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Abstract—One major challenge for traffic management sys-
tems is the inference of traffic flow in regions of the network
for which there are little data. In this paper, Global-Positioning-
System (GPS)-based vehicle locator data from a fleet of 40–60
roving ambulances are used to predict the most likely ambulance
speeds in a network of 20 000 streets in the city of Ottawa, ON,
Canada. First, the road network is represented as a directed
graph data structure. Then, we compare two algorithms, i.e.,
relaxation labeling and belief propagation, that interpolate the
sparse and noisy measurements from the fleet to obtain dense
locally consistent ambulance speeds. Unlike several other systems
in the literature, we model all of the city’s freeways and surface
streets, and both road types are treated with equal importance.
Furthermore, the data structure and algorithms described in this
paper are not only extended to real-world needs such as road
closures and the incorporation of live data with historical data but
are also computationally efficient, providing updates in intervals of
less than 5 min on commodity hardware. Presented experimental
results address the key issue of validating the performance and
reliability of the system.

Index Terms—Belief propagation, interpolation, Global Posi-
tioning System, graph theory.

I. INTRODUCTION

MAINTAINING the state of a complex road network,
given limited sensor input, is a major challenge to the

design of modern traffic control systems. In this paper, we
address the specific problem of inferring most likely ambulance
speeds along each of 20 000 streets in the greater city of
Ottawa, ON, Canada, from Global Positioning System (GPS)-
based vehicle locator data supplied by a fleet of 40–60 roving
ambulances. The context for this paper is a system, jointly
developed under the project heading RISER,1 for managing the
redeployment of a fleet of ambulances operated by the Ottawa
Paramedic Service (OPS).
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Fig. 1. RISER system overview.

The focus of this paper is on the McGill Traffic Server (TS),
as depicted in Fig. 1, whose task is to provide an estimate
of the most likely ambulance speed along each street in the
road network using a combination of sparse GPS data and a
Geographic Information System (GIS) database. The key idea
is that, given prior information in the form of date/time indexed
historical data, we can reliably interpolate a set of sparse real-
time measurements and obtain reasonable estimates over the
extent of the network. This approach is achieved through an
interpolation algorithm that operates on a representation of
the traffic network as a directed graph and serves to integrate
information from different sources. Here, we consider only
vehicle locator data and user-input speeds, but the algorithm
is sufficiently general to incorporate any available source of
information, provided that the following two conditions are
satisfied: 1) It is georeferenced to a particular location in the
network, and 2) it can be expressed in terms of relative conges-
tion (described shortly). The particular interpolation algorithms
that we investigate are relaxation labeling (RL) [1] and belief
propagation (BP) [2], which have widely been used in computer
vision [3]–[8].

This paper is organized as follows. Section I-A reviews
the state of the art. Section I-B outlines the contributions of
this paper. Section II describes the solution that we propose.
Section III details the experimental methodology and the vali-
dation results. Section IV concludes this paper with a discussion
and suggestions for future work.
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A. Related Work

In the literature, there exist a number of systems that model
traffic flow. FreeSim [9]–[11] models freeways as a directed
graph data structure and implements a multitude of algorithms
for the fastest path calculation. Corsim [12], [13], which is
sponsored by the U. S. Federal Highway Administration, con-
sists of the following two traffic models that have undergone
extensive validation: 1) Netsim for modeling surface streets
and 2) Fresim for modeling freeways. Vatsim [14], [15] uses
a graph that is composed of nodes and segments to implement
a vehicle and traffic simulator for the evaluation of vehicle
and traffic control methods. Similarly, Mitsim [16] models
the road network using nodes, links, segments and lanes to
simulate individual vehicle movements for the evaluation of
traffic management systems. Transims [17] is a large-area long-
time-horizon transportation planning tool that can be paral-
lelized [18] for better performance and is designed to predict
population trends and displacements of individual households
and travelers. Paramics [19], [20] is another parallel traffic
simulator that provides road network planners with a range
of tools for the detailed modeling of complex traffic flows.
Vissim [21] models detailed traffic flow for the design of traffic-
actuated control systems. Renaissance [22] uses a traffic state
estimator based on an extended Kalman filter to obtain real-time
traffic estimates of freeways. CellSIM [23] discretizes roads
into small intervals or cells and uses a measure of occupancy
to model high volume of traffic at the regional level.

We observe that, despite the prevalent use of the graph data
structure [9], [14], [16], [24], [25] to model the road network
topology, the RL and BP graph algorithms have seen little or no
attention in traffic modeling. To the best of our knowledge, only
BP has received some recent recognition [26]; however, the
authors did not have access to real-world data to validate their
model. With this paper, we hope to remediate the situation and
demonstrate the usefulness of RL and BP, if nothing else than as
a baseline, based on extensive real-world experimental results.

Another surprising observation that we note are the very
few attempts that deal with the sparse spatiotemporal sensor
data issue. However, this issue, because the number of road
segments is currently orders of magnitude greater than the
number of sensors, is commonplace and thus unavoidable. On
small scales, microscopic traffic flow models that consider
the behavior of individual vehicles such as [27] can extrap-
olate estimates into areas with few or no sensors. However,
for large scales, we are only familiar with the translation of
smoothing indices in [28] and of the workaround in [29] to
generate synthetic speed data to prevent the average speed from
monotonically decreasing when no new data are available. RL
and BP provide another way of interpolating the sparse data on
a city-wide scale such that the final result is locally consistent
at all points in the network.

B. Contribution

The main contribution of this paper includes two algorithms
(and their evaluation) for interpolating a sparse set of sensor
measurements across an entire road network in a computa-
tionally efficient manner. In particular, we show how traffic

Fig. 2. Simplified road network (left) and the corresponding graph represen-
tation from the perspective of node i (right). Nodes j1–j5 are neighbors of i
and nodes e1–e5 are the corresponding edges that connect i with its neighbors.

congestion can be predicted on a city-wide scale from sparse
automatic vehicle locator data to a reasonable degree of accu-
racy. Both algorithms convert sparse and locally inconsistent
data using constraints as defined by the road network topology
(e.g., linkages, number of lanes, and speed limits), historical
data, and user inputs (e.g., road closures and accidents) into
dense and locally consistent estimates. Because the framework
is sufficiently general, it can accommodate arbitrary sensor
information, provided that sensor data can be georeferenced to
a particular road segment and expressed in terms of relative
congestion (described shortly). On commodity hardware, our
system can predict road congestion for the entire city of Ottawa,
including both freeways and surface streets, in less than 5 min.

II. PROPOSED SOLUTION

In the literature, microscopic models are mostly used, be-
cause they can better handle complicated road geometries and
features such as traffic lights or on-ramp metering [12]. How-
ever, a macroscopic traffic model has the advantage when it
comes to large-scale designs due to the reduced number of vari-
ables [30]. Because we hope to estimate potential ambulance
speeds for every road segment in a city, our approach takes on
a macroscopic flavor to keep our first attempt at a large-scale
implementation as simple as possible.

The TS takes any available road congestion data and outputs
a potential ambulance speed for every road segment in a road
network. To accomplish this task, we first represent the road
network as a directed graph where nodes correspond to road
segments and edges correspond to linkages. Then, we obtain
initial estimates for each node using the available historical,
live, and user data. Finally, we interpolate the graph using RL
or BP.

A. Represent the Road Network as a Graph

The first step is to convert the road network into a graph
representation that will serve as a basis for subsequent compu-
tations, with nodes being road segments and edges being link-
ages. The TS accepts any road network database, as long as it is
given in the widely used geospatial vector data Environmental
Systems Research Institute (ERSI) shapefile format [31]. We
use the Shapefile C Library available online [32] to extract the
street geometry and attributes and use the Boost Graph C++
library available online [33] to conveniently represent the road
network as a directed graph composed of nodes and edges, as
shown in Fig. 2.

1) Nodes: Each node in the graph corresponds to a single
road segment with a unique direction. As such, a two-way street
gives rise to two nodes or road segments whose directions are
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180◦ apart, whereas a one-way street results in a single node.
In Fig. 2, nodes j1–j5 are neighbors of node i. To indicate
the direction of vehicle flow, we add a prefix “in” or “out”
as a qualifier and refer to neighbors as in-neighbors or out-
neighbors. In Fig. 2, nodes j1–j3 are out-neighbors of node i,
whereas nodes j4 and j5 are its in-neighbors.

2) Edges: Nodes are linked to each other through edges.
Because we have a directed graph, each edge has a particular
direction. To indicate the origin and destination of an edge, we
refer to the originating node as a source and the destination node
as a target. To indicate the position of an edge relative to a node,
we add a prefix “in” or “out” as a qualifier and refer to edges
as in-edges or out-edges. In Fig. 2, node i has three out-edges
e1–e3 and two in-edges e4 and e5.

Each edge has a weight, bound between 0 and 1, that defines
the likelihood of vehicle trajectories. In principle, edge weights
should vary according to the time and date and be estimated
using historical and live turn ratios. Because we do not have
access to such information, we compute static edge weights
using a generalized assumption about the behavior of vehicles
at intersections. Explicitly, we assume that vehicles tend to
travel in the path with the least resistance or, conversely, the
path with the most conductance. In general, the out-edge with
the greatest weight has the smallest deviation angle and the
target road segment with the greatest number of lanes and
highest speed limit. Note, however, that this assumption does
not always hold, because at times, on-ramps or off-ramps are
favored over main arteries. Fortunately, these cases, although
predictable, are isolated, and this assumption allows us to
form a simpler baseline estimate that will serve to evaluate
the model’s performance as more information is eventually
included. In Fig. 2, we may refer to the weight of edge e1 using
one of two interchangeable notations, i.e., ωe1 or ωi→j1 , where
i is the source of e1, and j1 is its target.

Numerically, we calculate edge weights as follows. If a node
i has n out-edges {e1, . . . , en} whose targets are out-neighbors
{j1, . . . , jn}, respectively, then the weight of edge ek for k ∈
{1, . . . , n} is defined as

ωek = ωi→jk =
Gek

n∑
m=1

Gem

(1)

where the conductance of edge ek is

Gek = σjk · e−β·θ
ek (2)

where the road segment capacity or conductivity of jk is

σjk = Ljk · (Sjk + ε) (3)

where Ljk and Sjk are the number of lanes and the speed limit
of jk, respectively, and

β =
− ln 0.1

90
. (4)

Note that (3) is a virtual road segment capacity and not the
actual road segment capacity, because the actual road segment
capacity is not known. Note also that θek is the angle between
vectors formed by road segments i and jk, ε is an empirical
value that compensates for the difference between the average

ambulance speed and the speed limit, and β is a constant that is
empirically obtained such that a greater bend in the road results
in a smaller conductance value. In this case, we make it so that
a deviation angle of 90◦ results in a conductance of 10% of
the road capacity. Note that we assume symmetric β such that
left and right turns have equal weight. Finally, out-edges whose
targets are dead ends have a weight of 0, because we assume
that the number of vehicles that enter a dead-end road segment
is too small to impact the congestion of neighboring roads.

B. Incorporate Available Road Congestion Data

The next step, after representing the road network as a
directed graph, is to obtain an initial estimate for each node
in the graph using whatever road congestion data are available.
To accomplish this task, we first register the data to a particular
node. Then, for each node, we construct a speed profile that
is essentially a trend in ambulance speeds over time. Finally,
we combine historical trends with live and user data to obtain
the desired initial estimates, which we express as relative
congestion.

1) Register the Road Congestion Data to Specific Nodes:
The only road congestion data that we have incorporated at
this time, aside from user-input speeds, are the Automatic
Vehicle Location (AVL) GPS data provided by the OPS. In
particular, we have access to almost a year’s worth (February 1–
December 20, 2007) of historical ambulance AVL data, result-
ing in approximately 18 million AVL samples. Because the
AVL data only give the positions of ambulances in intervals of
10–12 s on the average, we use three consecutive positions in
time to reliably estimate and register the ambulance’s direction
and speed to a specific node. The ambulance speed is estimated
using a straight-line approximation by computing the distance
traveled and dividing this value by the time interval. Then, we
register the speed sample to the correct node by choosing the
node that shares the closest position, orientation, and (known)
out-neighbor. For time intervals on the order of 10–12 s, this
straight-line approximation provides a satisfactory baseline,
although there is room for improvement by using a more
sophisticated road-following algorithm.

Unfortunately, the AVL data do not currently distinguish
deployment speeds with lights or sirens on from redeployment
speeds with lights and sirens off. Hopefully, the information
will eventually be made available so that we can separately
consider the two classes of data. Although it is possible to
employ outlier detection or pattern recognition techniques to
classify the data, for now, we maintain our goal of obtaining
a baseline estimate and assume that all AVL speeds are
redeployment speeds.

2) Construct Historical Speed Profiles: Next, we construct
a historical speed profile for each node in the graph, which
is essentially a trend in ambulance speeds over time. We start
by separating the registered AVL data into the following two
classes: 1) weekdays and 2) weekends. Then, we evaluate
the following two approaches for speed profile construction:
1) linear least squares regression (LS) [34] and 2) bin averaging
(BA).
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Fig. 3. Weekday speed profiles for two different road segments with abundant samples. Light gray points show the registered AVL speed samples. The dark
gray smooth continuous line is the LS fit, whereas the black dashes near the regression fit are the means of each 15-min bin. The STD bars show the extent of the
uncertainty in the data.

In LS, the goal is to estimate the coefficients {c0, . . . , cp} of
a polynomial fit to the data, i.e.,

s(t) = c0t
0 + c1t

1 + c2t
2 + · · ·+ cpt

p (5)

where t and s are the normalized time of day and the registered
ambulance speed, respectively, of the sample data. To reduce
the chance of overfitting, we perform K-fold cross validation
for K = 10 and choose the degree p, bound between 1 and
10, that results in the smallest prediction error. The second
method, BA, does not attempt to fit a curve to the data. Instead,
we divide a 24-h day into 15-min bins and take the mean for
each bin to obtain the speed profile. Fig. 3 shows the weekday
speed profiles of two different road segments with ample AVL
samples using both methods.

Finally, we complete the historical speed profile by obtaining
a confidence value that is a function of the number and variance
of samples available. For example, a large number of samples
and small variance results in a very high confidence value.

3) Incorporate Live Data: The initial road congestion es-
timate for each node depends on the available data and their
confidence values. The confidence values of the live data are
a weighted average between historical and live confidence
values, with more weight on live confidence values. As such,
if there are only historical but no live data, then the initial
estimate previously obtained remains unchanged. If there are
both historical and live sensor data, then the initial estimate is a
weighted average, with less weight given to the more uncertain
(lower confidence) of the two. If there are only live data, then
the initial estimate is directly obtained. Finally, if a node does
not have access to any data, then its initial estimate remains
unknown. We store all live data, because they are added to the
historical data and are used to periodically update the historical
speed profiles.

4) Incorporate User Data: The TS is designed to require as
little user data or intervention as possible. Only when current
events start to greatly differ from the historical data is it
necessary for the user to input any changes. Fortunately, the
TS is locally adaptable, and the following two types of user
overrides are currently supported: 1) road closures and 2) speed
overrides. As such, a user may accomplish one of the following

two actions: 1) Close off entire road segments such that affected
vehicles are forced to find alternate routes, or 2) manually input
a speed and confidence value as if it were a live sensor.

5) Express Initial Estimates in Terms of Relative Conges-
tions: We address the problem of merging different sensors
by converting arbitrary sensor measurements into a relative
congestion term R that is bound between 0 and 1 using an
equation that may be unique for each sensor modality. For the
processed AVL and the user-input speed data, we use

R(t) = 1− s(t)
S

(6)

where s(t) is the initial speed estimate, and S is the speed limit.
However, for other sensors such as inductive loops, the function
R(t) might directly be obtained from counts rather than from
vehicle speeds.

Unfortunately, the relative congestions that serve as the
initial estimates are spatiotemporally sparse and noisy for a
number of reasons. The initial estimates are sparse (i.e., not all
nodes have an initial estimate) because of the following two
cases: 1) There are fewer than 60 moving ambulances that pro-
vide data at any time for a road network that consists of 20 000
streets, and 2) ambulances drive over some roads more often
than other vehicles such that some road segments may have
tens of thousands of AVL samples, whereas other road segments
have none. Furthermore, the initial estimates are noisy, because
as shown in Fig. 3, there is a great deal of variance in the AVL
data. Both the sparsity and the variance of the data contribute
to the likelihood that relative congestions of neighboring road
segments are contradictory. The next section addresses these
two concerns by interpolating the initial estimates such that we
obtain dense estimates that are locally consistent.

C. Interpolate the Graph

We now explain how we can interpolate the sparse initial
estimates previously obtained and resolve any local inconsis-
tencies. In our previous work [35], we only looked at the RL
algorithm. Now, we reexamine RL in more detail, consider the
additional interpolation algorithm BP, and compare the two
algorithms. The underlying goal is to use the road network
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topology to determine how likely each road segment is con-
gested based on how likely its neighboring road segments
are congested. Both algorithms, as described in the following
sections, allow for the splitting of a complex computation into
many simple and parallel computations, use context to compen-
sate for noise and ambiguity, are deterministic, are relatively
simple to implement, and offer a baseline to which we can
compare eventual more complex strategies.

1) RL: The RL algorithm [1] involves incrementally and
iteratively adjusting the likelihoods of a set of labels for each
node according to local constraints and local evidence. For-
mally, each node in the graph has a set of m labels λ, where
each label corresponds to a possible relative congestion value.
In turn, each label has a weight, which is bound between 0 and
1, that defines its likelihood. The notation that we use is pi(λ) to
mean the weight of label λ for node i. The initial distribution of
label weights depends on the initial relative congestion estimate
previously obtained and our confidence in its value. During
the RL iterative process, we incrementally change the label
weights until convergence is reached. The most likely relative
congestion corresponds to the label with the greatest weight.

A compatibility function defines the relationship between
labels of neighboring nodes and can be of the first order or
of a higher order type. The notation that we use for first-order
compatibilities is rij(λ, λ′) to mean the compatibility between
label λ of node i and label λ′ of node j. If the two labels greatly
support each other, then rij(λ, λ′) should be large and positive.
If the labels greatly inhibit each other, then rij(λ, λ′) should be
large and negative. Otherwise, if there is no relation between
the two labels, then rij(λ, λ′) should be 0. In practice, node i
has multiple neighbors, and the notation for higher order com-
patibilities becomes rij1j2···jn(λ, λ1, λ2, . . . , λn). Note that the
compatibility function can be any monotonically decreasing
function that decreases as the difference between neighboring
labels increases.

Numerically, there are a number of ways of computing the
compatibilities. In this paper, we experiment with a compatibil-
ity function that is applicable to both first-order and higher or-
der compatibilities, which we refer to as the relative difference
model (RDM). The RDM compatibility function between label
λ of node i and labels λ1, λ2, . . . , λn of in- or out-neighbors
j1, j2, . . . , jn is defined as

rij1j2...jn(λ, λ1, λ2, . . . , λn) =
n∏

k=1

ωk · exp
(
−α · |λ

k − λ|
m

)

(7)
where

ωk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, for higher order
compatibilities

ωi→jk ,
for first-order
compatibilities due
to out-neighbors

ω
jk→i

·σ
jk∑n

h=1
(ω

jh→i
·σ

jh )
,

for first-order
compatibilities due
to in-neighbors.

(8)

In addition, σ is the road conductivity, m is the number of
labels, and α is an exponential decay constant.

The main steps of the RL algorithm are detailed as follows.

RL 1: Initialize the label weights of each node according to the
simulation or current date and time. If the initial estimate of
node i is unknown, then the label weights pi(λ) will have
uniform distribution such that all labels are equally likely.
Otherwise, we initialize the distribution of pi(λ) using a
Gaussian distribution whose mean is the initial estimate
previously obtained and whose variance is determined by
the number of samples and the variance in speed profile.
For example, a large number of samples and small variance
should result in a more peaked distribution.

RL 2: Compute the label support of each node. The support for
a given label of a given node depends on the label weights
of neighboring nodes and the compatibility function. For
example, the support for λ, assuming first-order compati-
bility rij(λ, λ′) if node i with labels λ has neighbor j with
labels λ′, can be expressed as the following sum over all
labels λ′:

qi(λ) =
∑
λ′
rij(λ, λ′)pj(λ′). (9)

Because node i can have multiple in- and out-neighbors
j1, j2, . . . , jn with labels λ1, λ2, . . . , λn, respectively,
where n is often 2–6, the support using higher order
compatibilities becomes

qi(λ) =
∑
λ1

∑
λ2

· · ·
∑
λn

rij1j2···jn(λ, λ1, λ2, . . . , λn)

· pj1(λ1) · pj2(λ2) · · · · · pjn(λn). (10)

However, for performance reasons, we separately consider
the higher order compatibilities of in- and out-neighbors
using the following approximation:

qi(λ) = qini (λ) · qout
i (λ) (11)

where

qini (λ) =
∑
λ1

in

∑
λ2

in

· · ·
∑
λy

in

rij 1
inj 2

in···j y
in

(
λ, λ1

in, λ
2
in, . . . , λ

y
in

)

· pj 1
in

(
λ1

in

) · pj 2
in

(
λ2

in

) · · · pj y
in

(λy
in) (12)

qout
i (λ)=

∑
λ1

out

∑
λ2

out

· · ·
∑
λz

out

rij 1
outj

2
out···j z

out

(
λ, λ1

out, λ
2
out, . . . , λ

z
out

)

· pj 1
out

(
λ1

out

) · pj 2
out

(
λ2

out

) · · · pj z
out

(λz
out) (13)

and y and z are the number of in- and out-neighbors,
respectively. Because, in general, nodes have three in-
neighbors and three out-neighbors, the aforementioned
approximation effectively reduces the complexity and the
number of computations required from O(n6) to O(2n3).

RL 3: Compute the update direction for the label weights ū k,
as described in [1, App. A].

RL 4: Check the stop criteria (i.e., the maximum number
of iterations reached or update direction is negligible);
otherwise, update label weights p̄ k+1 = p̄ k + hū k, where
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0 < h ≤ αk, and αk is a small-valued maximum step size
that may decrease as k increases to speed convergence.

RL 5: Obtain the final labeling and go back to RL 1 to resume
the entire process for the next moment in time. When
the RL process ends, each node has a distribution of
label weights that is locally consistent with its neighboring
nodes according to the local constraints that we defined.
The label with the highest weight corresponds to the most
likely relative congestion, which we convert back to ambu-
lance speed using

s = S · (1−R). (14)

The entire RL algorithm starts over again with the new date
and time to keep the road network up to date with the latest
speed estimates.

2) BP: The BP algorithm [2] involves incrementally and
iteratively adjusting the messages that enter each node in the
graph according to local constraints and local evidence until
convergence is reached. In BP, each node in the graph has a
set of m states, where each state xi at node i corresponds to
a possible relative congestion value. In turn, each state has a
weight, bound between 0 and 1, that defines its likelihood. The
state with the greatest weight indicates the most likely relative
congestion. The notation that we use is bi(xi) to mean the
weight or belief of state xi for a node i.

Beliefs for each node sum to 1 and are a function of a local
evidence vector φi(xi), messages mij(xj), and compatibilities
ψij(xi, xj). φi(xi) denotes the likelihood of each state accord-
ing to available road congestion data. The distribution of φi(xi)
is determined at the start and does not change throughout the
BP update cycle. mij(xj) denotes how likely node i thinks
node j is in state xj . The messages that enter each node
are initialized using a uniform distribution and, during the
BP iterative process, are incrementally updated according to
update rules until convergence is reached. ψij(xi, xj) denotes
the relationship between states xi at node i and states xj at j.
Compared with RL, BP only supports first-order compatibilities
and is therefore simpler and faster to compute.

The main steps of the BP algorithm are detailed as follows.
BP 1: Initialize the local evidence of each node according

to the simulation or current date and time and the BP
messages to a neutral state using a uniform distribution.
The initialization of the local evidence φi(xi) is similar to
the initialization of the label weights in RL 1.

BP 2: Update all BP messages until convergence or until the
maximum number of iterations is reached. Messages are
updated using the following update rule:

mij(xj)←
∑
xi

⎛
⎝φi(xi)ψij(xi, xj)

∏
k∈N(i)\j

mki(xi)

⎞
⎠ (15)

where first-order compatibilities ψij(xi, xj) are obtained
using the weighted RDM (i.e., ωk �= 1), as described in (7).
Note that N(i)\j refers to all the neighbors of node i other
than j. Note also that each edge in the graph has two BP
messages, i.e., one message from the source to the target
and another message from the target to the source, because

nodes are influenced as much by their in-neighbors as by
their out-neighbors.

BP 3: Obtain the final beliefs and resume the entire process for
the next moment in time. After updating the BP messages
in the previous step, we can compute the beliefs for each
node. The belief bi(xi) over the possible states xi at a node
i is given by

bi(xi) = kφi(xi)
∏

j∈N(i)

mji(xi) (16)

where k is a normalization constant such that beliefs sum
up to 1, φi(xi) is the local evidence at i, N(i) refers to
the neighbors of i, and mji(xi) corresponds to all the
messages that come into i from neighbors j. The state with
the highest weight corresponds to the most likely relative
congestion, which we convert to a potential ambulance
speed using (14). Similar to RL, the entire BP algorithm
starts over again with the new date and time to keep the
road network up to date with the latest speeds.

For both RL and BP, the TS outputs the most likely ambu-
lance speed for every road segment in the road network at any
given date and time.

III. EXPERIMENTAL METHODOLOGY AND RESULTS

A. Background

Before we present our results, we reiterate that all experi-
mental results were obtained using real GPS data samples and a
real GIS database. As such, for this first attempt at obtaining
a baseline estimate, we briefly describe several simplifying
assumptions that we made. Because the GIS road network
database is incomplete, we assumed that all streets in the road
network are bidirectional (two way) and each road segment is
two lanes wide. Furthermore, due to errors in the AVL data,
we ignore ambulance speeds above 130 km/h, scale the speeds
down by a factor of 11/13, and set a minimum ambulance speed
of 10 km/h such that ambulance speeds are bounded between 10
and 110 km/h.

B. Stratified K-Fold Cross Validation

Evaluating the TS in a timely manner was particularly chal-
lenging due to the large size of the road network and the
millions of data samples involved. To this end, we developed a
thorough and automated process using a variant of the classical
K-fold cross validation [36] called the stratified K-fold cross
validation. This approach first involves randomly splitting the
historical data into K evenly sized parts called folds. Then, we
choose one of the folds to act as the test set and train the model
on the remaining K − 1 folds. We repeat this process K times
using each fold only once as the test set and always training on
the remaining folds. As such, each iteration randomly excludes
a percentage of the data from the data set for initialization of
the graph and then uses these excluded data to test the resulting
interpolation estimates. Then, the estimates are merged by
computing the mean of all K runs. The advantage of this
technique is that all data samples contribute to the training and
testing of the system. Furthermore, doing so allows us to gauge
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Fig. 4. Sensitivity analysis for α showing MAEs for road segments with known speed limits (40–100 km/h) and without historical speed profiles, where
α = − ln(LogAlphaTerm). Markers identify curves and indicate the best LogAlphaTerm values for which MAEs and STDs are minimal. STDs are omitted from
the plot to reduce clutter.

the stability of the algorithm with respect to variations in the
input data. Typically, five folds are enough to conclude whether
the model’s performance is stable. The only difference between
the classical and the stratified approach is that, in the stratified
approach, each fold maintains the same ratio between classes
as the original data set. For example, if 20% of the samples in
the original data set occurred on the weekend, then the same
percentage of weekend samples would be maintained in each
fold after the random splitting of the data into K folds.

Due to the large number of historical data samples (ap-
proximately 2.5 million samples per fold, assuming five folds)
and the processing time required to update the model (up to
5 min per update for RL with nine labels and higher order
compatibilities), it is not feasible to interpolate the graph
for every sample in the test set, because it would take 5 ×
2.5 million × 5 min of processing time. Instead, we let the
TS run for a continuous span of 24 h per fold per data class,
interpolating the road network in intervals of 15 min and
storing, for each road segment, the most likely interpolated
ambulance speed estimate for the given time and day. Then,
each sample in the test set is matched to the nearest sample
in time to the stored interpolated estimates, and the difference
between the two ambulance speeds is used as the estimate error.

This approach has the significant advantage that the validation
time is the same, regardless of the size of the test set. In
particular, using K = 5 folds, two data classes (weekdays and
weekends), 5 min per update, and a 24-h-day discretization
interval of 15 min, the processing time required is reduced to
5× 2× 5÷ 15 = 3.33 days to validate the system for a given
set of parameters.

C. Experimental Results

We experimented with a number of configurations. For the
initialization of the graph, we compared LS and BA. For
the interpolation of the graph, we tried different numbers of
states for BP and labels for RL, ranging from four to 21. In
addition, for RL, we investigated first-order (RL Simple) and
higher order (RL Complex) compatibilities. Finally, to gauge
the effectiveness of the interpolation algorithm, we separately
considered nodes with historical data from nodes without his-
torical data.

We start by presenting in Fig. 4 the results of a sensitivity
analysis for the exponential decay constant α defined in (7),
where α = − ln(LogAlphaTerm). The purpose of this analysis
is to obtain the optimal value for α, which results in the best
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Fig. 5. MAEs and STDs for road segments without historical speed profiles and with known speed limits (40–100 km/h). In the legend, numbers in parentheses
indicate the number of times that we overestimated (+), underestimated (−), and correctly estimated (=) the most likely ambulance speed.

ambulance speed prediction. Note that we obtain six curves,
because we wish to compare the two types of historical speed
profiles (BA versus LS) and the three types of interpolation
strategies (BP versus RL Simple versus RL Complex). To avoid
cluttering the figure, we only show 11 states/labels for BP and
RL Simple, because higher values did not measurably improve
the estimates. Furthermore, for RL Complex, we limited the
number of labels to nine, because higher values took longer than
5 min of processing time to update the model. Finally, note that
the marker locations in the figure not only help identify the par-
ticular curve but also show the best values for α, for which the
mean absolute errors (MAEs) and standard deviations (STDs)
are the smallest. For example, for RL Complex 9 Labels +
BA, α that is smaller than − ln(10−5) resulted in lower MAEs
(good) but larger STDs (bad). To reduce clutter, STDs are not
plotted.

Given the ideal values for α, we computed the MAEs and
STDs for each of the six interpolation strategies and obtain
Fig. 5 for road segments without historical data and Fig. 6 for
road segments with historical data. At iteration 0, the MAEs and
STDs observed are large, because the errors are due to using the
posted speed limit + ε defined in (3) as the predicted ambulance
speed.

In Fig. 5, for road segments without historical speed profiles,
we observe that all six strategies perform well, in which RL
Complex 9 Labels + BA has a slight edge in terms of lower
MAE, but BP 11 States + BA performs better in terms of lower
STD. Although the difference is marginal, we also observe that
BA appears to be the better choice for obtaining the historical
speed profiles, because it consistently outperforms LS. Finally,
we note that all six interpolation strategies tend to overestimate
ambulance speeds, particularly on weekdays, because we some-

times observe more than twice the number of overestimated
speeds than underestimated speeds. As a result, there is a higher
possibility that the errors could add up and that travel times
could significantly be underestimated. On weekends, the three
strategies with the lowest MAEs fared much better in terms
of the errors being more even. As a result, the errors have a
higher possibility of canceling each other out when estimating
the travel times. Surprisingly, the difference between MAEs for
weekdays and weekends is negligible, and we observe only
a slight increase in STDs for weekends, although there are
almost three times fewer samples available for weekends than
for weekdays (600 000 versus 1.7 million samples obtained by
adding the total samples in Figs. 5 and 6).

In Fig. 6, for road segments with historical speed profiles,
we observe no measurable improvement in terms of MAE and
a very slight reduction in STD for the two strategies with the
lowest MAEs. For the remaining four strategies, we observe
that the MAEs tend to worsen (increase) with each iteration.
This case is a direct result of the interpolation process that
essentially oversmooths the data to achieve local consistency
across all the nodes in the graph. We conclude that we are
currently unable to improve upon the AVL data, except to
slightly reduce their variance.

For road segments without historical speed profiles, we show
how our MAEs and STDs vary according to the posted speed
limits in Fig. 7 and to five periods of day in Fig. 8. In Fig. 7, we
observe that BA significantly outperforms LS, except for the
40 km/h limit, where LS has a marginal edge. In addition, as
expected, the errors gradually increase with the increase in the
posted speed limit, because the range over possible ambulance
speeds is greater. Finally, we observe that RL Complex has an
edge over BP and RL Simple, because it is often first or second
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Fig. 6. MAEs and STDs for road segments with historical speed profiles and with known speed limits (40–100 km/h). In the legend, numbers in parentheses
indicate the number of times that we overestimated (+), underestimated (−), and correctly estimated (=) the most likely ambulance speed.

in obtaining the lowest MAEs and STDs. In Fig. 8, we observe
that RL Complex consistently gives the lowest MAE, regardless
of the period of day. In addition, we note that the TS does not
favor a period of day, because it performs the same throughout
the day.

Finally, we note that our estimates appear to be very stable,
despite variations in the input data. Across the five folds, we
observe very small variations in the MAEs and STDs. The
largest variations were observed in Fig. 7 for road segments
without historical speed profiles on weekdays for posted speed
limits of 70 km/h, where the MAEs and STDs varied by a
maximum of 0.92 and 0.55km/h, respectively, across the five
cross-validation folds.

IV. DISCUSSION

A. Validation Results

The MAEs and STDs that we obtained may seem large
at first, but we believe that they are remarkably good and
consistent. One reason that the errors may seem large is due
to the great deal of variance in the AVL data, although we com-
pensated by using the variance and the number of samples in
the AVL data to initialize the graph. Another reason is the road
network database of Ottawa, which lacks critical information
and for which we had to make several assumptions. The results
that we obtained can, hopefully, only get better using the current
implementation as a baseline. Overall, given the sparse nature
of the measurements, the results obtained were much better
than expected and more than sufficient to estimate travel times
between any two nodes in the network.

B. Scale and Performance

The TS was designed with the issue of scale in mind. Indeed,
there is no limit on the number of AVL samples in the historical
data, because the initial one-time heavy number crunching is
done offline, and the runtime calculations are negligible. On
commodity hardware, the TS can update the state of the entire
road network, including both freeways and surface streets in
less than 5 min. For much larger cities, we can take advantage
of the parallel nature of interpolation algorithms and split the
processing over multiple cores using readily available multicore
processors to further minimize the processing time.

C. Portability and Flexibility

The TS is sufficiently flexible such that it can be ported to
any arbitrary city with very little user modifications. The only
requirement is that the road network database of the new city
follows the same widely used ESRI Shapefile format [31] and
contains the required attributes such as street name and speed
limit. If necessary, a user can modify the road network (i.e.,
road closures) or update its status (i.e., override historical data
with new speed data) without rendering the model useless. This
approach allows the system to be more dynamic and to more
closely model actual road conditions.

D. Future Work

There remains much work to do in terms of improving the
accuracy of the TS, and we now list possible areas of improve-
ment. In terms of performance, we need to take advantage of
the parallel nature of interpolation algorithms to minimize the
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Fig. 7. MAEs and STDs for road segments without historical speed profiles by posted speed limits. In the legend, numbers in parentheses indicate the number
of times we overestimated (+), underestimated (−), and correctly estimated (=) the most likely ambulance speed.

processing time. The speedup would be significant, and cities
that are significantly larger than Ottawa could be supported. To
find optimal values for parameters such as determining β in the
calculation of edge weights for left and right turns, we need to
investigate statistical approaches such as simulated annealing
to find the global minima and avoid falling into a local minima.
With regard to edge weights, we need to incorporate statistics
at intersections such as turn ratios to obtain dynamic rather than
static edge weights. In addition, we need to learn how we can
aggregate individual nodes into supernodes, which we believe
will result in estimates that are more robust to noise, because
each supernode would have access to more historical data. With
regard to the AVL data, more sophisticated data-clustering tech-
niques can be employed to help segment the data into additional
classes aside from weekdays and weekends. Furthermore, a
road-following algorithm rather than our straight-line approx-
imation would improve speed estimation from GPS positions.
We also need to distinguish ambulance deployment data with
sirens/lights on from redeployment data with sirens/lights off.
We need to incorporate data from additional GPS devices on
other fleets of vehicles such as taxis, delivery trucks, or police
cruisers. In addition, we need to incorporate data from traffic
cameras or inductive loops, because this approach can provide
useful information about the state of the road network. With re-

spect to the GIS data, we need one/two-way street information
and the number of lanes to improve our compatibility function.
Finally, as a practical system, more experiments are needed to
verify that the TS can successfully be ported to other cities.
For example, what are the road network size limits and data
sparseness limits? How sparse is too sparse?

V. CONCLUSION

We have represented a road network as a directed graph and
used two graphical interpolation algorithms to obtain dense
locally consistent road speed estimates from sparse and noisy
sensor data. We have found that the algorithms are surprisingly
good at compensating for the sparse and noisy sensor data by
using context to resolve ambiguities. Furthermore, the valida-
tion results were remarkably consistent and are very stable,
despite variations in the input sensor data.

Our main contribution has been the extensive validation of
RL and BP for predicting ambulance redeployment speeds. We
used real GPS data and a real GIS database to interpolate the
sparse and noisy sensor data. Our approach can accommodate
arbitrary data sources, as long as they can be georeferenced to
a particular location in the road network and be represented
in terms of relative congestion. It incorporates confidence
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Fig. 8. MAEs and STDs for road segments without historical speed profiles by time of day. In the legend, numbers in parentheses indicate the number of times
that we overestimated (+), underestimated (−), and correctly estimated (=) the most likely ambulance speed.

measures to represent uncertainties in the input data and in the
output speed estimates. In terms of scale, it can represent the en-
tire city of Ottawa, including both freeways and surface streets.
Currently, updating the entire road network takes less than
5 min when running on a single processing core, but this ap-
proach can run in much less time if the processing is distributed
across multiple processing cores. It has been validated and
tested using stratified 5-fold cross validation. Finally, it can
easily be ported to other cities and is locally adaptable, making
it quite robust to user interventions.

We believe that the work presented in this paper is valuable,
because it addresses the sparse and noisy sensor data problem
and offers a baseline estimate to which we can compare more
complex strategies.
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