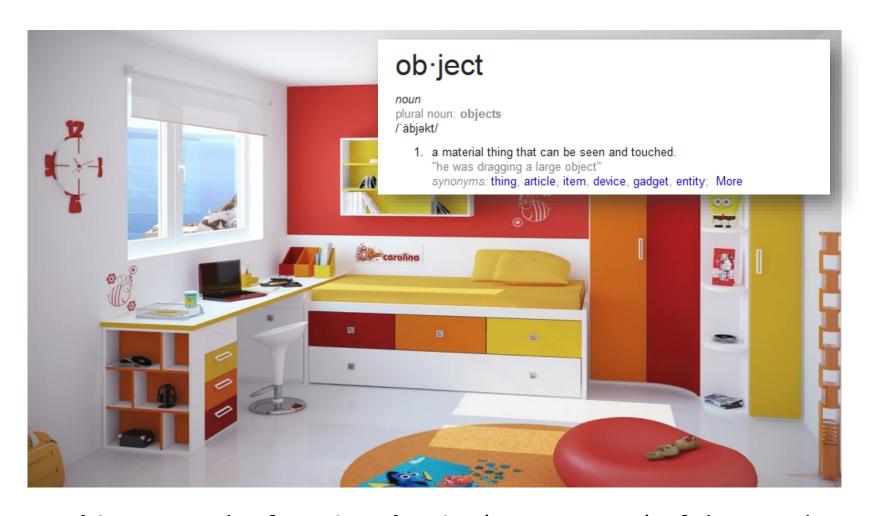
Haptic and locomotion Interfaces

Ilja Frissen School of Information Studies



Premise of this talk:

To design better human-computer/machine interaction

we need to understand

natural human-environment interaction

Objects are the **functional units** (or, currency) of the mind Our mind **parses the environment into objects**

What are the senses that we have?

Vision

Hearing

Smell

Taste

Touch (Haptics)

Proprioception

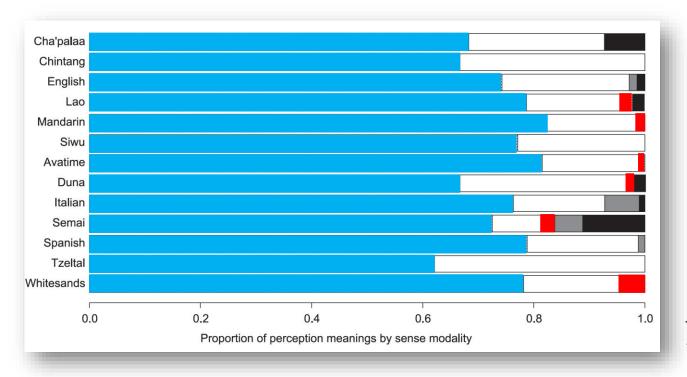
The sense of the relative position of one's own parts of the body and strength of effort being employed in movement

Vestibular sense

The sensory system that provides the leading contribution to the sense of balance and spatial orientation for the purpose of coordinating movement with balance

Interoception

The sense of the internal state of the body


Rank the following senses according to their importance

- olfaction (smell)
- gustation (taste)
- audition (hearing)
- vision (seeing)
- haptics (touch)

ocularcentrism <

Linguistic analyses across many languages show that **references to sight predominate** in spoken interaction

San Roque et al. (2015). Cognitive Linguistics, 26(1), 31-60.

- **⊠** Sight
- □ Hearing
- **Touch**
- Taste
- Smell

"Now **see** Mom, it's like this – When you're my age, you need a lot of extra money"

What do you call someone who cannot feel touch?

Anaphia: a total or partial absence of the sense of touch

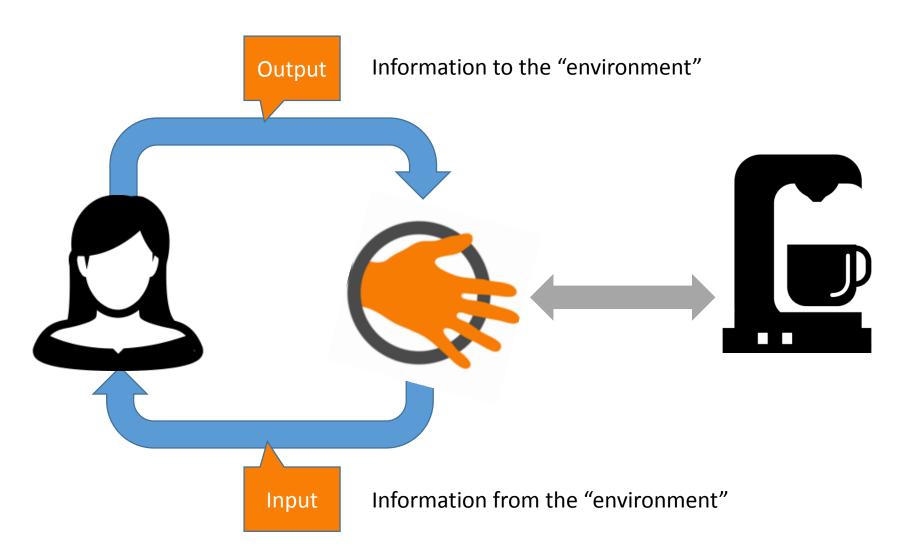
Dysesthesia: an unpleasant, abnormal sense of touch

- Incapacitated with pain, despite no apparent damage to the skin or other tissue.
- Patients suffering from dysesthesia also often suffer from psychological disorders

Of the senses, some consider the principal is touch. Each sense has its own element: sight, water; hearing, air; smell, fire; taste, earth.

[...] I will say (following common opinion) that touch corresponds to the dregs of the earth; [but] in its praise, that we believe that this [sense] alone is necessarily given for life.

We see that the other senses are given us by nature **to ornament our existence**.


Equicola [1525]

Active touch = **Haptics**

Haptics = "Passive" touch + Proprioception + Motor Commands

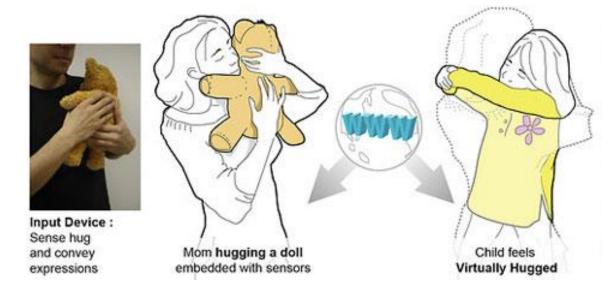
Input = Haptics = output

Haptics for input

- Haptic icons
- Notification
- Augmentation of GUIs
- Expressive control
- Communication of affect
- Mobile and handheld computing
- Guidance

Hapticons are small programmed force patterns that can be used to communicate a basic notion in a similar manner as ordinary icons are used in graphical user interfaces

Icon	Emoticon	Meaning	Hapticon
0	:)	regular smile	- 0 0 0
*	:D	big smile	₩₩
2	: (sad face	-
3	;-)	wink	
~	(k)	kiss	M
0	:\$	embarassed	

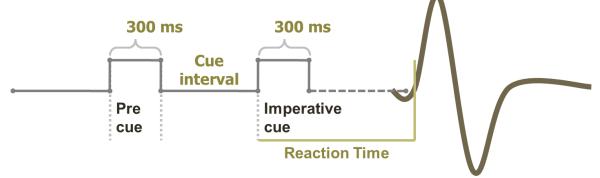

Some emoticons and proposed hapticons by Rovers and van Essen [2004].

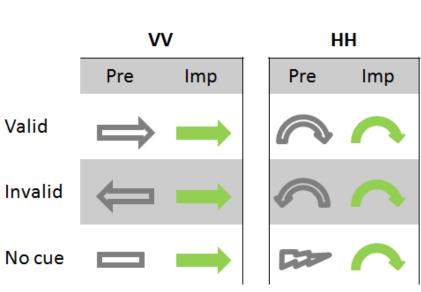
- Haptic icons
- Notification
- Augmentation of GUIs
- Expressive control
- Communication of affect
- Mobile and handheld computing
- Guidance

Young-Woo Park, Chang-Young Lim, and Tek-Jin Nam. 2010. **CheekTouch**: an affective interaction technique while speaking on the mobile phone. In CHI '10 Extended Abstracts on Human Factors in Computing Systems (CHI EA '10). ACM, New York, NY, USA, 3241-3246.

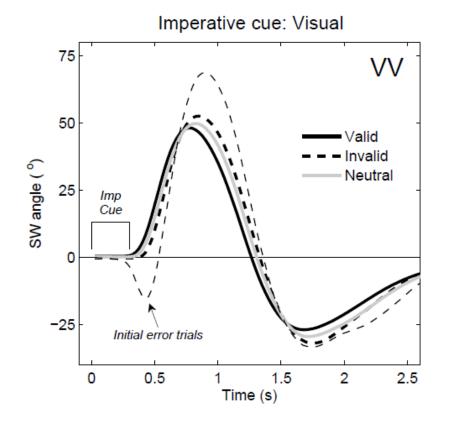
- Haptic icons
- Notification
- Augmentation of GUIs
- Expressive control
- Communication of affect
- Mobile and handheld computing
- Guidance

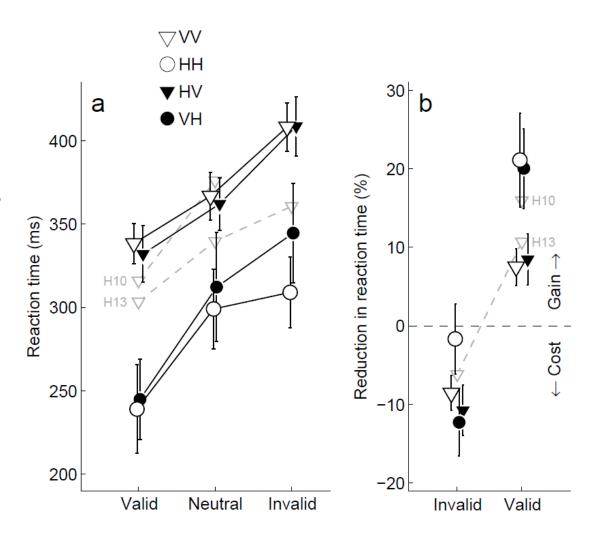
http://www.talk2myshirt.com/blog/archives/3971


- Haptic icons
- Notification
- Augmentation of GUIs
- Expressive control
- Communication of affect
- Mobile and handheld computing
- Guidance



- Haptic icons
- Notification
- Augmentation of GUIs
- Expressive control
- Communication of affect
- Mobile and handheld computing
- Guidance

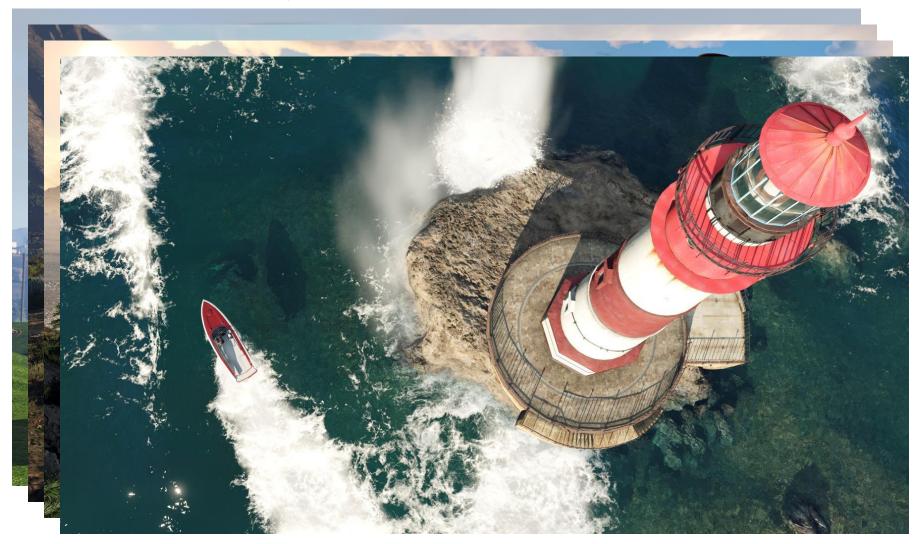

- Haptic icons
- Notification
- Augmentation of GUIs
- Expressive control
- Communication of affect
- Mobile and handheld computing
- Guidance


Fixed-base driving simulator

- Full instrumentation
- Monitors: 115° x 25°
- SCANeR™ Studio (OKTAL)
- Active steering system for realistic force feedback

- Haptic icons
- Notification
- Augmentation of GUIs
- Expressive control
- Communication of affect
- Mobile and handheld computing
- Guidance

- Haptic icons
- Notification
- Augmentation of GUIs
- Expressive control
- Communication of affect
- Mobile and handheld computing
- Guidance


Haptics for output

Natural interface?

Virtual Reality

We now have near-photo realistic visual VR

Immersive display

And we have hi-fidelity visual VR display options

Natural interface?

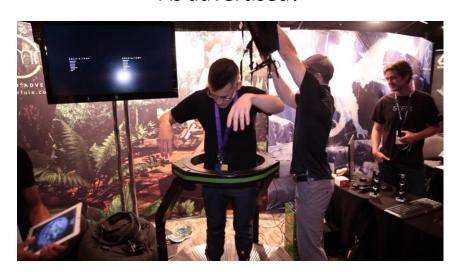
A treadmill is a solution; it allows user to cover great distances in a confined space. But movement is constrained to one direction/dimension

Natural unconstrained walking means going in any direction we please

Question 4 & 5

Design an interface that allows you to walk freely and naturally in all directions

Is the interface you designed...


- feasible?
- practical?
- affordable?

As advertised

https://www.youtube.com/watch?v=AZ9mA34Bzw0

As advertised?

https://www.youtube.com/watch?v=MPSqM-g7 r0

VirtuoSphere

http://www.youtube.com/watch?v=NmpOQZgHUMo

Cybersphere

https://www.researchgate.net/profile/Vinesh_Raja/publication/220425224_Cybersphere_The_fully_immersive_spherical_projection_system/links/02e7e5267d19844e85000000.pdf

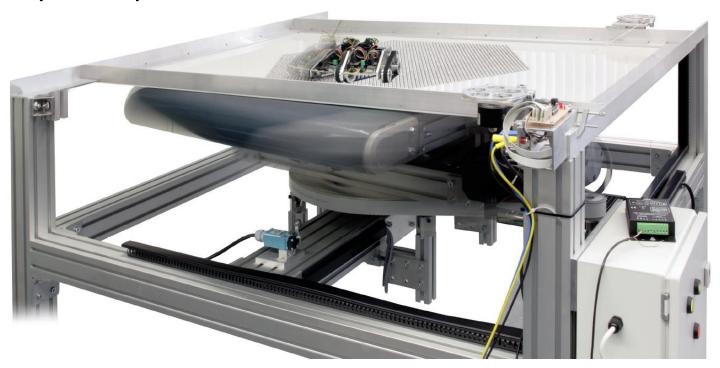
CirculaFloor

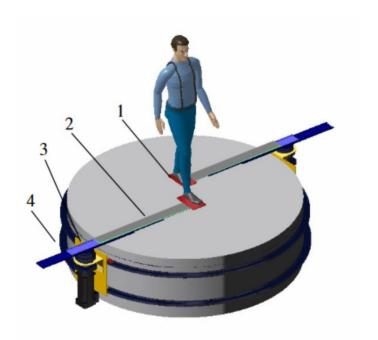
Iwata, H (2013). Locomotion Interfaces. In F. Steinicke, Y. Visell, J. L. Campos, & A. Lécuyer (Eds.), Human Walking in Virtual Environments: Perception, Technology, and Applications (pp. 113-144). New York: Springer Verlag. http://mcgill.worldcat.org/oclc/844194290

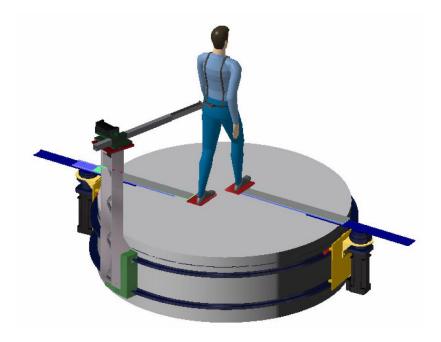
Torus treadmill

Iwata, H (2013). Locomotion Interfaces. In F. Steinicke, Y. Visell, J. L. Campos, & A. Lécuyer (Eds.), Human Walking in Virtual Environments: Perception, Technology, and Applications (pp. 113-144). New York: Springer Verlag. http://mcgill.worldcat.org/oclc/844194290

CyberWal


Frissen, I. et al. (2013). Enabling unconstrained omnidirectional walking through virtual environments: an overview of the CyberWalk project. In F. Steinicke, Y. Visell, J. L. Campos, & A. Lécuyer (Eds.), Human Walking in Virtual Environments: Perception, Technology, and Applications (pp. 113-144). New York: Springer Verlag. http://mcgill.worldcat.org/oclc/844194290


Cybercarpet



M. C. Schwaiger, T. Thummel and H. Ulbrich, "A 2D-Motion Platform: The Cybercarpet," Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC'07), Tsukaba, 2007, pp. 415-420. doi: 10.1109/WHC.2007.1

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4145210&isnumber=4145131

Schwaiger, M., Ulbrich, H., & Thümmel, T. (2006). A foot following locomotion device with force feedback capabilities. In *Proceedings of VIII Symposium on virtual Reality* (pp. 309-321).

 $\underline{https://www.digitalartsonline.co.uk/news/interactive-design/chi-2015-you-can-climb-virtual-stairs-with-\underline{these-real-boots/}$

In short

- Designing for natural interaction requires understanding natural interaction
- Natural interaction starts with the body, not vision or audition
- Body includes haptics and locomotion

Haptics

- Touch is typically considered less important than vision | hearing; but in a way it is the most important While you can live relatively easily without vision and/or hearing, but you cannot live without touch
- Touch is extremely robust
 It's extremely rare to not be able to feel touch
- We should consider designing interfaces that allow us to interact with virtual environments through haptics

Locomotion

- Walking one of the natural ways in which we engage with our environment
- We should consider designing interfaces that allow us to walk through virtual environments in a natural and unconstrained manner

 Easier said than done