Next:Nonlinear Control Systems Up:Maximum Likelihood Parameter Estimation Previous:Maximum Likelihood Parameter Estimation

Maximum Likelihood Parameter Estimation for Systems with Noisy Dynamics and Observations

C.D. Charalambous, R.J. Elliott, V. Krishnamurthy

This project is concerned with estimating unknown parameters for continuous-times systems which are subject to noisy dynamics and observations. In the special case of Gauss-Markov systems, the parameters entering the Kalman-Filter are estimated via Maximum-Likelihood techniques using the Expectation-Maximization algorithm.

Annual Report

Fri Nov 26 23:00:32 GMT 1999