
Assignment 2: Markov and Hidden Markov Models for Text

Introduction

In this assignment, you will develop Markov and hidden Markov models for English text. You may use any
programming language you wish to complete this assignment. Start by downloading the assignment data
files from http://www.cim.mcgill.ca/~jer/courses/ai/assignments/data.tar.gz.

There are 4 data files: vocab.txt, unigram counts.txt, bigram counts.txt, and trigram counts.txt.
The format for these files is as follows. vocab.txt contains the vocabulary, one word per line:

1 word1

2 word2

. . .
n wordn

There are two special words in the vocabulary. The words <s> and </s> denote the beginning and end of a
sentence respectively. The files *gram counts.txt contain a 3-gram probability model, with one
conditional probability table entry per line. For unigram counts.txt, each line of the file contains:

i log10 P (xt = i)

For bigram counts.txt, each line of the file contains:

i j log10 P (xt = j|xt−1 = i)

For trigram counts.txt, each line of the file contains:

i j k log10 P (xt = k|xt−1 = j, xt−2 = i)

Assume that any conditional probability table entry not given in the data file is 0. The
probability distributions may not sum to 1, due to missing (small) values.

Part 1: Generating Text Using a Markov Model

The first task in this assignment is to generate sentences using the trigram model depicted above. In this
model, each Xt is a discrete random variable denoting the tth word in a sentence, taking values from the
vocabulary defined above.

The joint probability distribution

This is a Markov model, a special case of a Bayesian Network. The probability distribution
P (Xt|Xt−1, Xt−2) is assumed stationary (same for all t), having the values given in the trigram data file
specified above.

Use the bigram distribution for P (X1|X0).

For P (X0), note that all sentences start with ¡s¿. P (X0 = <s>) = 1.

http://www.cim.mcgill.ca/~jer/courses/ai/assignments/data.tar.gz


Sampling from the network

Generate sentences using this model by implementing the prior-sample routine on this network. The
probability that prior-sample generates a particular event is given by the formula:

SPS(x1 · · ·xn) =

n∏
i=1

P (xi|parents(Xi))

where probabilities for n = 1 are given by the entries in the bigram data file and those for n = 2 are given
by the entries in the trigram data file.

You should start by setting X0 = <s>, then successively generate values for Xt, t = 1, 2, . . ., stopping when
Xt = </s>.

Note that you may generate a sample (Xt−1 = i,Xt−2 = j) for which there are no non-zero entries in the
trigram data file. In this case, you should back-off, and attempt to sample from the bigram model
P (Xt|Xt−1 = i). If again there are no non-zero entries, back-off to the unigram model P (Xt).

Part 2: Sentence Correction Using a Hidden Markov Model

Many real-world tasks, such as optical character recognition (OCR), or spelling correction, can benefit from
the use of a language model. Consider the nonsensical OCR output Us he said nit word by, or the
sentence she haf heard them with a misspelled word. In the OCR case, we could ask which sentence is
likely to be the real sentence, given this OCR output (of real words). In the spelling correction case, we
could ask which sentence is most likely, given this user input (containing real words and incorrectly spelled
words).

The second task in this assignment is to use the language model to clean up such imperfect sentences.

The joint probability distribution

We will use a first-order hidden Markov model, depicted above, to model the joint probability distribution.
The variables Xt are the unobserved actual words intended by the writer of the text that was input. The
variables Et are the observed words which were obtained from the OCR software, or input into a word
processor.

Use the same probability distributions for Xt as in Part 1 (you only need the bigram P (Xt|Xt−1)). For
P (Et|Xt) we will use the notion of edit distance between strings. The edit distance (or Levenshtein
distance) between two strings is the minimum number of operations (add character, delete character,
change character) needed to convert one string into the other. Let k = d(u, v) denote the edit distance
between strings u and v. We will define

P (Et = u|Xt = v) =
λke−λ

k!

known as a Poisson distribution, where λ is a parameter that is the expected number of mistakes made per
word. Use λ = 0.01.



To use the logsum trick, the forumla for P (Et = u|Xt = v) becomes:

log10 P (Et = u|Xt = v) = k log10 λ− log10k! + c

where c is a constant that does not depend on k and can be omitted.

You may download and use code for computing the edit distance in your language of choice.
Please cite the source in your report.

Correcting noisy input

Write a program to correct noisy (incorrect) input sentences using this model by implementing the Viterbi
algorithm for most likely sequence computation. i.e., for an input sequence e1:t, compute

argmax
x0:t

P (X0:t = x0:t|E1:t = e1:t)

Submitting Your Assignment

For each part of the assignment, include the source code in your submission. Also submit a brief report
with the following components:

• Examples of sentences generated in Part 1

• Source (where you obtained it) for edit distance code

• Examples of decoded sentences in Part 2, for the following inputs:
I think hat twelve thousand pounds

she haf heard them

She was ulreedy quit live

John Knightly wasn’t hard at work

he said nit word by

assume X0 for each of these is <s>, and do not add a trailing </s>


	Introduction
	Part 1: Generating Text Using a Markov Model
	The joint probability distribution
	Sampling from the network

	Part 2: Sentence Correction Using a Hidden Markov Model
	The joint probability distribution
	Correcting noisy input

	Submitting Your Assignment

