
Obtaining Dense Road Speed Estimates
from Sparse GPS Measurements

Andrew Phan and Frank Ferrie

Abstract— A major challenge for traffic management systems
is the inference of traffic flow in regions of the network for
which there is little data. In this paper, GPS-based vehicle
locator data from a fleet of 40-60 roving ambulances are
used to estimate traffic congestion along a network of 20,000
streets in the city of Ottawa, Canada. Essentially, the road
network is represented as a directed graph and a belief prop-
agation algorithm is used to interpolate measurements from
the fleet. The system incorporates a number of novel features.
It makes no distinctions between freeways and surface streets,
incorporates both historical and live sensor data, handles user
inputs such as road closures and manual speed overrides,
and is computationally efficient - providing updates every 5
to 6 minutes on commodity hardware. Experimental results
are presented which address the key issue of validating the
performance and reliability of the system.

I. INTRODUCTION

Maintaining the state of a complex road network given
limited sensor input is a key challenge to the design of
modern traffic control systems. In this paper we address the
specific problem of inferring traffic density along each of
20,000 streets in the greater city of Ottawa, Canada, from
GPS-based vehicle locator data supplied by a fleet of 40-
60 roving vehicles. The context for this work is a system for
managing the redeployment of a fleet of ambulances operated
by the Ottawa Paramedic Service. The goal of the project,
RISER1, is to develop a system capable of dynamically
positioning the fleet so as to guarantee response time while
respecting operating constraints such as load balancing, crew
scheduling, and minimizing movement. As can be seen in
Fig. 1, the system relies on a traffic server module to
provide an estimate of the traffic congestion along each of the
approximately 20,000 streets in the city road network. These
data are used to estimate time of arrival (ETA) for any path
through the network, which in turn is used for determining
optimal redeployment of the fleet by the scheduling engine.

The focus of this paper is the traffic server, which uses a
combination of sparse measurements, historical traffic data,
and a GIS database to determine the likely traffic flow state
at any location in the network. The key idea of the paper
is that given prior information in the form of date/time
indexed historical data, one can reliably interpolate a set
of sparse, real-time measurements, and obtain reasonable

The authors are with the Center for Intelligent Machines, Depart-
ment of Electrical and Computer Engineering, McGill University, Canada
aphan2@cim.mcgill.ca and ferrie@cim.mcgill.ca

1Rapid Intelligent Scheduling for Emergency Responders, a joint project
led by CAE Inc. under the Precarn Inc. CORE program, with the participa-
tion of Actenum Inc., McGill University, Simon Fraser University, and the
Ottawa Paramedic Service.

Fig. 1. Proposed Ambulance Dispatch System

estimates over the extent of the network. This is achieved
by means of a belief propagation algorithm which operates
on a representation of the traffic network as a directed graph
and serves to integrate information from different sources.
Here we consider only vehicle locator data, but the algorithm
is sufficiently general to incorporate any available source
of information provided that i) it is geo-referenced to a
particular location in the network, and ii) that it can be
expressed in terms of relative congestion (described shortly).
The particular belief propagation algorithm we use is Re-
laxation Labeling (RL), which has been widely used in the
computer vision field [1], [2], [3].

The organization of the paper is as follows. Section II
formally defines the problem. Section III reviews the current
state of the art. Section IV describes the solution we propose.
Section V details the experimental methodology and the
validation results. The paper ends with a discussion in
Section VI and a suggestion for future work in Section VII.

II. PROBLEM DEFINITION

In this section, we formally define the problems that are
addressed by the traffic server. The first problem is that
of interpolating sparse data since the city of Ottawa has
approximately 20,000 streets while the number of available
sensors is orders of magnitude lower. Second is the problem
of data fusion since there exist many different types of
sensors such as traffic cameras, inductive loops, radars and
GPS units that each provide information about the state of
the road network. Third is the question of how to benefit
from the historical data accumulated over time and how to
combine it with the live sensor data. Fourth, the user should
be able to modify the state of the road network by closing
a road or manually inputting a road speed without rendering
the model useless. An example of a road closure would be

Proceedings of the 11th International IEEE
Conference on Intelligent Transportation Systems
Beijing, China, October 12-15, 2008

1-4244-2112-1/08/$20.00 ©2008 IEEE 157

during a special event such as a festival or parade while a
speed override would be used in the case of an accident.
Fifth, the model should scale well to handle an entire city
including both freeways and surface streets. Sixth, the model
must function in real-time for the ambulance dispatchers.
Finally, validating the model is challenging due the size of
the road network and the quantity of the data.

III. RELATED WORK

In the literature, traffic models are generally classified as
either microscopic or macroscopic. A microscopic model
tracks the movement of individual vehicles and generally
includes a model for the driver, the vehicle and how the ve-
hicle interacts with its surroundings. A macroscopic model,
on the other hand, tends to treat congestion as a fluid and
represents the dynamics of traffic flow as a group rather than
as individual vehicles. We describe below several systems
that we believe are representative of the current state of the
art in traffic modelling.

FreeSim [4], [5] is a framework that offers both macro-
scopic and microscopic traffic modelling of freeways. It
requires that a large number of vehicles in the road network
have a GPS device that transmits their current speed and
location to a central server. The central server then uses
this information to update the travel speed of every road
segment in the road network database. At any time during
the simulation, a user may request the quickest route to
get from one location to another and the system responds
by using one of the six routing algorithms implemented to
compute quickest travel times. Only live data are used or
necessary because it is assumed that a large enough number
of vehicles are transmitting and updating the central server
regularly. FreeSim has been tested on Los Angeles’ freeways
using user-generated data and live data from the California
Department of Transportation. Their main limitations are that
they do not interpolate sparse sensor data, do not incorporate
historical data and do not consider surface streets.

Corsim (2007) [6], [7] is a microscopic traffic simulation
sponsored by the United States Federal Highway Administra-
tion and consists primarily of two traffic models: Netsim for
modelling surface streets and Fresim for modelling freeways.
It has undergone extensive validation, can model control
devices (e.g traffic signals, ramp metering etc.), vehicles and
driver behaviour, and includes the ability to accommodate
complicated road geometries. However, as is generally the
case with microscopic models, there is a limit on both the
maximum number of sensors and the maximum size of the
road network. Furthermore, it is unclear from the literature
if they handle the interpolation problem or if they use any
historical data.

A variant of the classical cellular automaton model [8]
(2001) is presented in [9] for modelling freeways. It is a
microscopic traffic model that divides the road into cells
such that each cell may contain no more than one vehicle.
Vehicles are modelled according to rules and lane changes
are a function of the speed of the vehicle ahead and on the
number of empty cells ahead and to the side. To validate their

system, they tested it using three years of inductive loop
data on the North Rhine-Westphalia freeway network for
which they simulated 14,000,000 cells on 2,500 kilometres
of freeway. The system uses both historical and live inductive
loop counts. When the historical data indicates insufficient
vehicle counts on a given segment, it fills up the available
(empty) cells in the vicinity of the inductive loop with
vehicles until the number of counts matches the number of
counts in the historical data or until there are no available
cells left. Their model can extrapolate estimates into areas
with little or no sensors and considers 4 classes of traffic
patterns: Monday-Thursday (except holidays and days before
holidays), Friday and days before holidays, Saturday except
holidays, and Sunday and holidays. Their main drawback
is their microscopic model that limits their scope to only
freeways.

In [10], the authors present Adaptive Routing (2000) that
integrates historical and live congestion information into a
routing system for both surface streets and freeways. Each
road segment has an estimated travel speed depending on the
time of day. Each day is discretized into 15 minute intervals
such that estimated travel speed for a given time interval
is a geometrically weighted average of the historical and
live speed data. Given the large number of road segments
compared to the low number of sensors, when no new data
are available the system generates synthetic speed data to
prevent the average speed from decreasing monotonically.
They explore many different routing algorithms and have
tested their system using the Trafficmaster [11] service
which provides road speed data of the United Kingdom. The
system we propose takes their system to the next level by
interpolating the sparse sensor data rather than generating
synthetic data.

There are other systems not covered in the preceding
literature review but worth mentioning. If interested, the
reader is invited to refer to the following list of related
works: Renaissance (2006) [12], Type-2 Fuzzy Logic Ap-
proach [13], Dicaf [14], Vatsim [15], Mitsim [16], Wat-
sim [17], Transims [18], Paramics [19] and Vissim [20].

IV. PROPOSED SOLUTION

Unlike the previous traffic systems, we do not implement
any routing algorithm. The reason being simply that it was
not a requirement of the traffic server module. Also, in
the literature, microscopic models are mostly used because
they are better able to handle complicated road geometries
and features such as traffic lights or on-ramp metering [6].
However, a macroscopic traffic model has the advantage
when it comes to large scale designs thanks to the reduced
number of necessary variables [21]. Because we hope to
estimate congestions for an entire city, we use a macroscopic
model to keep the large scale implementation as simple as
possible. Indeed, we propose a system that can handle the
entire city of Ottawa including both freeways and surface
streets, is not limited by the number of sensors and is updated
every 5 to 6 minutes which is acceptable for the needs of
the ambulance dispatchers.

158

A. Module 1: Computing Sparse Local Estimates

The first module has the task of determining the most
likely travel speed for each road segment based on the
available sensor and user override data. To accomplish this
task, we construct, for each road segment, a speed profile
that is essentially a trend in ambulance speeds over time.

The sensor data that we use is automatic vehicle locator
(AVL) GPS data, available for many of Ottawa’s ambulances.
A GPS device is installed on the ambulance and transmits its
position in regular intervals to a central server that records
the data. Data from February 1, 2007 to December 20,
2007 were used for the experiments presented in this paper.
The dataset comprises approximately 18 million records,
with each record containing vehicle ID, date, time and GPS
latitude and longitude. Since the AVL data only gives the
positions of ambulances every 10 to 12 seconds on average,
we use 3 consecutive positions in time to reliably estimate
the ambulance’s direction and register it to a specific road
segment. Explicitly, if we know where the ambulance was
at time tt−1 and where it will be at time tt+1, then we
can determine on which road segment the ambulance is
travelling at time tt. We estimate the ambulance travel speed
using a straight line approximation by computing the distance
travelled and dividing this value by the time interval. For time
intervals on the order of 10 to 12 seconds, the straight line
approximation provides a satisfactory baseline though there
is room for improvement by using a more sophisticated road
following algorithm. Any invalid speeds due to GPS tracking
error are filtered in this process such that, from the original
18 million raw AVL samples, we obtain approximately 13
million useful ambulance speed samples that we refer to as
the processed AVL data.

Currently, we split the processed AVL data into two
classes, weekdays and weekends, so that the model can
be trained to give appropriate speed estimates according to
the day of the week and the time of day. In the future
more sophisticated data clustering could be used to improve
the estimates (e.g. splitting the data according to weather
conditions and holidays).

Next we construct two speed profiles (one for each data
class). Two different methods for constructing the trend in
ambulance speeds were investigated. The first uses linear
regression to estimate the coefficients of a polynomial fit
to the sample data,

Speed(t) = w0t
0 + w1t

1 + w2t
2 + ...+ wpt

p. (1)

The second method, bin averaging, does not attempt to fit
a curve to the data. Rather, we divide a day into 15 minute
bins and compute the mean for each bin. Fig. 2 shows the
weekday speed profiles of 4 different road segments with
abundant AVL samples using both methods.

Then we address the problem of merging different sensors
by converting arbitrary sensor measurements to a relative
congestion term ∈ [0, 1] using an equation that may be

Fig. 2. Weekday Speed Profiles for 4 Different Road Segments. Light
grey points show the processed AVL speed samples. The black dashed lines
is the fit due to bin averaging while the dark grey continuous line is the
polynomial fit.

unique for each sensor. For the AVL data, we use

Relative Congestion(t) = 1− Speed(t)
Speed Limit

, (2)

but for other sensors such as inductive loops the Relative
Congestion(t) might be obtained directly from counts rather
than from vehicle speeds.

Unfortunately, the relative congestions that serve as local
estimates are sparse and noisy. Since ambulances drive over
some roads more often than others, some road segments may
have tens of thousands of AVL samples while others have
none. Furthermore, as can be seen in Fig. 2, there is a great
deal of variance in the AVL data. Both sparse and noisy
data contribute to the likelihood that relative congestions of
neighbouring road segments contradict each other.

B. Module 2: Obtaining Dense Global Estimates

It is up to the second module to resolve local inconsisten-
cies and propagate the sparse local estimates to neighbouring
road segments such that we obtain dense global estimates that
are locally consistent. To accomplish this interpolation task,
we implement a Relaxation Labelling algorithm (RL) [22]
that uses the road network topology (number of lanes, speeds
limits and linkages) to determine how likely each road
segment is congested based on how likely its neighbouring
road segments are congested.

We chose the RL algorithm for interpolation because it
is relatively simple to implement and offers a baseline to
which we can compare eventual more complex strategies.
Furthermore, it allows us to split a complex computation
into many simple and parallel computations, uses context to
compensate for noise and ambiguity, and is deterministic.

We begin by representing the road network as a directed
graph structure. Each node in the graph corresponds to a
single road segment with a unique direction and nodes are

159

linked to each other via edges. As such, a two-way street
gives rise to two road segments whose directions are 180 ◦

apart while a one-way street corresponds to a single road
segment. Each node i has a set of m labels where each label
corresponds to a range of relative congestion. For example,
if m is 5, then labels {λ1, λ2, λ3, λ4, λ5} correspond to
relative congestions {[0-0.2], (0.2-0.4], (0.4-0.6], (0.6-0.8],
(0.8-1.0]} respectively. In turn, each label has a weight,
pi(λx), that defines the likelihood of the label. Label weights
are bound between 0 and 1 and a node’s label weights must
add up to 1 i.e.

∑m
x=1 pi(λ

x) = 1. Detailed next are the 8
main steps of the RL algorithm:

RL 1: Initialize the iteration counter k = 0 and the
label weights p̄ k according to the current date and time,
tcurr. If a given road segment at tcurr has only historical
data, then we initialize the label weights using a normal
distribution N(µ, σ2), where the mean µ is the relative
congestion (computed in Module 1) at tcurr and the variance
σ2 of the distribution is a function of both the variance and
the number of historical AVL samples. If there are many
samples and the AVL variance is low, then the label weights
will have a more peaked distribution. On the other hand, if
there are few samples or the AVL variance is high, then the
label weights will have a flatter distribution. In the extreme
case that the road segment has no historical data, then we
initialize the label weights using a uniform distribution. If
live sensor data are available or a user has manually entered
a speed override, then we initialize the label weights using
a highly peaked distribution.

RL 2: Compute the support of each label, q̄ k. The support
for a given label of a given node is dependent on the label
weights of neighbouring nodes and on the road network
topology. If each node has m labels such that node i with
label λ has neighbour j with labels λ′, then the support for
λ can be computed as follows:

qi(λ) =
m∑
λ′=1

rij(λ, λ′)pj(λ′), (3)

where rij(λ, λ′) represents the compatibility between label
λ at node i and label λ′ at node j. If the two labels
greatly support each other, then rij(λ, λ′) should be large
and positive. If the labels greatly inhibit each other, then
rij(λ, λ′) should be large and negative. Otherwise, if there
is no relation between the two labels, then rij(λ, λ′) should
be 0. In practice, node i can have multiple neighbours
j1, j2, . . . , jn with labels λ1, λ2, . . . , λn, respectively, where
n is typically 1-6. Then the equation for support becomes:

qi(λ) =
m∑

λ1=1

m∑
λ2=1

· · ·
m∑

λn=1

rij1j2···jn(λ, λ1, λ2, · · · , λn)

· pj1(λ1)pj2(λ2) · · · pjn(λn). (4)

Currently, the label compatibilities are static and do not
change according to the date or time. Only when the road
network topology is modified as in the case of a road or
lane closure is it necessary to re-compute them. The label
compatibilities are dependent on the road network topology

and on various traffic flow assumptions at intersections. As
a first-order approximation, the label compatibilities being
static provide a satisfactory baseline though eventually they
should be dynamic and also be dependent on intersection
data such as turn ratios.

RL 3: Compute the update direction of each label, ū k.
The algorithm to obtain ū is described in [22] Appendix A,
was used exactly as is and, as a result, is not detailed here
due to lack of space. In essence, it is shown in [22] that ū
is the projection of the support vector q̄ onto Tp̄, the set of
all tangent vectors at p̄.

RL 4: If ū k = 0̄ such that the projection computed
previously is zero then go to RL 8.

RL 5: Otherwise, update the label weights p̄ k+1 = p̄ k +
hū k, where 0 < h ≤ αk and αk is a small valued
maximum step size that may decrease as k increases to
speed convergence. Each iteration moves the label weights
p̄ incrementally in the projection direction.

RL 6: If k = kmax such that the iteration counter has
reached the maximum iteration count then go to RL 8.

RL 7: Otherwise, increment the iteration counter k = k+1
and go back to RL 2.

RL 8: Obtain the final labelling by assigning the label
with the largest weight to each node and go back to RL 1
to resume the entire process for the new current date and
time, tcurr′ . When each road segment is labelled with a most
likely relative congestion interval, we convert the centre of
the interval to a potential ambulance speed using

Speed = Speed Limit · (1− Relative Congestion). (5)

The entire RL algorithm starts over again in order to keep
the road network up-to-date with the latest speeds.

V. EXPERIMENTAL METHODOLOGY AND RESULTS

To validate our system, we employ a common technique
known as K-fold cross-validation. First, we split the historical
data randomly into k evenly sized parts called folds. Then
we choose one of the folds to act as the test set and train the
model on the remaining k-1 folds. We repeat this process k
times using each fold only once as the test set and always
training on the remaining folds. Due to the time it takes to
update the model and the large number of data samples in the
test set, we ran the traffic server and recorded the results over
a continuous span of 24 hours for each data class k times. If
k = 5, then it takes 10 days (= 5 folds× 2 data classes) to
validate the system regardless of the size of the road network
or the amount of historical data.

Using 5 folds, 9 RL iterations and 7 RL labels, we obtain
the results shown in Table I and II. Because each label in the
RL algorithm corresponds to a range of speeds, we compute
the model error in both kilometres per hour and labels.

In the hopes of reducing our error, we tried relaxing the
update time interval constraint from 5-6 minutes to 10-11
minutes in order to increase the number of RL labels from 7
to 9 thus reducing the coarseness of our estimates. Using 5
folds, 9 RL iterations and 9 RL labels, we obtain the results
shown in Table III and IV.

160

TABLE I
K-FOLD CROSS-VALIDATION SIMULATION RESULTS FOR WEEKDAYS

(TOP) AND WEEKENDS (BOTTOM) USING POLYNOMIAL REGRESSION, 9
RL ITERATIONS, 7 RL LABELS. MAE: MEAN AVERAGE ERROR;

RMSE: ROOT MEAN SQUARED ERROR; STD: STANDARD DEVIATION.

Fold k 1 2 3 4 5 Mean
MAE (km/h) 12.75 12.75 12.76 12.75 12.78 12.76
RMSE (km/h) 17.06 17.05 17.07 17.05 17.09 17.06
STD (km/h) 11.34 11.33 11.34 11.32 11.34 11.33
MAE (labels) 1.26 1.26 1.27 1.27 1.27 1.27
RMSE (labels) 1.82 1.82 1.82 1.82 1.82 1.82
STD (labels) 1.31 1.31 1.31 1.31 1.31 1.31

Fold k 1 2 3 4 5 Mean
MAE (km/h) 13.12 13.13 13.11 13.12 13.14 13.12
RMSE (km/h) 17.96 17.97 17.97 17.96 17.98 17.97
STD (km/h) 12.26 12.28 12.28 12.26 12.27 12.27
MAE (labels) 1.29 1.29 1.29 1.29 1.29 1.29
RMSE (labels) 1.93 1.93 1.93 1.93 1.93 1.93
STD (labels) 1.43 1.43 1.43 1.43 1.43 1.43

TABLE II
K-FOLD CROSS-VALIDATION SIMULATION RESULTS FOR WEEKDAYS

(TOP) AND WEEKENDS (BOTTOM) USING BIN AVERAGING, 9 RL
ITERATIONS, 7 RL LABELS. MAE: MEAN AVERAGE ERROR; RMSE:

ROOT MEAN SQUARED ERROR; STD: STANDARD DEVIATION.

Fold k 1 2 3 4 5 Mean
MAE (km/h) 12.18 12.17 12.18 12.18 12.19 12.18
RMSE (km/h) 16.25 16.24 16.26 16.24 16.26 16.25
STD (km/h) 10.76 10.75 10.76 10.75 10.76 10.76
MAE (labels) 1.22 1.22 1.22 1.22 1.22 1.22
RMSE (labels) 1.76 1.76 1.76 1.76 1.76 1.76
STD (labels) 1.27 1.27 1.27 1.27 1.27 1.27

Fold k 1 2 3 4 5 Mean
MAE (km/h) 12.24 12.25 12.22 12.23 12.27 12.24
RMSE (km/h) 16.69 16.69 16.66 16.67 16.71 16.68
STD (km/h) 11.35 11.35 11.32 11.33 11.35 11.34
MAE (labels) 1.23 1.23 1.22 1.22 1.23 1.23
RMSE (labels) 1.84 1.83 1.83 1.83 1.84 1.83
STD (labels) 1.37 1.37 1.36 1.36 1.37 1.37

VI. DISCUSSION

A. Validation

The mean absolute errors (MAEs) we obtained of 12-
13 km/h may seem large but, at the same time, they are
unsurprising for several reasons. First, we observed that the
AVL data has a great deal of variance, as can be seen in
Fig. 2. Second, our road network database of Ottawa has
errors in terms of road linkages (certain streets are supposed
to connect but do not), lacks critical information such as
labelling of one-way streets, and has incomplete information
such that certain streets have no speed limits while others
have ambiguous or no number of lanes information. Our
partners are actively working to get a more complete and
correct road network.

For computing local estimates, we notice that bin averag-
ing consistently leads to better results compared to polyno-
mial regression. The reason is not evident for roads with a
great number of AVL samples as is the case in Fig. 2 but,
for roads with too few AVL samples, polynomial regression

TABLE III
K-FOLD CROSS-VALIDATION SIMULATION RESULTS FOR WEEKDAYS

(TOP) AND WEEKENDS (BOTTOM) USING POLYNOMIAL REGRESSION, 9
RL ITERATIONS, 9 RL LABELS. MAE: MEAN AVERAGE ERROR;

RMSE: ROOT MEAN SQUARED ERROR; STD: STANDARD DEVIATION.

Fold k 1 2 3 4 5 Mean
MAE (km/h) 12.63 12.62 12.64 12.62 12.63 12.63
RMSE (km/h) 17.00 16.99 17.01 16.99 17.00 17.00
STD (km/h) 11.37 11.37 11.39 11.37 11.38 11.38
MAE (labels) 1.58 1.58 1.59 1.58 1.59 1.58
RMSE (labels) 2.30 2.30 2.30 2.30 2.30 2.30
STD (labels) 1.66 1.66 1.67 1.66 1.66 1.66

Fold k 1 2 3 4 5 Mean
MAE (km/h) 13.03 13.04 13.02 13.02 13.05 13.03
RMSE (km/h) 17.92 17.94 17.91 17.90 17.94 17.92
STD (km/h) 12.30 12.31 12.30 12.29 12.31 12.30
MAE (labels) 1.63 1.63 1.63 1.62 1.63 1.63
RMSE (labels) 2.44 2.44 2.44 2.44 2.44 2.44
STD (labels) 1.82 1.82 1.82 1.82 1.82 1.82

TABLE IV
K-FOLD CROSS-VALIDATION SIMULATION RESULTS FOR WEEKDAYS

(TOP) AND WEEKENDS (BOTTOM) USING BIN AVERAGING, 9 RL
ITERATIONS, 9 RL LABELS. MAE: MEAN AVERAGE ERROR; RMSE:

ROOT MEAN SQUARED ERROR; STD: STANDARD DEVIATION.

Fold k 1 2 3 4 5 Mean
MAE (km/h) 12.21 12.21 12.09 12.09 12.09 12.14
RMSE (km/h) 16.41 16.40 16.28 16.27 16.27 16.33
STD (km/h) 10.97 10.95 10.90 10.89 10.89 10.92
MAE (labels) 1.54 1.54 1.53 1.53 1.53 1.53
RMSE (labels) 2.24 2.24 2.22 2.22 2.22 2.23
STD (labels) 1.63 1.62 1.61 1.61 1.61 1.62

Fold k 1 2 3 4 5 Mean
MAE (km/h) 12.40 12.40 12.29 12.30 12.32 12.34
RMSE (km/h) 16.99 17.01 16.88 16.88 16.90 16.93
STD (km/h) 11.61 11.63 11.57 11.56 11.57 11.59
MAE (labels) 1.56 1.56 1.54 1.54 1.55 1.55
RMSE (labels) 2.34 2.35 2.32 2.33 2.33 2.33
STD (labels) 1.75 1.75 1.74 1.74 1.74 1.74

results in a poor fit. On the other hand, increasing the number
of RL labels did not produce a significant improvement in the
MAE or the root mean squared error (RSME). One possible
explanation is the large variance in the AVL data. Overall,
however, given the sparse nature of the measurements and
the coarse quantization of speed ranges, the results obtained
were much better than expected - more than sufficient to
estimate travel times between any two nodes in the network.
Perhaps more importantly, they can serve as a baseline from
which to assess enhancements to the method and new data
sources.

B. Data Sources

The original goal was to use image sequences from the
existing traffic camera network, but this proved unfeasible
for many reasons. Most notably is the lack of a uniform
infrastructure for routing data to a central server. Also, lack
of access to camera parameters such as pose and zoom makes
the design of robust estimation procedures problematic.

The inductive loop count data was more promising because

161

we had access to almost 200 loops spanning 5 years. Unfor-
tunately, we had an issue with the registration of the sensor
data for although we were given the nearest intersection and
the road segment direction, we did not know in which lane
or where along the road segment the loops were located.
Because different lanes do not necessarily receive the same
number of vehicle counts despite having approximately the
same travel speed, there is a high probability that different
loops of the same road segment contradict one another,
especially if one of the loops is located in a turning lane.
Another issue is the lack of ground truth that we could have
used to convert vehicle counts into travel speeds. Without the
exact loop positions and the ground truth, we have no way
of reliably converting loop counts into average travel speeds
unless we implement a microscopic traffic model which, as
we explained in Section IV, is an approach we want to avoid
if possible.

In the end, we used readily available AVL data which
turned out to be a more practical solution. Unlike the
inductive loops which are statically located and potentially
contradictory, we do not need to know the exact location
of the ambulance on the road segment because we assume
that the ambulance is travelling on whatever lane is available
and that the average speed of the ambulance for a given
lane is the same for each lane. This technology can also be
expanded to other fleets such as municipal vehicles or taxis to
produce more accurate results. Unfortunately, due to privacy
concerns, we cannot make the data we used available to the
research community for standardized testing.

VII. FUTURE WORK

In this section, we propose several possible improvements.
The first is to consider other data classes such as weather
conditions, holidays and special events or to employ more
sophisticated data clustering techniques. However, doing
so would only be useful if there is sufficient historical
data from which to construct reliable speed profiles. The
second is to improve the straight line approximation used to
estimate ambulance speeds and to distinguish speeds where
the ambulance has its lights or sirens on compared to when
they are off. As we are only interested in the redeployment
problem, we are not interested in the ambulance data with
lights or sirens on because ambulances generally drive with
their lights and sirens off during redeployment. Third is to
study the relationship between the sparseness of the data
and the accuracy of our estimates in order to answer the
question: how sparse is too sparse? Fourth is the need to
accept other data sources such as traffic cameras or inductive
loops since each provide useful information about the state
of the road network. Finally, label compatibilities should be
dynamic rather than static and be computed from intersection
data such as turn ratios.

VIII. CONCLUSION

To summarize, we presented a system that applies to
both freeways and surface streets, uses both historical and
live APL data, handles user modifications such as road

closures and speed overrides, outputs an estimate every 5-6
minutes, and interpolates the sparse sensor data by using the
Relaxation Labelling algorithm. Furthermore, we validated
the system using K-folds cross-validation and obtained a
mean absolute error of 12-13 km/h (1-2 labels), a root mean
squared error of 17-18 km/h (2-3 labels) and a standard
deviation of 11-12 km/h (1-2 labels). Currently, the traffic
server is being prototyped in Ottawa, Canada. CAE Presagis
aims to have it serve other departments such as Police or
Fire as well as other cities across the world. Such a system
is useful anywhere there are dispatchers that must effectively
manage a limited set of resources.

REFERENCES

[1] A. Rosenfeld, R.A. Hummel, and S.W. Zucker. Scene labeling
by relaxation operations. IEEE Transactions on Systems, Man and
Cybernetics, 6(6):420–433, 1976.

[2] W.J. Christmas, J. Kittler, and M. Petrou. Structural Matching in
Computer Vision Using Probabilistic Relaxation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, page 749764, 1995.

[3] P.W.H. Kwan, K. Kameyama, and K. Toraichi. On a relaxation-
labeling algorithm for real-time contour-based image similarity re-
trieval. Image and Vision Computing, 21(3):285–294, 2003.

[4] J. Miller and E. Horowitz. Freesim - a free real-time freeway traffic
simulator. IEEE Intelligent Transportation Systems Conference, pages
18–23, 2007.

[5] Freesim http://www.freewaysimulator.com/.
[6] LE Owen, Y. Zhang, L. Rao, and G. McHale. Traffic flow simulation

using Corsim. Simulation Conference Proceedings. Winter, 2, 2000.
[7] Corsim http://ops.fhwa.dot.gov/trafficanalysistools/corsim.htm.
[8] K. Nagel and M. Schreckenberg. A cellular automaton model for

freeway traffic. Journal de Physique I France, 2(2):2221–2229, 1992.
[9] R. Chrobok, J. Wahle, and M. Schreckenberg. Traffic forecast

using simulations of large scale networks. Intelligent Transportation
Systems, 2001. Proceedings. 2001 IEEE, pages 434–439, 2001.

[10] J. Fawcett and P. Robinson. Adaptive routing for road traffic.
Computer Graphics and Applications, IEEE, 20(3):46–53, 2000.

[11] Trafficmaster http://www.trafficmaster.co.uk/.
[12] Y. Wang, M. Papageorgiou, and A. Messmer. Renaissance: a real-time

freeway network traffic surveillance tool. Intelligent Transportation
Systems Conference, 2006. ITSC’06. IEEE, pages 839–844, 2006.

[13] L. Li, W.H. Lin, and H. Liu. Type-2 fuzzy logic approach for
short-term traffic forecasting. Intelligent Transport Systems, IEEE
Proceedings, 153(1):33–40, 2006.

[14] N. Utamaphethai and S. Ghosh. Dicaf: A distributed architecture for
intelligent transportation. Computer, 31(3):78–84, 1998.

[15] J. Lei, K. Redmill, and U. Ozguner. Vatsim: a simulator for vehicles
and traffic. Intelligent Transportation Systems, 2001. Proceedings.
2001 IEEE, pages 686–691, 2001.

[16] QI Yang and H.N. Koutsopoulos. A microscopic traffic simulator for
evaluation of dynamic traffic management systems. Transportation
Research Part C, 4(3):113–129, 1996.

[17] E. Lieberman et al. Watsim: wide area traffic simulation model for
freeways and surface streets. 75th TB Annual Meeting, Washington,
DC, 1996.

[18] L. Smith, R. Beckman, and K. Baggerly. Transims: transportation
analysis and simulation system. Technical report, LA-UR–95-1641,
Los Alamos National Lab., NM (United States), 1995.

[19] G. Cameron, B.J.N. Wylie, and D. McArthur. Paramics: moving vehi-
cles on the connection machine. Proceedings of the 1994 ACM/IEEE
conference on Supercomputing, pages 291–300, 1994.

[20] M. Fellendorf. Vissim: a microscopic simulation tool to evaluate
actuated signal control including bus priority. the 64th ITE annual
meeting, session, 32, 1994.

[21] A. Barisone, D. Giglio, R. Minciardi, and R. Poggi. A macroscopic
traffic model for real-time optimization of signalized urban areas.
Decision and Control, 2002, Proceedings of the 41st IEEE Conference
on, pages 900–903, 2002.

[22] R. Hummel and S. Zucker. On the foundations of relaxation labelling.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
5(3):267–287, 1983.

162

