired. The images were digitized to
a resolution of 485x512. These images were reduced
down to 256x256 by averaging 2x2 blocks of pixels.
Thus, adding the two subsampled sets of images is
equivalent to reducing the image noise in a 256x256
image by a factor of 1/y/8. The depth equation (12)
was then used to provide a 256x256 raw depth map.
This depth map was very noisy. As we did not have
a large sequence of depth maps to use in obtaining a
depth estimate, we applied a 5x5 median filter to the
depth map. The estimate that results would be similar
to that obtained by applying the median estimator to
a sequence of 25 depth maps provided the depth map
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does not significantly vary spatially.

The result of the estimation process is shown in fig-
ure 7d). Dark regions indicate areas close to the cam-
era while lighter regions indicate parts of the scene that
are further away. The logarithm of the estimated sen-
sitivity of the depth estimate to image noise is depicted
in figure 7c). Dark regions indicate areas in which the
variance of the depth estimate is expected to be small
while lighter areas represent regions in which the depth
estimate is highly uncertain. The result in the shadow
region below the ball cannot be trusted to give mean-
ingful depth or sensitivity values as the image in those
regions was mainly due to sensor noise. The algorithm
had difficulties near specularities presumably because
saturation of the camera resulted in small derivatives
while the image was very bright. Thus the depth val-
ues were overestimated. Fortunately these effects show
up as an increase in the sensitivity. To see the level of
uncertainty in various areas of the depth map examine
the histograms of the depth values in certain regions of
the image. Some of these are shown in figure 8 (they
correspond to the regions outlined in figure 7b). Again
one should keep in mind that one is really measuring
depths over a range of 0 to 200 cm and not merely the
140 to 200 c¢m range depicted in the histograms.

Histogram 1 is of a relatively low sensitivity area
on the ball, and has a mean depth of around 133 cm.
There is some spread (from a Gaussian shape) due to
the variation of depth in this region. Histogram 2 is
of a relatively low sensitivity area on the wall, and
has a mean depth of around 170 cm. The standard
deviation in this region is about 10 cm. Histogram
3 is of a smaller low sensitivity region on the wall.
Tts 1ucan depth is 170 cm with a standard deviation
of 12 ¢m. Histogram 4 is of a region containing the
depth discontinuity between the ball and the wall. It
contains two peaks, one near 128 cm and the other near
200 cm. The variance in the higher peak is larger, as is
expected, since the sensitivity in the wall area in this
region is relatively high. Histogram 5 is of a region
of low to intermediate sensitivity on the wall. It has a
mean of 174 cm and a standard deviation of around 13
cm. Tinally histogram 6 is of a region of the image that
has a hish sensitivity to image noise, and is located on
the ball. The mean of the depth values in this region
is 132 ¢m with a standard deviation around 28 cm.

The results of this, admittedly primitive, experi-
ment are encouraging in that the uncertainty in the
depth estimate in the low sensitivity regions of the
image are adequate for many purposes (such as seg-
mentation or possibly even coarse positioning of robot
manipulators), but are sobering in view of the large
portions of the depth map that are too uncertain to
be useful. Certainly integration of longer sequences
of images will improve this performance, as will the
ability to make large movements of the light source.

7 Summary

We have presented a photometric method for de-
termining the absolute depth to points on the surface
of an object. Unlike previous methods (e.g. that of
[4]) this method only requires the solution of a linear
equation in the depth value, and holds for a very gen-
eral class of reflectance models. A detailed analysis of



Figure 7: Clockwise from upper left: Original image;
Overlay of the regions whose histograms are shown in
figure 8; Sensitivity map; Median filtered depth map.
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the sensitivity of the computed depth value to errors
In image measurements and camera parameters was
made, and a robust estimation process was proposed.
The robust estimation process had the advantage that
the estimate was unbiased. Results of simulations on
synthetic data and on real imagery were shown that
demonstrate the efficacy of the estimation process.
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