Next: Control of Limit
Up: Systems and Control
Previous: Non-linear System Identification
Nonlinear systems with nonholonomic constraints are encountered quite
frequently in practice but are known to be particularly difficult to
control. The difficulty in steering such systems is caused by the fact
that their linearization is uncontrollable and fully linearizing
state-feedback transformations cannot be constructed.
- Switching Control of Drift-Free Systems The project is
concerned with the design of discontinuous feedback controls which involves
control elements such as relay, time-delay and zero hold, to stabillize systems
of the form [{_inline}$dotx=sum_i=1^i=mg_iu_i${_inline}]. The resulting control law is
discontinuous but the discontinuities occur in well specified, isolated moments
of time, so the resulting closed-loop system does not exhilbit chattering. An
additional advantage of the designed feedback is that a priori constraints on
the controls can be incorporated easily.
- Guiding Function Approach to Stabilization of Nonholonomic Systems
A new method is proposed for the design of piece-wise continuous stabilizing
feedback for such systems. The method is based on introducing a set of guiding
functions (which are not Lyapunov functions) which help in the computation
of feedback.
H. Michalska
Thierry Baron
Mon Nov 13 10:43:02 EST 1995