
ECSE 626 Course Project : A Study in the Efficient Graph-Based Image
Segmentation

Chu Wang
Center for Intelligent Machines

chu.wang@mail.mcgill.ca

Abstract

In this course project, I will investigate into the Effi-
cient Graph-based Image Segmentation [2]. This segmen-
tation method is very fast and achieved good result as a
raw segmentation. The superpixels it acquired can be fur-
ther applied to refine the segmentation by using more so-
phisticated techniques [4]. As for implementation, I utilized
P. Felzenszwalb’s code and added new functionalities to it.
Specifically, I added the ability to incorporate depth data
from Microsoft Kinect into the segmentation algorithm and
demonstrated that the additional channel of depth map in
the RGB-D point cloud data can actually boost the segmen-
tation performance compared to using standalone RGB im-
age. Meanwhile, different weight functions characterizing
the difference between neighbourhood pixels are tested and
a reverse Gaussian weighting function designed by myself
achieved better result for segmenting point cloud data. Fi-
nally, segmented results are provided on two different point
cloud datasets, which are UW RGB-D dataset [3] and NYU
scene v2 dataset [4].

1. Introduction

Image segmentation can be viewed as equivalently a
pixel labelling problem. Each pixel in the image can be
assigned with a label and the label set is finite. In [2], the
image is viewed as a Graph where pixels are the vertices
and edges are constructed by connecting neighbouring pix-
els. The graph based approach creates a segmentation by
partitioning the vertices into components where each com-
ponent is connected and pixels in one component share the
same label. An iterative algorithm loops through all edges
in the graph, and examines conditions based on energy func-
tions to determine whether to merge the two components
connected by this edge or not. The details of the energy
functions concerning the two components connected by the
edge of current iteration will be further discussed in section
(2). The nature of the algorithm is a greedy algorithm and

it is very efficient. However, it possesses good convergence
properties [2] and gives nice segmentation results in prac-
tice.

To make the efficient graph based segmentation algo-
rithm more versatile, the ability to segment point cloud data
gathered from Microsoft Kinect is built as the first contribu-
tion of this project. Kinect’s RGB-D point cloud data pro-
vides much richer information than standard color camera’s
RGB data by adding one dimension of depth map. Unlike
color images, the additional dimension of depth map is ro-
bust to the variations of lighting or colors, provides shape
cues and separates background and foreground by depth
discontinuities. As we expected, the informative depth map
boosted the segmentation performance when keeps other
parameters of the algorithm the same as using standalone
RGB data. Further experimental results can be found in
section (5)

The energy functions applied in [2] is based on weights
of edges in the graph. Therefore one key design perspec-
tive, which is another contribution of this project, is to
choose a proper weight function of an edge e = (vi, vj)
in the graph V to segment point cloud data. One naive idea
would be simply add depth as another channel and calcu-
late the Euclidean distance between the neighbouring pix-
els p1 = (r1, g1, b1, d1) and p2 = (r2, g2, b2, d2). How-
ever, a more reasonable idea would be utilizing the depth
discontinuity to emphasize the difference between p1 and
p2. A reverse Gaussian function is applied to emphasize
edge weight when the depth discontinuity between the two
pixels is large and penalize the weight when the depth dis-
continuity is small. We will address this issue in full detail
in section (4).

The rest of the report is organized as follows. In sec-
tion (2), we will introduce the theories behind the efficient
graph-based method and the outline of the algorithm. In
section (3), we will provide analysis over the algorithm’s
probabilistic aspect and how it is related to Maximum A
Posteriori. Then the improvement of the algorithm and
main contribution of this project will be illustrated in sec-
tion (4). Experimental results of the improved efficient

1

graph based segmentation algorithm are provided in section
(5). Some acknowledgement and future work are discussed
in section (7).

2. Graph-Based Segmentation Algorithm
In order to label each pixel in a 2D image, Felzenszwalb

constructed a graph G = (V,E) where the vertices V are
composed of pixels P and edges (vi, vj) ∈ E correspond to
pairs of neighbouring vertices. Associated with each edge
(vi, vj), an energy weight w(vi, vj) is assigned which mea-
sures the disagreement between neighbouring vertices. A
component C of vertices form a group of vertices and they
have a internal energy which is defined as the largest weight
w in the minimum spanning tree MST (C,E) of the com-
ponent, which is

Int(C) = max
e∈MST (C,E)

w(e). (1)

Intuitively, by comparing the Internal energy with the dis-
agreement measurement

Dif(C1, C2) = min
vi∈C1,vj∈C2,(vi,vj)∈E

w(vi, vj) (2)

between components C1 and C2 ,which is the minimum
weight of any edge connecting the two, one can decide
whether to merge the two component or not. The key el-
ement in both internal energy and external difference mea-
surement is the edge weight functionw(·). The edge weight
measures the difference between neighbouring pixels. The
merging between two components C1 and C2 will take
place if the minimum internal energy MInt(C1, C2) de-
fined as

MInt(C1, C2) = min(Int(C1) + τ(C1), Int(C2) + τ(C2))
(3)

is larger than the external difference Dif(C1, C2) defined
in equation (2). A threshold function is applied as

τ(C) =
k

|C|
(4)

in the minimum internal energy where |C| denotes the com-
ponent size of C. This threshold serves as a control mea-
surement for the merging process. For small components,
they require a stronger evidence for a boundary to stop the
merging. If the external difference is not large between two
small components, it will be more likely that

Dif(C1, C2) < MInt(C1, C2) (5)

because τ(C) = k
|C| can be pretty large for small compo-

nents. Therefore small components tend to merge with each
other until it reach a point that the boundary evidence is high
enough to stop merging.

Formally, Felzenszwalb applied a algorithm similar to
Krushal’s algorithm(the famous greedy algorithm for con-
structing minimum spanning tree of a graph) to iteratively
merge the components after a initial assignment. The algo-
rithm checks if the difference measurement Dif(C1, C2)
between two components is smaller than both internal en-
ergies, then merge C1 and C2 else do nothing. By acquisi-
tion of component pairs using edge pairs with non decreas-
ing weights, the algorithm works in O(|E| log |E|) runtime
complexity where |E| is the number of edges in the graph.
The detail processes of the efficient graph-based segmenta-
tion method is presented in algorithm (1).

Algorithm 1 Efficient Graph Based Algorithm

1: procedure EFFICIENTSEG
2: input← Graph = (V,E)
3: π = (o1, ..., om)← Sort E
4: by non-decreasing edge weight
5: S0 ← a segmentation where each vertex
6: vi is in its own component
7: for q = 1, ...,m do :
8: Sq ← Sq−1

9: v1 ← oq.start
10: v2 ← oq.end
11: C1 ← v1’s Component in Sq−1

12: C2 ← v2’s Component in Sq−1

13: if w(oq) ≤MInt(C1, C2) then
14: Sq ← merge(C1, C2,Sq−1).

return S ← Sm

3. Statistical Theory for the Graph-Based Seg-
mentation Algorithm

The probabilistic theory behind the algorithm is actually
Maximum A Posteriori and we have the following lemma.

Lemma 3.1. The iterative greedy algorithm in section (2)
IS minimizing a energy term like

E = Edata + Esmooth. (6)

Here we have

Edata =
∑
i∈C

Int(Ci) (7)

Esmooth =
∑
i,j∈C

Dif(Ci, Cj) +
∑
i∈C

k

|Ci|
. (8)

Proof. We provide the reasoning over this as follows. The
iterative algorithm loops through all the edges in the graph
by descendent order, and merge the components C1, C2

connected by the edge in current iteration if the internal dif-
ference of one component is smaller than the edge’s weight

w(v1, v2), which is

w(v1, v2) ≤ min(Int(C1) +
k

|C1|
, Int(C2) +

k

|C2|
). (9)

The energy concerning only C1 and C2 before merging in
this iteration is

Eold = Int(C1) + Int(C2) +Dif(C1, C2) +
k

|C1|
+

k

|C2|
(10)

and the energy after merging is

Enew = Int(C1 ∪ C2) +
k

|C1|+ |C2|
. (11)

Then if

w(v1, v2) ≤ min(Int(C1) +
k

|C1|
, Int(C2) +

k

|C2|
),

(12)

and suppose without loss of generality Int(C1) + k
|C1| >

Int(C2) + k
|C2| , we are guaranteed from the properties of

Minimum Spanning Tree that

Int(C1 ∪ C2) = max(Int(C1), Int(C2), w(v1, v2))

(13)

≤ Int(C1) +
k

|C1|
. (14)

Together with

k

|C1|+ |C2|
<

k

|C2|
, (15)

we have

Enew = Int(C1 ∪ C2) +
k

|C1|+ |C2|
(16)

< Int(C1) +
k

|C1|
+

k

|C1|+ |C2|
(17)

< Int(C1) +
k

|C1|
+

k

|C2|
(18)

< Eold. (19)

Therefore by satisfying the condition (12), we are guar-
anteed the energy concerning only C1 and C2 will decrease
through merging the two components. The global energy E
is still decreased because of the following reasons.

1. The difference between the new global energy and the
old global energy lies in the local difference concern-
ing C1 and C2 as well as the external difference term
Dif(Ci, Cj) concerning remaining components with
C1, C2 and C1 ∪ C2.

2. We already showed the local difference is decreased by
merging. We only need to show the external difference
term is non-increasing. We have

∆Eext = Enew
ext − Eold

ext (20)

and

Enew
ext =

∑
i∈Cnew

Dif(Ci, C1 ∪ C2) (21)

Eold
ext = Dif(C1, C2) (22)

+
∑

i∈Cold

Dif(Ci, C1) +Dif(Ci, C2). (23)

3. The edge connectingCi andC1∪C2 is unchanged after
merging C1, C2. Therefore we have∑

i∈Cnew

Dif(Ci, C1 ∪ C2) = (24)

∑
i∈Cold

Dif(Ci, C1) +Dif(Ci, C2). (25)

This gives us

∆Eext ≤ 0. (26)

Therefore the global energy E is decreased after merging
with condition (12). Proof finished.

Theorem 3.2. Minimizing the energy term as defined in
equation (6) is equivalent to maximizing the posterior prob-
ability of the pixel labelling assigned by components set C.

Proof. The posteriori probability of a labelling

P (Label|Data) ∝ P (Data|Label)P (Label) (27)

can be modelled by defining P (Data|Label) and P (Label)
as an exponential form like e−Edata and e−Esmooth by as-
suming they follow Gibbs distribution.

Then the logarithm of the posteriori (27) becomes a neg-
ative form of the energy term (6). Therefore minimizing the
energy function IS actually maximizing the Posterior prob-
ability of our labelling.

Based on lemma (3.1) and theorem (3.2) , the efficient
graph-based algorithm [2] is iteratively maximizing the pos-
terior probability of the labelling assigned by components
set C. Therefore it follows the idea of Maximum A Posteri-
ori and has its soundness in statistical aspect.

4. My Improvements
The efficient graph based algorithm (1) was once the

state of the art segmentation algorithm. And now it is still
very viable to provide a raw segmentation for more sophis-
ticated segmentation methods, like support inference based
method in [4]. The main contribution of this project is
to investigate into the potential improvements of the ef-
ficient graph-based algorithm.

The first potential will be incorporating 3D informa-
tion from point cloud data to the graph-based segmenta-
tion pipeline. The emergence of Microsoft Kinect brings a
revolution in computer vision community. RGBD data be-
comes much easier to collect than using a laser range finder
and has much less noise in depth map. Recent works has
demonstrated the power of depth data to boost segmenta-
tion performance [4] and recognition performance [3]. The
point cloud data from Microsoft Kinect contains standard
RGB and depth data. The additional dimension of depth
map, which is robust to the variations of lighting or col-
ors, provides 3D shape cues and separates background and
foreground by depth discontinuities. Therefore I have con-
fidence that if appropriately combine the RGB data with
depth information in the Graph based segmentation method
[2], we can improve the performance of the algorithm. We
provide a illustration of RGB and depth data in UW dataset
[3] in Figure (1).

(a) RGB image

(b) Depth map

Figure 1: RGB images and depth map in UW RGBD
dataset. The example is a banana.

An example of NYU scene v2 dataset is provided in Fig-
ure (2).

The second potential of improvement is a proper de-
sign of edge weight function w(vi, vj) to smartly incor-
porate point cloud data. The energy functions applied
in section (2) is highly based on weights of edges in the
graph G = (V,E) and the algorithm’s merging process

(a) RGB image

(b) Depth map

Figure 2: RGB images and depth map in NYU scene v2
dataset. The example is a scene of a classroom.

is based on comparing these energies. Therefore the edge
weight function is a fundamental element in the segmenta-
tion method and a good choice with proper reasoning will
provide a better segmentation result. A naive edge weight
function will be simply add depth as another channel and
calculate the Euclidean distance between the neighbouring
pixels vi = (ri, gi, bi, di) and vj = (rj , gj , bj , dj). We de-
fine it as

wE(vi, vj) =
√

(vi − vj)(vi − vj)T (28)

The Euclidean distance edge weight function does incor-
porate depth map into the segmentation criteria, however
the emphasize on depth discontinuity is not enough. Wher-
ever there is a large depth discontinuity, the edge weight
should be always large. If the RGB value between vi and
vj is the same while the depth change is pretty significant,
the edge weight (28) could be not large enough to justify
an existence of a boundary. Therefore, a more reason-
able idea would be further utilizing the depth discontinuity
to emphasize the Euclidean difference between vi and vj .
A reverse Gaussian function is applied to emphasize edge
weight when the depth discontinuity between the two pixels
is large and penalize the weight when the depth discontinu-
ity is small. We define the Gaussian weighted edge weight

as

wG(vi, vj) = (τ − G(di − dj))
√

(pi − pj)(pi − pj)T

(29)

G(di − dj) =
1√

2πσ2
e−

(di−dj)
2

2σ2 (30)

pi = (ri, gi, bi) (31)
pj = (rj , gj , bj). (32)

where τ and σ are parameters for reverse Gaussian weight-
ing. A show case for reverse Gaussian mask

M = τ − 1√
2πσ2

e−
(x)2

2σ2 (33)

is presented in Figure (3).

−100 −80 −60 −40 −20 0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Depth Difference

R
e
v
e
rs

e
 G

a
u
s
s
ia

n
 W

e
ig

h
t

Plot of Reverse Gaussian Weight Mask

Figure 3: Plot of the Reverse Gaussian Mask applied in
edge weight function wG. σ = 20 and τ = 1.5.

In [2], w(vi, vj) are simply modelled as the difference
between pixel RGB intensities which is similar to the Eu-
clidean edge weight defined as (28). A more sophisticated
way like reverse Gaussian edge weight should have the po-
tential to improve segmentation performance since it better
utilized depth data, but the more complicated the weight
function be, the more runtime the algorithm may require.

5. Results
In the implementation of this project, I utilized Felzen-

szwalb’s code available on his website [1] and modified it
for processing point cloud data. Details of my modification
to the code can be found in section (4) as well as my code
submission for this project. In this section, we will present

and compare the segmentation results by using standalone
RGB data, point cloud with Euclidean distance edge weight
wE and point cloud with reverse Gaussian edge weight wG.
We will present the segmentation results with different set-
tings in a figure array with proper captions and titles. We
first present the segmentation results on UW RGBD dataset
[3] in Figure (4). We then present the segmentation results
on NYU scene v2 dataset [4] in Figure (5).

Due to the size of the figure arrays, Figure (4) and (5)
will appear on the next page.

6. Discussion and Conclusion
In this section, we will discuss over the comparison re-

sults in Figure (4) and (5). We have the following observa-
tions and conclusions

1. Segmentation with Euclidean distance edge weight
wE usually generates noisy segmentations by using
RGBD point cloud. In this case, we get low seg-
mentation improvement from depth map information.
The result of using Euclidean distance edge weight
is sometimes even worse than using standalone RGB
data. This fact is clearly supported by comparing Fig-
ure (4(f)) and (4(g)). There are a lot of noisy re-
gions surrounding the apple in Figure (4(g)) which
uses Euclidean distance edge weight in the segmenta-
tion method. The similar situation holds for bell pep-
per case by inspecting Figure (4(k)). This is due to the
fact that the depth data is pretty noisy and there are a
lot of black holes in the Kinect depth data, which is
quite a common issue of the point clouds. To illustrate
the quality of the depth map, we present the depth map
extracted from the point cloud data of apple and bell
pepper in Figure (6).

(a) Apple (b) Bell Pepper

Figure 6: Noisy Depth Maps acquired by Kinect.

2. The reverse Gaussian weighted edge energy wG

gives better segmentation result. In the UW dataset,
we found the segmentation results with reverse Gaus-
sian weighted edge energy always outperforms the
other two settings. The wG energy clearly succeeded
in emphasizing the depth discontinuities while still

(a) RGB image (b) RGB segmentation (c) RGBD segmentation (d) RGBD with Reverse Gaussian
Mask

(e) RGB image (f) RGB segmentation (g) RGBD segmentation (h) RGBD with Reverse
Gaussian Mask

(i) RGB image (j) RGB segmentation (k) RGBD segmentation (l) RGBD with Reverse
Gaussian Mask

Figure 4: Segmentation results comparison for UW RGBD dataset.

(a) RGB image (b) RGB segmentation (c) RGBD segmentation (d) RGBD with Reverse Gaussian Mask

(e) RGB image (f) RGB segmentation (g) RGBD segmentation (h) RGBD with Reverse Gaussian Mask

Figure 5: Segmentation results comparison for NYU scene v2 dataset.

preserves necessary difference between neighbour-
hood pixels when depth change is small. By compar-
ing Figure (4(l)) with Figure (4(j)), we notice the noisy
point in the left corner disappeared by using the reverse
Gaussian weighting. The boundaries around the apple
in Figure (4(h)) is also smoother and less noisy than its
RGB segmentation counter part.

3. Segmentation with reverse Gaussian weighted edge
energy wG will perform worse when the size of
the point cloud is large and the scene is complex.
By inspecting the segmentation results in the first ex-
ample of NYU scene comparison in Figure (5), we
found we are getting improvements by using reverse
Gaussian weighting by eliminating the noise on the ta-
ble. However, when the scene becomes more compli-
cated where there are multiple occlusions, the reverse
Gaussian weighting segmentation tends to ”coarse-
segment” the point cloud by merging many distinct
regions. In Figure (5(d)), we found that a lot of ta-
bles are connected with the ground as one large com-
ponents and objects on the chairs are merged with the
chair themselves.

7. Critiques and Future Work

While the success on UW dataset demonstrated the con-
tribution of my improvement to the efficient graph-based al-
gorithm, the problematic performance in the second scene
of NYU dataset clearly indicates we still need improve-
ments to make the reverse Gaussian weighting idea to work
on complex scenes. The first potential of future work would
be using adaptive Gaussian functions in reverse Gaussian
weighting Mask. The Gaussian function applied in the
weighting mask (29) of wG is uniform throughout the point
cloud, and an intuitive idea would be adapting the σ and τ
parameter based on the local information of the point cloud.
A large sigma would make no sense if there is a lot of sub-
tle yet important depth changes in a local area, say a table.
The adaptive scale of the reverse Gaussian mask would have
the potential to capture the details on the small class tables
in Figure (5(a)) and we would be able to isolate these ob-
jects instead of merging them. The second future improve-
ment would be incorporating higher order shape informa-
tion in the segmentation algorithm. The surface normals
and curvature information are very distinctive between dif-
ferent parts of a scene and they possess the potential to fur-
ther boost the segmentation performance.

By the end of the report, I would give sincere thanks to
Prof. Tal Arbel for her kind help on my questions and her
excellent lectures. I am also very grateful to Dr. Meltem
Demirkus who helped me on my assignments and provided
valuable feedbacks on my course works.

References
[1] P. F. Felzenszwalb. Efficient Graph-based Image segmenta-

tion C++ Code. http://cs.brown.edu/˜pff/, 2007.
[Online]. 5

[2] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-
based image segmentation. International Journal of Computer
Vision, 59(2):167–181, 2004. 1, 3, 4, 5

[3] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical
multi-view rgb-d object dataset. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 1817–
1824. IEEE, 2011. 1, 4, 5

[4] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. In-
door segmentation and support inference from rgbd images.
In ECCV, 2012. 1, 4, 5

http://cs.brown.edu/~pff/

