Affinity Graph Supervision for Visual Recognition

Paper ID: 7437

Chu Wang¹, Babak Samari¹, Vladimir G. Kim², Siddhartha Chaudhuri^{2,3}, Kaleem Siddiqi¹

¹McGill University ²Adobe Research ³IIT Bombay

Learnable Graphs in Neural Networks

- Learnable graphs: commonly seen in adaptive GCN-like architectures, including but not limited to Self-Attention Mechanism [1] and Graph Attention Networks [2].
- **Parametrized adjacency matrix W:** can be updated during the training of the neural network.
- Framework illustration:



Present Limitations in Graph Learning

- **Parametrized Graph:** comes from edge parametrization functions, which compute edge weights e_{ij} given a pair of input node features (\vec{h}_i, \vec{h}_j) . Popular choices are listed below, where α stands for dense layer.
 - Self-Attention Mechanism [1].

$$e_{ij} = \frac{\langle \alpha_k(\vec{h}_i), \alpha_q(\vec{h}_j) \rangle}{\sqrt{d_k}}$$

Graph Attention Networks [2].

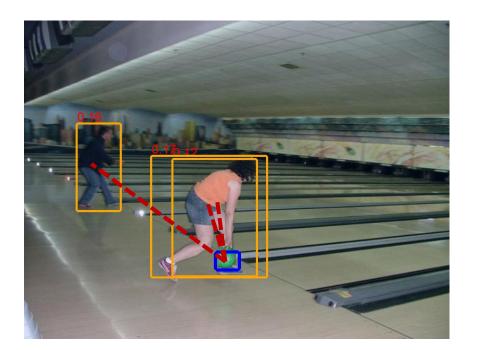
 $e_{ij} = \alpha(concat(W\vec{h}_i, W\vec{h}_j))$

- Learning of the parametrized graph :
 - The graph edges are supervised only by the task related loss [1][2][3].

Present Limitations in Graph Learning

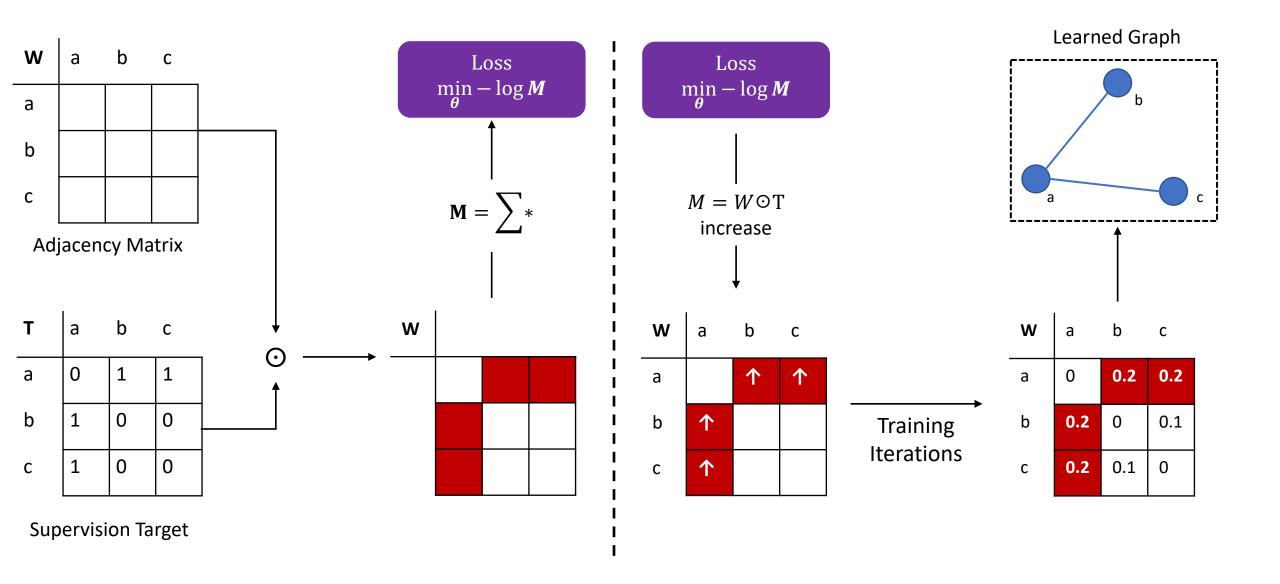
- Learned Relationships are Not Easy to Interpret:
 - Edge weights in converged graphs are often ad-hoc.
 - The neural network doesn't care which edges are emphasized, so long as the task related loss is minimized.
 - We can improve this by additional direct supervision of the graph learning!

Baseline Attention Nets [3]: ad-hoc edge weight convergence



With additional supervision: reasonable and interpretable edge weights

A Generic Graph Supervision Method



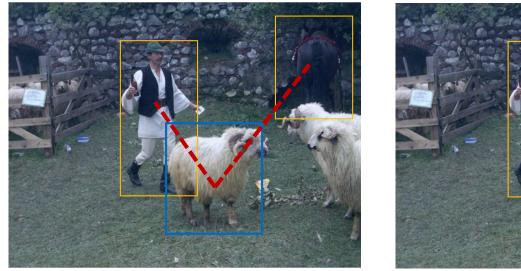
 \odot : element wise product; Σ * : summation over all elements; \uparrow : value increase

Applications: Visual Relationship Learning

- **Goal:** use the supervision target to direct the learning of object relationships.
- Supervision target matrix:

$$T[i,j] = \begin{cases} 1 & if (i,j) \in S \\ 0 & otherwise \end{cases}$$

- *S* stands for a set of edges that are **chosen by the user**.
- (*i*, *j*) is a pair of region proposals from a Faster-RCNN backbone.



Example 1: Different *Category* Connections

Example 2: Different *Instance* Connections

Applications: Visual Relationship Learning

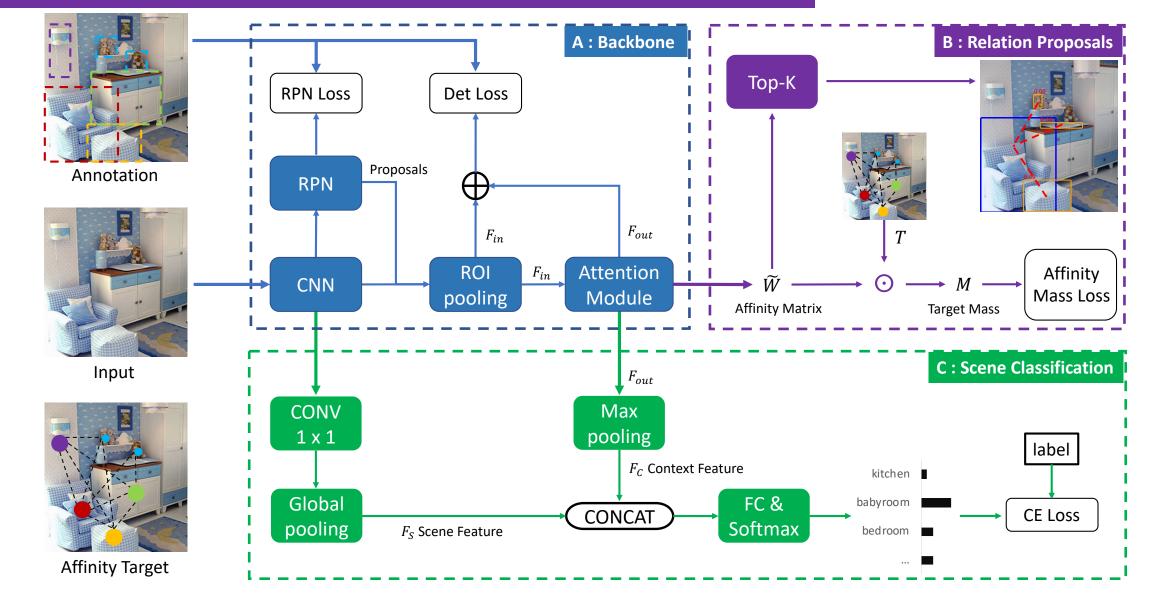


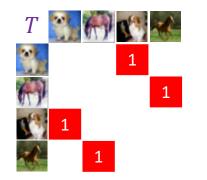
Figure 1. Affinity Graph Supervision in visual attention networks. The **blue** dashed box surrounds the relation network backbone [3]. The **purple** dashed box highlights our component for affinity graph learning and the branch for relationship learning.

Applications: mini-Batch Training

- **Goal:** to increase feature coherence for examples within the same class and feature separation for examples between different classes.
- Supervision target matrix:

$$T[i,j] = \begin{cases} 1 & if(i,j) \in S \\ 0 & otherwise \end{cases}$$

- S stands for a set of edges that are **chosen by the user**.
- (*i*, *j*) is a pair of images in the same batch during standard CNN training.
- $S = \{ (i,j) \mid class(i) = class(j) \}$
- Exemplar target in a batch of four images:



Applications: mini-Batch Training

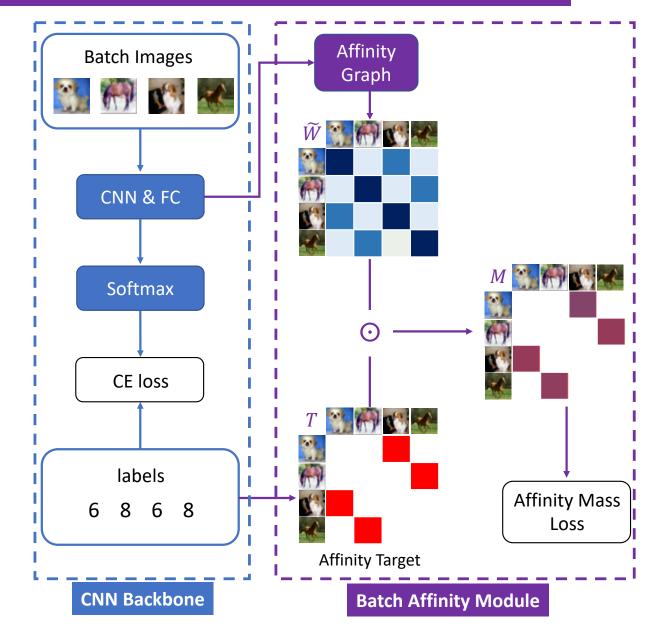
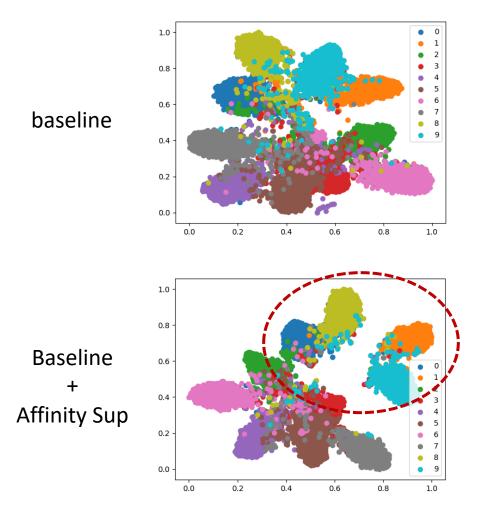


Figure 2. Affinity Graph Supervision in mini-batch training of a CNN.

Mini Batch Training

Results:

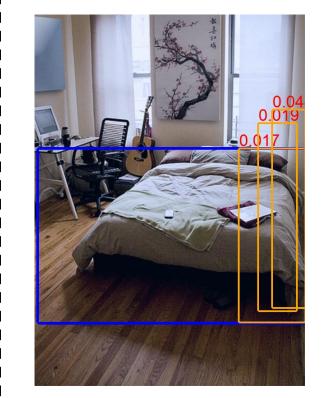
- 1-2% consistent boost in accuracy
- Cross-category feature separation:

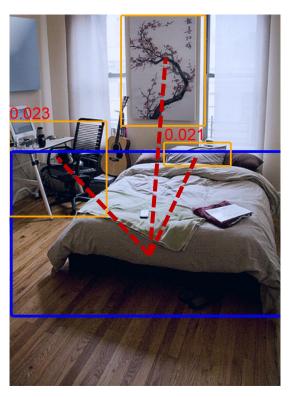


Visual Relationship Learning

Results:

- 25% relative recall boost
- Plausible relationship prediction with NO ground truth relationship labels used:





Relationships between the **blue box** and the **orange boxes** are predicted, with weights shown in **red**. Left: baseline. Right: baseline + affinity supervision.

- Additional applications:
 - Scene categorization.
 - Object detection.
- Contributions
 - Affinity loss: a novel loss function for supervising graph structures.
 - Supervision target: flexible, allowing user control in specific applications.
 - Interpretable graph structure learning in GCN like architectures.

Please see our paper for further details!

References

[1] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

[2] Veličković, Petar, et al. "Graph attention networks." *arXiv preprint arXiv:1710.10903* (2017). ICLR 2017.

[3] Hu, Han, et al. "Relation networks for object detection." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2018.

[4] Zhang, Ji, et al. "Relationship proposal networks." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017.

Appendix

- Affinity Mass Loss Forms.
- Affinity Mass Loss Ablation Study.
- Visual relationship learning results.
- Scene categorization results.
- Mini Batch Training Ablation Studies.
- Mini Batch Training results.
- arXiv version: arxiv.org/abs/2003.09049

Affinity Mass Loss Forms

Affinity Mass Loss

• <u>Focal loss form</u>: on the affinity mass *M*, is defined as a negative log likelihood loss, weighted by the focal normalization term. Formally written as:

$$L_G = L_{focal}(M) = -(1-M)^r \log(M).$$

• The focal term $(1 - M)^r$ helps narrow the gap between well converged affinity masses and those that are far from convergence. This is the chosen loss function in the paper.

Other Loss Forms

- <u>L2 form</u>: $L_2(x) = x^2$, where $x = 1 M \in [0,1]$.
- <u>Smooth L1</u>: $L_{1-smooth}(x) = \begin{cases} x^2 & if \quad |x| < 0.5 \\ |x| 0.25 & otherwise. \end{cases}$
- **Optimization and Convergence**
- <u>The total loss</u> when training a neural network with our method is

$$L = L_{main} + \lambda L_G$$

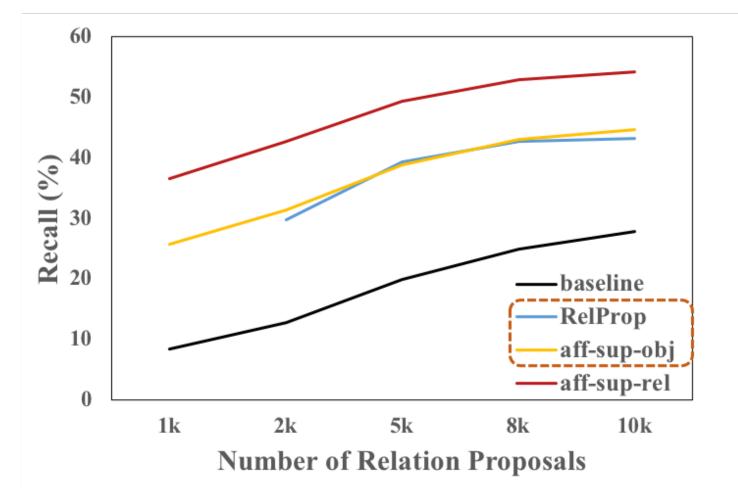
where L_{main} is the main objective loss, which can be detection loss or classification loss.

• λ controls the balance between affinity loss and the main objective loss.

VOC07	Smooth L1	L2	r = 0	<i>r</i> = 2	r = 5
mAP@all(%)	48.0 ± 0.1	47.7 ± 0.2	47.9 ± 0.2	48.2 ± 0.1	48.6 ± 0.1
mAP@0.5(%)	79.6 ± 0.2	79.7 ± 0.2	79.4 ± 0.1	79.9 ± 0.2	80.0 ± 0.2
recall@5k(%)	60.3 ± 0.3	64.6 ± 0.5	62.1 ± 0.3	69.9 ± 0.3	66.8 ± 0.2

Table 1. An ablation study on loss functions using the VOC07 database, with evaluation metrics being detection mAP and relationship recall. The results are reported as percentages (%) averaged over 3 runs. The ground truth relation labels are constructed following the different category connections as described in Slide 6, with only object class labels used.

Visual Relationship Learning Results



Black: Relation Networks [3]
Blue: Relation Proposal Nets [4]
Obj: Ours + Object Class Label
Rel: Ours + Relation Ground Truth

Figure 3. Visual Genome relationship proposal generation. We match the state of the art [4] **with no ground truth relation labels used**. We outperform the state of the art by a large margin (25%) when ground truth relations are used.

Scene Categorization Results

Scene Architecture: visual attention network (Slide 7, Figure 1, part A) with scene task branch (Slide 7, Figure 1, part C). <u>Part A's parameters are fixed in training.</u>

Methods	CNN	CNN	CNN + ROIs	CNN + Attn	CNN + Affinity
Pretraining	Imagenet	Imagenet + COCO	Imagenet + COCO	Imagenet + COCO	Imagenet + COCO
Features	F_S	F_S	F_S , max (F_{in})	F _S , F _C	F _S , F _C
Accuracy(%)	75.1	76.8	78.0 <u>+</u> 0.3	77.1 ± 0.2	80.2 ± 0.3

Table 2. MIT67 scene categorization results, averaged over 3 runs. A visual attention network with affinity supervision gives the best result (the entry in blue), with an evident improvement over a non-affinity supervised version (the entry in green).

Ablation study on mini-batch training, with the evaluation metric on a test set over epochs (horizontal axis). The best results are highlighted with a red dashed box.

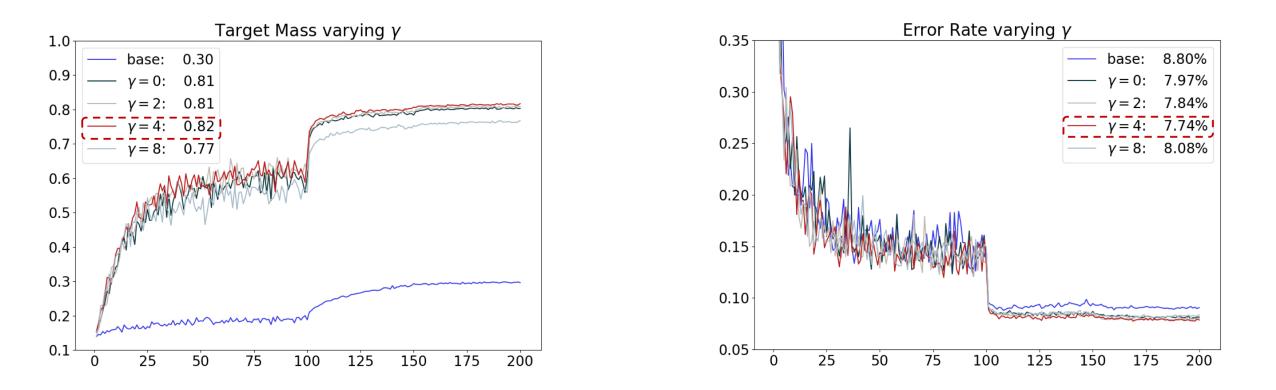


Figure 4. Classification error rates and target mass with varying focal loss' γ parameter.

Ablation study on mini-batch training, with the evaluation metric on a test set over epochs (horizontal axis). The best results are highlighted with a red dashed box.

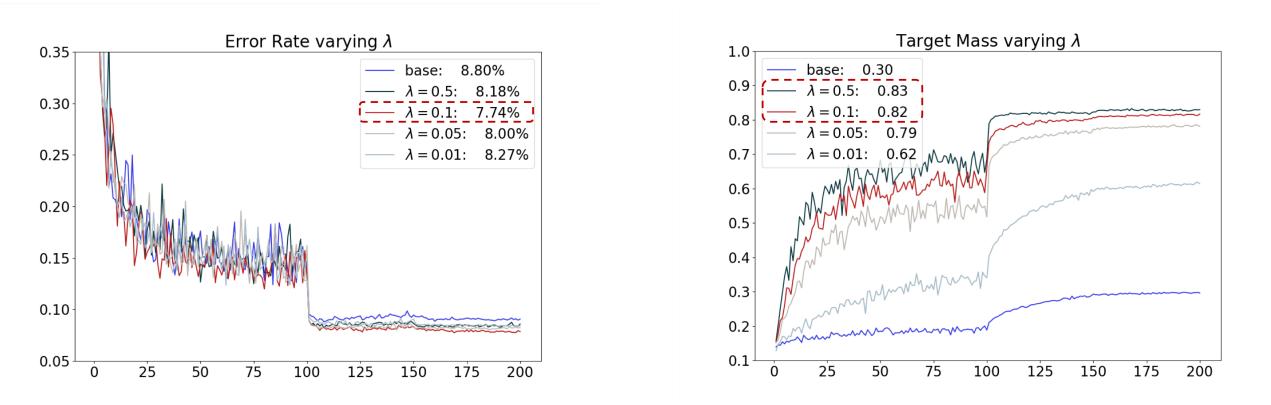


Figure 5. Classification error rates and target mass with varying loss balancing factor λ .

Mini Batch Training Results

CIFAR10	ResNet 20	ResNet 56	ResNet 110	
base CNN	91.34 <u>+</u> 0.27	92.24 <u>+</u> 0.48	92.64 <u>+</u> 0.59	
Affinity Sup	92.03 <u>+</u> 0.21	92.90 <u>+</u> 0.35	93.42 <u>+</u> 0.38	
CIFAR100	ResNet 20	ResNet 56	ResNet 110	
base CNN	66.51 <u>+</u> 0.46	68.36 <u>+</u> 0.68	69.12 <u>+</u> 0.63	
Affinity Sup	67.27 <u>+</u> 0.31	69.79 <u>+</u> 0.59	70.5 <u>+</u> 0.60	
Tiny Imagenet	ResNet 18	ResNet 50	ResNet 101	
base CNN	48.35 <u>+</u> 0.27	49.86 <u>+</u> 0.80	50.72 <u>+</u> 0.82	
Affinity Sup	49.30 <u>+</u> 0.21	51.04 <u>+</u> 0.68	51.82 <u>+</u> 0.71	

Table 3. Affinity supervision results in mini-batch training. CIFAR results are reported over 10 runs and tiny ImageNet over 5 runs