Lecture 10: Impulse Response of a Differential LTI System
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4.3 Impulse Response of a Differential LTI System

Consider again the general form of a causal LTI differential system:
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4.3.1 Method 1: Impulse Response Obtained by Linear Combination of Impulse Responses of the Left-Hand Side of the Differential Equation

The step-by-step procedure to find the impulse response of a differential LTI system is as follows.

1. Replace the whole right-hand side of the differential equation 
(4.18)

 by  gotobutton ZEqnNum760376 , 

2. Integrate from 
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 to the homogeneous equation with these initial conditions,

4. Finally, differentiate the homogeneous response 
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 and use linear superposition to form the overall response of the system

Step 1: Under the assumption that 
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 we first replace the right-hand side of Equation (4.18)

 by a single unit impulse:
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Step 2: To solve this equation for 
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, we first observe that the impulse can only be generated by the highest-order derivative (i.e., 
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. This means that the functions  gotobutton ZEqnNum906921  are smooth or have finite discontinuities at worst. Such functions integrated over an infinitesimally small interval simply vanish. This observation gives us the first N-1 initial conditions for 
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Then, integrating both sides of 
(4.19)

 from  gotobutton ZEqnNum544342  to 
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Which gives us our 
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Step 3: Thus starting at time 
[image: image25.wmf]t

=

+

0
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subject to the above initial conditions. Assume that the solution has the form of a complex exponential 
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, we get a polynomial in "s" multiplying an exponential on the left-hand side:
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and this equation holds if and only if the characteristic polynomial 
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By the fundamental theorem of algebra, this equation has at most N distinct roots. Assume that the N roots are distinct, and call them 
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 can be written as a linear combination of these complex exponentials:
(4.23)

. Then the solution to 
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The complex coefficients 
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This set of linear equations can be written as
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The matrix in this equation is called a Vandermonde matrix and it can be shown to be nonsingular (invertible). So a unique solution always exists for the 
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Step 4: Finally, by linearity of the differential system, the response of the left-hand side of 
(4.18)

 to its right-hand side is a linear combination of  gotobutton ZEqnNum677612  and its derivatives.  To see this, note that we have found the impulse response 
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Example: Consider the first-order system initially at rest with time constant 
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Step 1: Set up the first problem of calculating the impulse response of the left-hand side of the differential equation.
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Step 2: Find the initial condition of the homogeneous equation at 
[image: image51.wmf]t

=

+

0

 by integrating 
(4.32)

 from  gotobutton ZEqnNum813539  to 
[image: image53.wmf]t

=

+

0

. Note that the impulse will be in the term 
[image: image54.wmf]t

0

dh

t

dt

a

(

)

, so 
[image: image55.wmf]h

t

a

(

)

 will have a finite jump at most. Thus we have


[image: image56.wmf]t

t

t

t

0

0

0

0

0

1

dh

dt

d

h

a

a

(

)

(

)

-

+

z

=

=

+

,



 MACROBUTTON MTPlaceRef \* MERGEFORMAT (4.33)

hence 
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Step 3: The characteristic polynomial is 
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so that 
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Step 4: Finally, the impulse response of the differential system of Equation (4.31)

 is
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4.3.2 Method 2: Impulse Response Obtained by Differentiation of the Step Response

We have seen that 
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. Thus we can obtain the impulse response of an LTI differential system by first calculating its step response, and then differentiating it.

Example: We will illustrate this technique by an example of a second-order system. Consider the following causal LTI differential system initially at rest.
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Let 
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and its zeros (i.e., values of s for which 
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We look for a particular solution of the form 
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Adding the homogeneous and particular solutions, we obtain the overall step response for 
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The solution to these two linear algebraic equations is 
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Finally the impulse response of the second-order system is obtained by differentiating the step response. It is interesting to look around the origin to see whether or not there is a jump in the derivative of the step response. The derivative is obviously 0 for 
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which evaluates to 0 at time 
[image: image93.wmf]t

=

+

0

. Hence there is no jump, and the impulse response is (check that it solves Equation (4.38)
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