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Abstract

Pentland recently proposed an algorithm for sensing
scene depth by measuring the amount of defocus of an
image. The algorithm is interesting in the sense that no
correspondence problems are involved. In this paper®,
we first discuss the difference between shape from defo-
cus and shape from focus. We then present a two-phase
algorithm where the defocus process is modeled as a two-
dimensional Gaussian point spread function. During the
first phase (calibration phase), a camera system param-
eter is determined off-line. In the next phase (depth-
recovery phase), this parameter is used to recover on-line
the scene depth by taking two images of the same scene,
but with a different amount of defocus. Some implemen-
tation issues are addressed and test results on real images
are provided.

1 Introduction

Depth perception is a very important low-level task for enabling
a mobile robot system to understand the three dimensional re-
lationship of the world space objects. There are many different
approaches to solve the depth perception problem, e.g. shape
from shading and stereo. Different approaches are based on
different assumptions and work best in different situations. In
stereo algorithms, finding the corresponding pixels in two im-
ages of the scene has been recognized as a difficult problem.
Pentland[9] was able to recover the depth by defocussed images
without the correspondence problem in stereo. He noticed the
fact that most biological lens systems are exactly focused at only
one distance along each radius from the lens into the scene. As
the distance between the imaged point and the surface of exact
focus increases or decreases, the imaged objects become pro-
gressively more defocused. In addition, some other researchers
[3){4)[8][10][11] have used this phenomenon to derive algorithms
for recovering depth information.

As shown in Figure 1, the blurring of the image due to de-
focussing is best described by a point spread function. If the
image is almost focused, the point spread function is a square
sum of a infinite number of Bessel functions(1][9]. For the far
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Figure 1: Geometry of Imaging.

field, i.e., far from focus, we would get a sum of an infinite
number of some functions again. In the spirit of the central
limit theorem, the net effect is almost certainly best described
by a two-dimensional Gaussian function G(r,00) with a spatial

2 2242
. -7 -
constant oo, i.e., G(r,00) = 2—:;35 9 = glze 0, where
0

r? = z% + y?. Nonlinearities, however, may occur as a result of
camera imperfections. For the moment, we ignore these effects.

1.1 Pentland’s algorithm

Pentland(9] showed that the distance D to an imaged point is
related to the parameters of the lens system and the amount of
defocus by the following equations:
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where vg is the distance between the lens and the image plane,
F the focal length of the lens system, f the f-number of the lens
system(f = %, d the lens diameter) ?, oo the spatial constant
of the point spread function, k the proportionality between the
blur circle radius and oo (k is assumed constant but it may
spatially vary depending on the camera), and where ug is the
distance between the lens and the position of perfect focus. In

. : _ _Fy
the position of perfect focus, gg is zero, so uo = 3-=F-

Pentland(9] was able to compute the blur circle radius from a
sharp discontinuity. As far as arbitrary scenes are concerned,
Pentland proposed another algorithm to find the blur circle ra-

2We use the conventional definition[6} for f, instead of Pentland’s original
definition f = 2F(9].



dius by changing the degree of defocus in input images. He
employed the Fourier transform in his mathematical derivation,
but he simplified his algorithm by using Laplacian and Gaussian
filters to estimate local high frequency content in his implemen-
tation. In his algorithm, he had to make unnecessary assump-
tions and constraints about the blur circle radius. Therefore,
he could only get a very rough depth estimate on which it is al-
most impossible to conduct any practically useful error analysis.

With the new algorithm described in the next section, we can
obtain a much better depth estimate and we can determine a
unique depth estimate from two images obtained by changing
vp.

1.2 Other algorithms

Besides Pentland’s algorithm, there are several algorithms based
on depth from defocus. The algorithms were proposed from dif-
ferent models of the imaging systems or on different assumptions
of the the point spread functions. For instance, Grossmann eval-
uated the blur measure for image primitives, e.g. edges, and then
converted the blur measure to the relative depth[4]; Subbarao
and Gurumoorthy also recovered the depth of the blurred edges
by a different technique[10]; and Subbarao proposed a general
framework for parallel depth recovery[11]. All these algorithms
recover the scene depth directly from defocussed images.

On the other hand, there are several algorithms(8] based on
depth from focus, rather than depth from defocus. Some of
them use active range finding with infrared or sonar sensors;
some of them require special hardware, e.g. beam-splitters. If
general-purpose cameras are used, the algorithms usually define
some criterion function to measure the sharpness of focus, for ex-
ample, the magnitude of the gradient. Locating the mode of the
criterion function would be equivalent to getting the sharpest fo-
cus. After the object is in focus, we can then recover the depth of
the object. A pyramid based algorithm by Darrell and Wohn/[3]
can even recover a multi-resolution depth pyramid.

Most active-focusing algorithms are not uniform in the sense
that the imaging system has to select a window, focus the object
points within the window, and recover the depth only within
the small window. Even for uniform algorithms recovering the
depth from focus, the imaging system has to take some time to
focus some portion of the scene, the corresponding object points
might move during the focusing process. However, as one of
the depth-from-defocus algorithms, our proposed algorithm is
uniform, local, fast, without any tracking problems, and easily
implemented on SIMD image processors or parallel machines.
As we will see later in the paper, the algorithm gives relatively
poor depth estimates. Since the depth recovery of the active-
focusing algorithms is pretty accurate (2.5 percent precision(8]),
our algorithm can be used as a preprocessing stage of the active-
focusing algorithms in choosing the initial search interval of the
criterion function. It could also be used to guide a binocular
stereo matching process.

2 A Controlled-defocus Algorithm
Assume that a defocused local image patch E(z,y) is projected

from a local portion of the scene with a constant depth. It can
be expressed as

477

image at
distance D

camera

[}

white black

Figure 2: Calibration Setup.

E(I: !j) = G("UO) ® EU(Z) V)

where Eo(z,y) is the geometrically ideal projected image patch,
G(r,00) summarizes all nonideal and defocusing behaviors, and
® indicates the convolution operation. oy satisfies equations ( 1)
or { 2).

The new algorithm is designed to remedy the major drawbacks
in Pentland’s algorithm. The algorithm consists of two phases,
the k-calibration phase and the depth-recovery phase. The first
phase tries to calibrate the system parameter k, which is the
proportionality factor between the blur circle radius and o9, by
analyzing a simple known picture at a known distance. Having
determined k off-line, we can then start to recover on-line some
part of the depth map from an arbitrary scene.

2.1 Calibration phase

As shown in Figure 2, we put a white sheet of paper in front
of the camera at a suitable distance. The white sheet of paper
is painted black on one half side. In proper lighting conditions,
the ideal projected image is

Eo(z,y) = h+6,if z > zo;
Eo(z,y) = h,if z < 20

Because of blurring, the projected image becomes E(z, y), which
is G(r,00)® Eo(z,y). Differentiating with respect to z, we obtain

X - X 2
aE(z,y) - 5;[ ( 2-10’,) ()
dz \/2_7"‘-70:

Let I(z,y) be the final sensed image right before the uniform
quantization. Generally, there is a nonuniform mapping between
E(z,y) and I(z,y). Then, $€ = 4.4l g,hgtituting this into

»dz = dI " dzt
( 3), taking the natural log of both sides, and simplifying the

equation, we obtain
a(z—z0) +b=c¢c

—__1_.p - ) — aE. . _ dar
where a = Ez:,b—lnm ]nw,c—ln[EL

Because we can only obtain digitally sampled images, = = €[,
where ¢, is the horizontal distance between sensing elements
on the camera and I, is an integer. The sharp edge is there-
fore located approximately at the point, z = zo = €150, where
4 =l is maximized. If we assume c follows a normal distribu-
tion(this might be due to all kinds of noises in sensors and other
electronic devices), then Y% [a€e2(ly — lzo)2 +b— c,~]2 should
be minimized(5]. In other words, we can use the least squares
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Figure 3: Review of the calibration phase.

method to get the estimator a:

4= S [(zi=ts0)* = E[(lz=120)*Jlei
a3 [(lei—ta0)*~ E{(la=10) "’

go = (—2&)_’

where E[(iz — I20)?] is the average value of (Iz — 1,0)2, that is,

—Z'E'Ly:'i’)— Note that we do not have to know the exact value
of the height & of the intensity discontinuity and % That is, we
do not have to care about amplitude nonlinearity or companding
of the imaging systems.

If the sharp edge were along y direction, then
30 [(tyi=tya)®~El(ty —1yo)lles
3L, [(tyi-ty0) =Bty —1yo)* "

do = (~2a) 7%

&=

dal
& ; and
dy ly=y;=eyly;’

€, the vertical distance between sensing elements on the camera.

where E[(l, - ljo)?] = Dm0/ 1q |

Referring to Figure 3, we can determine k% by a second least
squares method as follows: From equations (1) and ( 2), we
obtain

a1 _ 12, 4f2D? _ 2.
&= g1 = k" pgeF)Fuo)? k*-9
where g = __2[7_02_1

—(D(vo-F)-Fuvo)*"

Again, let us use the least squares method to get a linear esti-
mate for this function. Samples of g; are obtained by adjusting
the distance between lens and the image plane, vo.

" (gi-Elg))d:
i (90— Elg])

The more experiments we conduct, the larger m is, and the
smaller the confidence interval for k? would be.
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2.2 Depth-recovery phase

We now show that if we have two images of exactly the same
scene, but with a small difference in defocus, obtained by adjust-
ing the distance between the lens and the image plane a little
bit, we can recover the scene depth uniquely.

Let E(z,y) be a small projected patch centered at (zo,yo0). If
the imaging system is completely ideal, i.e., without any of the
defocus or nonideal behaviors described above, Eop{z,y) would
be obtained. That is, E(z,y) = G(r,00) ® Eo(z,y). Clearly,
we would like to devise an algorithm with the following two
properties. First, it factors out the contribution of the scene
to the blurring images and measures directly the defocus, ie.,
00. Second, it is easily implemented and has small expectation
of errors. Pentland chose to use the Fourier transform in his
algorithm. We propose the following differential algorithm in
the spatial domain.

In order to reduce the noise, we have to smooth the input im-
ages first. Let us use a 2-D Gaussian window G(r,0,) to smooth
the input images. This is justified because the Gaussian func-
tion minimizes the product of spread in the space and in the
frequency domain and is easily implemented. Because different
small patches in the image result from different local portions of
the scene which might be in different depths, the oo at different
image patches over the input images might be different. If we
use a larger patch size, we assume that the local portion of the
scene with a constant depth is larger. Notice that the gg is as-
sumed to be constant over the image patch whereas the o, of the
smoothing filter is a fixed constant used all over the whole input
images. Therefore, the smoothed input image patch becomes

4

where 0% = 0o + 0,%. Another way to smooth the input images
is to average N input images taken when all camera param-
eters and the scene are fixed. That is, E,(z,y) = G(r,0) ®
{7%72«]21 Eo(z, y)|t=¢,-}-

In typical imaging systems, the F is fixed whereas the vo and f
can be changed by turning the respective rings on the camera.
Let us also fix f in the system setup. In other words, vo is
the only changeable parameter in this phase. Taking derivatives
with respect to vg on both sides of ( 4), we obtain

E,(z,y) =G(r,0) ® Eo(z,y)

4z, dI,
dI, dvy

- (a;—a)sz(r,ﬂ) ® Eo (5)
Vo

Taking 72 on both sides of ( 4), we obtain %V21.+g£3";(%§f)+

%%(%ﬁl) = v2*G(r,0) ® Ep. %—% is almost spatially constant,

50 3‘9—1(%—“;‘1) and 3‘%(%%) are approximately zero. Therefore,

dE,
dl,

Vi, = viG(r,0) ® Ey (6)

If v2I,(zo,y0) is not zero, dividing ( 5) by (6)

dls(zg.y0)

we obtain —5——'“———)

v 1s(20,0
w2 1,(zo, yo) is not zero, then

at (IOyyO),
dle(29.y0)

Let t(z0,y0) be —7——"9—)- if

do
= o5=.
dvo v*I(z0,v0

d do
t(z0,40) = Vot + «702d—v0\/¢7.,2 +09? = aod—vz @



So we do not need to know the standard deviation, o, of the
smoothing Gaussian function. It is cancelled out in ( 7). As
pointed out in [8], the Laplacian operations demonstrate a sig-
nificant vulnerability to noise in the sampled intensity values.
This is another reason why we smooth the input images, espe-
cially with the Gaussian smoothing. Thus,

df.gzo,w! )
t(zo, ) = —g—r2—— =00
V*15(zo, Yo)

dog
. (8)
This is the key equation for recovering the scene depth. Suppose
we have two input smoothed projected images, say E,i(z,y)
and Ey(z,y), obtained from the same scene but with a small
different amount of defocus, i.e., associated with different vps,
say vp; and vgz. For corresponding sensed image patches of
E,; and B3, say I,1(z,y) and L2(z,y), centered at the position
(2o, ¥0), the equation ( 8) can be approximated by

Ly (0,0} —Tva(z0,v0)

Yo1—-v02

0.5 - (V2 L1 (2o, yo) + V2 Lz (20, %0))

t(z0,%0) = (9)
The larger 21,3 (20, %) and v?I,2(z0,y0) are, the more tex-
tured the image would be, and the more reliable the recovered
depth map would be. From ( 1) and ( 2), we obtain

aogzo_ _ (vo — F)D? + F(F — 2v5) D + F?vg (10)
dvo 42K D?
Substituting ( 8) in ( 10) and simplifying, we can obtain a
quadratic equation, (vo— F — 4f2k*t)}D*+ F(F — 2v0) D+ F2v =
0, where vg = 0.5« (vo1 + voz). The roots to this equation are

F(2vo - F) £ F\/F? + 16vf2k%t
(11)

2(00 —F - 4f2k‘2t)
These two roots are positive if ¢ is within a finite interval (—M;,
M,). One of them is close to F, the focal length. The other
root(the larger one) is the scene depth associated with the pixel
(0, ¥0). Considering the larger root, if 0 < ¢ < My, D >
Fuo+Fo(c;o_—F]+F’ =ug; if ~M; <t <0,D< Fno+2Fv(l;o_—F)+F7 —
ug.
This can be intuitively justified as follows. Suppose t is positive,
then oo increases as vg increases, by the equation { 8). That
is, the image patch gets more blurred(away from the perfect
focus) as vp increases. However, uo decreases as vg increases.
Therefore, D must be larger than ug. The reasoning is similar
for the case when t is negative.

D=

If the camera is allowed to move, i.e., D is also a variable pa-
rameter in this phase. Then we can fix vo and take derivatives
with respect to D on both sides of ( 4). Similarly, let k(zo, yo)

a1y (2g.90)
b ——,jﬂ_ﬂ—_) assuming v21,(zo,¥o) is not zero, then

e
vI,(z0,v0
1—4/3

0.5+ (V2L (20, w) + V> Iz (%0, 1))

h(zo,v0) ~ (12)

dcfo U()F(I)o-— F)D—vtz)Fz
h(zo,y0) = oo = 177k (13)
Ifh=0,then D= Dg = u—';“%, where Dy is the distance between

the lens and the point of perfect focus. If h # 0, by simplifying
( 13), we can obtain a cubic equation, D?® 4+ aD 4+ B =0, where

2F2
—%3{;—‘1 and § = '4%0/_:‘77 Let H be P‘—z + -‘;—;, then
F_\2(wF _ (vw0—F)°
H= ”OF(u':fﬂk Y- 1;3)4 -

a =
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3
If h > My, = gi%grap or h <0, then H > 0. There will be one
real root and two conjugate complex roots. The only real root
1

1 1
D=(-2+VH)? +(-5-VH?® <0. If My > h >0, then
0 > H. There will be one negative root and two positive roots.
The positive roots are

D, = 2((%)2 _ H)%cos [%(r _ tan—lhg)]

Dy = ((g)’ - H)%(\/?_asin B(r - tan"ﬁﬁ@)}_
12/-H
B

0)-

1
In particular, if A = Mj, then H =0 and Dy = D3 = (g)E =
1.5Dg. Therefore, we can recover the depth of the scene patch
only when the patch depth is farther away from the point of
focus. Also, except at the point D = 1.5Dg, the depth recovery
is not unique.

—_

1
cos [-g(w - tan 14)

3 Implementation

The experiments were conducted in the Harvard Robotics Lab-
oratory. We obtained images from a Panasonic solid state CCD
camera, Model WV-CD50 with 50 mm focal length, adjustable
v. The camera is actually the left eye of the the Harvard head|[2].
The diameter of the lens is 2.3 cm, so f = % ~ 2.17.

3.1 Sensitivity Analysis

Before implementation, it is desirable to conduct a sensitivity
analysis to have an idea how measurement errors and noise will
affect experimental results. This analysis will guide the experi-
mental setup and will provide crucial explanations about exper-
imental results. It is also useful when this algorithm is fused
with other depth-recovery algorithms.

Sensitivity analysis of 2kog, for the calibration phase: From
equations ( 1) and ( 2), 2koo = j:—l?fﬂ;%_—““. Differentiating,
if we assume D, f, F and vp are independent variables, we get
§(2kao) = C16D + Cy6 f + C38F 4+ C46vg. For the experimental
setup, F and f are fixed and D and vg are controllable variables.
We plot out values of Cy, Cs, Cs, and Cy with respect to D and
vp in [7]. One good experimental setup would be D = 290 cm
and v = 5.18.

Sensitivity analysis of D, for the depth-recovery phase: As the
graphs in [7] show, the first algorithm where vy gets changed is
sensitive to the noise at depths around or larger than the depth
of exact focus and the second algorithm where D gets changed
is not as accurate as the first one. The recovered depth of both
algorithms is sensitive to k.

3.2 Asymmetric Laplacian template

The scanning area of the WV-CD50 camera is 8.8 mm x6.6
mm. Because the digital images we get in the laboratory are
of 510 x 492, ¢, = 88 = 00.0017 cm and ¢, = 35 = 0.0013
cm. Due to the difference between the resolutions along the
horizontal and vertical directions, the Laplacian template is not

symmetric.



Following the notation in subsection 2.1, 7?2/ = %g + %{- =
1921 1821 H
amrtasg Define p = %, then 21 = é[% +p§—H The

Laplacian template would be '

0 00 0 p 0 0 p O
1 -2 1|+f0 -2 0f=|1 -2-2 1
0 00 0 p O 0 p O
multiplied by ;1,-
R D P(x, y, z)
1
(o]
Cy
P
P,

Figure 4: Pixel-alignment of two images with different vg

3.3 Pixel-alignment of two images

To have an accurate measurement on vg; — vpg in calculating
t(zo,v0) in ( 9), vor — voz must be sufficiently large. However,
changing v expands or shrinks the input images. That is, im-
age patches Ij(zo,y0) and Ip(zo,y0) might not correspond to
the same local scene. This geometric image distortion can be
restored by the following simple scheme. Because the change in
vo is small, moving the image plane and fixing the pinhole is
almost equivalent to fixing the image plane and moving the pin-
hole. As shown in Figure 4, C; and C; are the moving pinholes
corresponding to vg; and vog respectively. If O is the intersec-
tion of the line C;C3 and the image planes, then OC; = vo; and
OC; = vg3. For a point P in the world space at a distance D
from the image planes, let R be the orthographic projection of
P in the image planes. P; and P are the perspective projection
of P in the image planes.

Assume that OP; = z;, OP; = z3, and OR = L. By the similar
triangles, we obtain L4zt = 2 and b o Z2. Simplifying,
4= (gi—ﬁﬁf) ). If vor < D and voz < D, we obtain 2 ~
22 Therefore, the ratio $2 can be used to shrink the larger

image to align corresponding pixels.

If we change D instead of vp in the depth-recovery phase, by a
similar geometric reasoning, 11)‘—1'3% = ﬂ- and Ltr"l = %5, where
éD is the depth change. Simplifying, #-22 = — /2 1f D > vo
and D > 6D, then z; ~ z3. There 1s basically no need to
conduct the pixel alignment.

However, ﬂ)%) = F(%TF;ST%% and §(koo) = 2%%% In the
current experimental setup, ﬂ,%l ~ (J—J—[z,—éi_%;fa%- and §(koo) ~
%%. Therefore, to obtain sufficient changes in the degree of de-

8lkoo) o 8(koo),

koo

% has to be large enough. In other words, when we change
the D, the input images are geometrically zoomed before we see
different degrees of defocus on the input images. Unless we use
specially designed cameras, e.g. with large F and v, small f,
some other compensation procedures have to be done before we
employ the second algorithm. Darrell and Wohn proposed one
of the zoom compensation methods in [3].

focus of the input images, i.e., sufficiently large
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3.4 Implementation results

The main assumption of the proposed algorithm is that the point
spread function due to defocus is a 2-D Gaussian function. We
did an experiment to check this{7] and found that it is a good
approximation for WV-CD50 cameras. H. Lee also studied the
point spread functions derived from the wave optics and the
geometric optics recently|(9].

In the calibration phase, the horizontal or vertical sharp edge is
set up 290 cm away from the Harvard head. The Harvard head
can be programmed to moved horizontally and vertically. This
made the calibration of the system parameter k on the whole
image plane easy. We actually did 15 experiments on a vertical
edge and 15 on a horizontal one, vo = 5.21,5.17,5.12 (five each).
As aresult[7], k ranges from 0.95 to 1.35 spatially. The fact that
k is close to 1 justifies the initial assumption made by Pentland
in [10]. Also, the k values on the image grid are quite random,
not following any special pattern, e.g. circular symmetry.

The second depth-recovery algorithm is not as accurate as the
first one (from the theoretical sensitivity analysis) and is not
able to provide a unique depth value. Besides that, it also needs
zoom distortion compensation, so we have not done experiments
to investigate it yet.

Figure 5 represents one set of images and the thresholded depth
maps obtained by the first depth-recovery algorithm(changing
vg). The upper-left image, im1.1, is taken at vp = 5.21, the
upper-right one, im1.2, at vy = 5.18. The scene consists of two
objects at distances around 100 cm and 150 cm from the camera,
respectively. The farther object is at the left of the images,
whereas the nearer object is at the right of the images. Based
on the camera we were using, this configuration was a good
tradeoff between the calibration accuracy of the perfect focus
and the sufficiently large different amount of defocus. Texture
edges in the farther object(left part of the images) in im1.2 are
sharper than in iml.1, because the depth of perfect focus is
127 cm in iml.1, and 148 cm in im1.2. One the other hand,
texture edges in the nearer object(right part of the images) in
im1.1 seem sharper than in im1.2, but they are not as obvious
as those in the farther objects.

The bottom-left image, dep1.120, is thresholded from the
smoothed depth map where new pixel values are averages of all
pixel values, within a 5 X 5 neighborhood, but different from 136
cm. We obtain the depth map by assuming k = 1.1. The black
points in the this image depl.120 are the pixels with recov-
ered depth values smaller than 120. Notice that we deliberately
set 120 to extract nearer points. Similarly, the black points in
the bottom-right image, dep1.145, are the pixels with recovered
depth values greater than 145 which is larger than 136. Most of
the black points in the bottom-left image are on the right and
most of the black points in bottom-right are on the left. That
is, the texture edges'on the right parts of the images have nearer
depth values than those on the left parts.

Referring to [7], experiments showed that the distribution of the
recovered depth for the nearer object skewed to 136 cm and the
depth recovery at the points away(nearer or farther) from the
focus is less accurate. Although we only obtained rough depth
estimates, the results are still impressive, given that the camera
is very noisy and nonideal and the readings of the adjustable



f-number and v in the camera are very rough.

One might want to take more than two pictures sequentially at
different vo’s, or even at different depths(by moving the camera)
in order to obtain a better depth estimate. Combining informa-
tion from the two depth-recovery algorithms in a clever way
could also be used to disambiguate the depth recovery in the
second algorithm.

4 Conclusion

Assuming that the point spread function of the defocused images
is a Gaussian function, we have shown that the depth of the scene
can be recovered uniquely from two different images obtained
by controlled defocus. The proposed depth-recovery algorithm
consists of two parts, i.e., the calibration phase and the depth-
recovery phase. In the first phase, the imaging system parameter
k is calibrated off-line. Once k is calibrated, we can recover any
scene depth by adjusting the amount of defocus. The depth-
recovery algorithm is local, therefore easily implementable on
SIMD parallel machines. If we know more about the imaging
system, e.g. its nonlinearities, the algorithm can be improved.

Psychophysical experiments show that the stereopsis does indeed
provide us a better three dimensional perception than accom-
modation does. Feature-based stereo algorithms often use some
assumptions, e.g. figural continuity and ordering constraints, to
solve the correspondence problem. This kind of heuristic may
fail in certain cases. The theoretical depth errors due to accom-
modation are comparable to those from stereopsis and lack cor-
respondence problems(10]. Therefore, we can use the monocular
cue from this algorithm and other depth-recovery algorithms to
attack the correspondence problem in stereo. In addition, the
algorithm can provide a global depth estimate that traditional
focusing algorithms can use to shorten the focusing time at some
specific point in the scene.
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Figure 5: A two-object scene: the farther object is on the left,
150 cm away and the nearer object is on the right, 100 cm away.
(a) top-left image: im1.1, taken at vy = 5.21; (b) top-right im-
age: im1.2, taken at vo = 5.18; (c) bottom-left image: dep1.120,
plotting all the points with recovered depth less than 120 cm;
(d) bottom-right image: dep1.145, plotting all the points with
recovered depth larger than 145 cm.
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