

A FRAMEWORK FOR AUTONOMOUS SPACE ROBOTIC
OPERATIONS

Erick Dupuis, Canadian Space Agency, Canada

Régent L’Archevêque, Canadian Space Agency, Canada
Pierre Allard, Canadian Space Agency, Canada

Ioannis Rekleitis, Canadian Space Agency, Canada
Eric Martin, Canadian Space Agency, Canada

1 INTRODUCTION
Over the last few decades, robots have played an increasingly important role in the success

of space missions. The Shuttle Remote Manipulator System (also known as Canadarm) on the
Space Shuttle has enabled the on-orbit maintenance of precious space assets such as the Hubble
Space Telescope. On the International Space Station (ISS), the Canadarm 2 has been a crucial
element in all construction activities. Its sibling, Dextre, will be essential to the maintenance of
the ISS. In the context of planetary exploration, robotics has also played a central role on most
landed missions. The rovers “Spirit” and “Opportunity” are vibrant examples of how robots can
allow scientists to make discoveries that would be otherwise impossible.

In light of the missions currently being planned by space agencies around the world, the
coming years will only show an increase in the number and the criticality of robots in space
missions. Examples include DARPA’s Orbital Express mission [32] and DLR TECSAS [28] in
the area of satellite-servicing. Similarly, in planetary exploration, robotics will play a critical role

in the Mars Phoenix mission [27], NASA’s Mars Science Laboratory [14] and ESA’s Exo-Mars
[29].

One of the current drawbacks of space robots is that their operation is very human-
intensive. On manned platforms such as the Space Shuttle and the ISS, the baseline for operations
requires the involvement of an astronaut for control and monitoring and the support of ground
support personnel to monitor the operations in real-time. Furthermore, all operations carried-out
by these robotic systems are thoroughly verified in simulation prior to their execution in space.
Scenarios are run to verify all possible combinations of nominal and anomalous conditions. The
verification process spans over several months, taking nominally more than one year. Every hour
of operation requires thousands of hours of involvement from support personnel in the planning,
verification and execution phases [25]. The advent of ground control for the Canadarm2 on the
ISS has freed up the crew from having to perform all robotic operations. Ground-based operators
now have the capability to uplink individual commands for automatic execution on the ISS.
However, ground control has not reduced the level of effort required for robotic operations: the
process to plan, conduct and support robotic operations remains exactly the same.

In the case of robotic planetary exploration missions, the safety constraints are somewhat
more relaxed than for manned spaceflight. However, the constraints associated with the
communications between the robot on the surface of a remote planet and Earth-based operators
are much more stringent. For example, in the case of Mars exploration missions, the round-trip
time delays are on the order of 10 to 40 minutes. Because of the geometric configuration of the
planets and of the communications assets, it is not uncommon to have situations where there are
communication windows of only one hour over a period of 12 hours. In addition, the robot must
operate in an environment that is not known a-priori. Environment models are built on the fly and
are made available to the operations teams every cycle. The turn-around time for a typical
planning cycle from environment modelling, operation planning, verification and upload is on the
order of 12 hours.

Despite this, the operations philosophy is based in similar principles to the one used on the
International Space Station. Missions like Mars Pathfinder as well as the Mars Exploration
Rovers make extensive use of simulations in virtual environments to rehearse operations in order
to ensure success of the operations planned for the next cycle. This still requires relatively
detailed modelling of the environment and extensive modelling of the behaviour of the robot in
this environment. The result is a hectic schedule where dozens of contributors work on shifts to
ensure round-the-clock operations during the primary mission.

One of the main consequences of the current operational philosophy is that the cost of
operations is extremely high due to the necessity for intensive ground personnel support. For
manned programs such as the ISS, the planning cycle is so long that there is virtually no
flexibility to adapt to changing circumstances.

So far very little is implemented in terms of autonomous decision-making capability.
Operations are based on pre-planned, pre-verified command scripts. When situations requiring
some sort of decision are encountered, the robot must usually stop and wait for a human operator
to intervene. For example, in the case of the rovers “Spirit” and “Opportunity”, once an
interesting geological feature has been identified, it takes at least two command cycles (of 12
hours each) to go apply an instrument to it [24]. The scientific return on investment is therefore
severely limited by the limited on-board autonomy capability.

Over the last several years, several architectures have been proposed to address problems
similar to those associated with space robotics. Among the earlier approaches was the
subsumption architecture by R. Brooks [3] where different control laws were used in increasing
complexity. Alliance [23] was an extension of subsumption to control multiple robots. SRI

proposed SAPHIRA [16] as the main architecture for the robots from ActivMedia company
(manufacturers of the Pioneer mobile robots). From academic labs different open source packages
have been put forward addressing the issues of robot control. It is worth noting CARMEN [20],
RoboDaemon [5] and the most widely spread combination of Player/Stage/Gazebo [9][30] . The
above packages provided different simulators and a central control unit.

In the space community, several architectures have been developed to address the issues
associated with ground control. However, since the usual mode of operation for space robotics in
the past has been teleoperation with direct operator control or supervision, most of the approaches
have not focused on the implementation of autonomy. In the late 1990’s, the Canadian Space
Agency (CSA) and their industrial partner, MD Robotics, have developed the Intelligent,
Interactive Robotic Operations (IIRO) framework [7] , which allowed the teleoperation of remote
equipment in operational settings. The Remote Operations with Supervised Autonomy (ROSA)
architecture was a follow-on to IIRO and addressed the issue of scripted control and basic
autonomy requirements [6][8]. ROSA has been used as the basis for the development of the
ground control station for the robotic elements on the Orbital Express satellite-servicing mission .

Similar architectures were developed in Europe at the same time. The Modular Architecture
for Robot Control (MARCO) developed by DLR addresses similar issues in the context of
teleoperation, ground control, and telepresence [4] . The MARCO architecture and its relatives
have been used on several missions including ROTEX and ETS-7. Two other architectures were
also developed under the leadership of the European Space Agency: FAMOUS [10] and
DREAMS also concentrated on the issues associated with the teleoperation of robots in space. In
both cases, special attention was dedicated to the issues surrounding planning, verification and
execution of command sequences. Similarly, in the US, the JPL has developed a set of tools for
rover ground control from planning to post-flight analysis. This tool, called RSVP (Rover
Sequencing and Visualization Program) has been used with the Mars exploration rovers [19].

Despite the wealth of research in autonomous robotics and in control architectures for space
robots, relatively little has been done to address specifically the needs of autonomous space
robots. NASA/JPL have been developing/proposing three different architectures for applications
with a higher degree of autonomy in the last few years: FIDO, CAMPOUT and CLARAty. FIDO
[1] is a three-layer software architecture for real-time control of single rover systems equipped
with scientific payloads. CAMPOUT [15] is a control architecture for the real time operation of
multiple rovers. CLARAty [21][31] is a proprietary architecture that is becoming a requirement
for many missions. The main goal of CLARAty is to provide a systematic framework for treating
all the different vehicles/robots/instruments involved in Mars missions. CLARAty is object
oriented and according to the publications provides a high degree of reusability. In a similar
effort, the Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS) has developed a
software architecture for autonomy [1]. This architecture is composed of two main levels: a
decision level whose role is to make plans and supervise their execution and a functional
execution level whose role is to carryout low-level actions. The work of the LAAS is documented
in this book in the chapter by R. Chatila et. al.

In parallel with these efforts, the Canadian Space Agency has been developing the
Autonomous Robotics and Ground Operations (ARGO) software suite. ARGO provides a
framework for the integration of the space operations process from planning to post-flight
analysis. The objective of ARGO is to reduce operational costs and increase efficiency by
providing operator aids and permitting the implementation of a level of autonomy appropriate to
the application.

The target applications of the ARGO framework [18] cover the full spectrum of autonomy
from supervisory control such as might be expected for ISS robotics to more autonomous

operations such as would be encountered in planetary exploration missions. It also covers the full
range of space robotic applications from orbital manipulators to planetary exploration rovers. One
of the important features of the ARGO framework is that it does not provide a universal
architecture for ground control and autonomy. Instead, ARGO provides a set of toolboxes that
can be assembled in a variety of manners depending on the application and its requirements. To
facilitate the re-use of software, the design is modular and portable to the maximum extent
possible.

Several toolboxes already exist within the ARGO framework. The central element of the
ARGO framework is the Cortex Toolbox, which provides a set of tools to implement on-board
autonomy software based on the concept of hierarchical finite state machines. The Cortex
Toolbox allows an operator to graphically generate the behaviours to be implemented on the
remote system. It automatically generates the code to be uploaded and it can be used to debug
and monitor the execution of the autonomy software on-line and off-line.

A Re-configurable Ground Control Station has been implemented, which allows operators
to easily build an operator interface to send commands and monitor telemetry. This interface is
intimately tied to the Remote and Log Toolboxes. Using this tool, an operator can generate a
control station in a few minutes and even customize the control station on the fly. Finally, the
Remote Toolbox is used to distribute capabilities among different platforms. It is the central
mechanism used for remotely accessing devices and connecting to telemetry streams.

2 CONCEPT OF OPERATION
The basic premise behind the design of ARGO is the integration into a single environment

of the operations process from planning through verification to execution and post-flight analysis.
ARGO provides a set of tools that can be connected in context-dependent configurations. For
example, to plan and verify command sequences, the command and telemetry interfaces can be
connected to a virtual environment composed of a simulation model of the system to be
controlled along with a graphical rendering of the system and its environment. At run-time, the
same command and telemetry interfaces get connected seamlessly to the real system in space to
upload the pre-verified command scripts. After execution, it is possible to connect the telemetry
interface to the logged telemetry files to conduct off-line post-flight analyses.

One key feature of ARGO is the capability to implement varying levels of autonomy as
appropriate for the target application. One of the key determining factors is whether the
information being fed back to the operator is still current or has gone stale. Autonomy is not
required when the operator has adequate, up-to-date information and the ability to intervene in a
timely manner. However, if the operator only receives out-of-date information or loses the ability
to intervene, then he is not capable of making timely decisions and some amount of local
decision-making capability is required at the remote site. Factors that can influence the level of
autonomy required include long time delays, low communication bandwidths, intermittent
windows of communication, poor situational awareness and a dynamic environment.

For example, in the presence of communication links with low latency, high bandwidth and
high reliability, it is possible to maintain the operator in the loop for every decision. Primitive
commands can be sent to the remote robot one at a time and confirmations can be requested from
the operator before any command is executed. In such a case, the operator can intervene and over-
ride the robot in case of anomaly.

In contrast, a rover on the surface of another planet is subject to communications with long
delays, narrow bandwidth and frequent blackouts. The operator has relatively poor situational
awareness because of the bandwidth limitations and no ability to intervene in a timely manner
because of the long delays and frequent blackouts. The environment is unstructured and, in some

cases, could even be unknown to the operator. In this case, it is preferable to implement some
autonomous decision-making capability. Relying on the operator for every decision will result in
long idle times between communication windows while the robot is waiting for instructions.

To implement such a variety of levels of autonomy, the ARGO framework makes use of
concepts such as command scripts and autonomous behaviours. Command scripts are files in
which sequences of commands are recorded for automatic execution. The scripts are built using
the finite state machine formalism, which is a convenient powerful way to represent logical rules.
Commands are represented as discrete states that are linked by event-driven state transitions. In
this context, states represent individual actions to be performed by the robot and transitions are
events that cause the script to leave its current state to move into the next one. Typical state
transitions can include external events such as sensor values and operator inputs, as well as
internal events such as completion of the previous command or failure to complete it. The finite
state machine formalism allows the implementation of decision-based branching as well as loops
in the script. The simplest incarnation of a command script is a linear series of primitive
commands for the robot to execute from start to finish.

Autonomous behaviours are built using the same methodology as scripts. In fact,
behaviours can be seen as sub-scripts that can be invoked to handle some pre-determined
conditions that the robot is expected to face during its mission. Whereas scripts are specific to one
particular scenario, behaviours are libraries of action sequences to be undertaken by the robot
under triggering conditions. Behaviours, therefore, provide the robot with some amount of
reactive autonomy to make decisions and take action on a determined set of events or conditions.

Behaviours can be hierarchical in nature: i.e. the states in the finite state machine
composing a behaviour can themselves be behaviours. Behaviours provide the capability for
operators to generate much more compact command scripts since complex operation sequences
can be encapsulated in a single command that can be invoked at different times in a script or even
by another behaviour.

The fact that ARGO treats behaviours in the same manner as command scripts allows the
operator to program, verify and uplink autonomous behaviours in the same development
environment that is used for operations planning. Thus, ARGO truly provides an integrated
environment for all operations-related issues from design and testing of autonomous behaviours
to planning, verification and execution of command scripts.

3 THE ARGO TOOLBOXES
Given the diversity of applications targeted by the ARGO framework, it was recognized

very early that “one solution cannot fit all”. The design philosophy behind ARGO is therefore to
provide a set of toolboxes that can be assembled as needed to suit the operational needs of the
target application. In order to facilitate the re-use of these software toolboxes from one
application to the next, the design is modular and portable to the maximum extent possible. This
is accomplished by using recognized standards such as the Java programming language, the
Eclipse development environment, the XML standard and UML software development
methodologies. These facilitate software portability and have accelerated the development cycle.
All of the toolboxes interact via the Remote toolbox (described later), which enables seamless
integration and easy reconfigurability.

A lot of attention has been dedicated to ensuring the usability of the toolboxes: User
interfaces are designed keeping in mind that the operator should concentrate on solving
operational problems instead of developing code. Graphical programming aids provide an
intuitive interface for developing scripts and behaviours as well as for assembling graphical user
interfaces for the reconfigurable ground control station (RGCS). The RGCS, itself, makes

extensive use of graphical tools for easy monitoring of telemetry. All command and telemetry
channels are automatically identified in a database built by the Remote toolbox to ease the process
of assembling the application-specific software infrastructure.

3.1 The Cortex Autonomy Toolbox

The central element of the ARGO framework is the Cortex Toolbox, which is used to
implement command scripts and sets of reactive behaviours. Cortex has been developed in light
of the fact that the development of such behaviour sets rapidly becomes labour intensive even for
relatively simple systems when using low level programming languages, thus making reusability
very difficult if not impossible. Cortex is based on the Finite State Machine (FSM) formalism,
which provides a higher-level way of creating, modifying, debugging, and monitoring such
reactive autonomy engines. Some advantages of this representation are its intuitiveness and the
ease with which it can be graphically constructed and monitored by human operators.

The concept of hierarchical FSM allows a high-level FSM to invoke a lower-level FSM.
This provides the capability to implement hierarchical task decomposition from a high-level task
into a sequence of lower-level tasks. If the FSM is implemented in a modular fashion, it allows
the implementation of the concept of libraries that provide the operator with the re-use of FSM
from one application to another.

Figure 1 - A Simple Finite State Machine

In general, FSMs are used to represent a system using a finite number of configurations,
called states, defined by the system parameters or its current actions. In the FSM shown in Figure
1, the states are Starting_Motion, Turning, and Stopping_Motion. In this case, actions are
defined within the state, and they occur during state entry, re-entry and exit. For example, in
Figure 1, when entering the Turning state, the current robot azimuth angle could be recorded to
serve as a starting point for the destination angle computation.

The system can transition from one state to another based on its current state, conditions
and outside events. Conditions on transitions are often referred to as Guards, and are
implemented as statements that can be evaluated as being either true or false. Outside events,
called Triggers, make the FSM evaluate its transition's guards and enable a transition to occur. In
Figure 1, the system will transition from Starting_Motion to Turning once the robot motion is
confirmed, or from Turning to Stopping_Motion if the compass is functioning correctly and its

readings confirms the robot has turned by the specified angle. In this particular FSM, no specific
Triggers have been defined, so any Trigger (such as a periodic "CLOCK" event) will make the
FSM evaluate its transitions.

A set of states connected together by transitions forms a state machine. In Figure 1, the
Turn_on_Spot_by_Angle block is an FSM that implements a behaviour that has a mobile robot
turn on the spot. The FSM also contains parameters it uses to make decisions (such as the current
robot heading and the commanded angle of the turn) and paramaters on which it acts (the robot
itself).

In Figure 1, Starting_Motion is represented as a single state. However the logic to be
used in this state could be complex. In order to represent the state logic, the user can decide to
use a sub-FSM in its place. The result is a Hierarchical Finite State Machine (HFSM) as shown
in Figure 2.

Figure 2 - A Hierarchical Finite State Machine

In this case, the Starting_Motion sub-FSM can be made modular by specifying the robot
on which it acts as an input parameter. Defining parameters required or produced by a FSM
defines its interface to the outside world thus allowing its reuse in various higher levels FSMs, an
approach that has been successfully used in software libraries for years. This is the strategy used
by Cortex to provide FSM modularity and reusability.

Graphical User Interface

The use of an intuitive graphical representation of FSM (see Figure 3 and Figure 4) by
Cortex allows the developer/operator to concentrate on the problem to be solved instead of
concentrating on the programming skills to implement the solution.

The use of hierarchical FSM can address a wide spectrum of autonomy levels, from simple
sense and react behaviours relying on sensor input to high-level mission scripts. For example,
Cortex can be used to implement an emergency stop when an obstacle is detected by a sensor, as
well as the higher level behaviour that will have the robot follow the obstacle edge until it can
resume its original trajectory toward a user specified destination.

Figure 3 – Cortex GUI: FSM Editing

Figure 4 – Cortex GUI: FSM Monitoring

FSM are assembled graphically using States, sub-FSM, junctions (a construct used to
combine transitions) and transitions (Figure 3). The operator can provide JAVA code snippets for
state actions and transition's guard expressions and can define the inputs, local variables, and
output parameters of each sub-FSM. The user can also assign a priority to each transition to force
the order in which their guards are tested during execution. Constructs from other FSM can also
be graphically "cut-and-pasted" to the current FSM to allow for the reuse of existing FSMs.

FSM Implementation Generation

The current implementation of Cortex provides an automatic code generator that produces
JAVA source code to implement the FSM defined by the user. The code generator provides FSM
topology checking to detect unreachable states and transition loops. A compiler module then
compiles the code, reports problems, and helps the operator localise errors by highlighting FSM
components where code is in error. At the moment, Cortex does not yet perform advanced forms
of formal system verification such as temporal or logical checks. Such verification mechanisms
will eventually become essential for the verification and validation of the generated software
though methods other than extensive simulation.

Remote Operations and Monitoring

Once the FSM code has been successfully generated and compiled, the operator can
monitor its execution on line, as well as interact with the FSM execution by firing events, as
shown in Figure 4. The FSM graphical representations are animated in real-time to provide a
monitoring mechanism to the operator/developer. This includes highlighting of current state and
the transitions that led to that state, as well as the status of the FSM parameters.

The Cortex GUI can record all FSMs events in a file. This allows for a step-by-step
playback of the FSM execution to assist in the analysis and debugging of FSMs execution. The
playback supports all of the on-line graphical animation.

Cortex fully integrates the Remote toolbox functionalities. This allows the Cortex GUI and
the FSMs to be distributed on different machines, which, in turn, allows FSM to be monitored
and controlled remotely.

The distribution can also be performed at the FSM/sub-FSM level. Such a feature supports
the distribution of sub-FSMs on different computers, a capability that can be used in multiple
robots scenarios.

3.2 Reconfigurable Ground Control Station

The second key component of the ARGO framework is the Reconfigurable Ground Control
Station (RGCS). The RGCS has been developed in reaction to the fact that projects in remote
systems or autonomous systems all require a control station for the operator and that the
development of this station is typically a very tedious, lengthy process that re-develops the same
capability every time. To overcome this problem, the RGCS toolbox offers a set of standard
graphical user interface (GUI) tools that readily connect with a remote system through the ARGO
framework. It connects with remote systems through a set of commands and telemetry interfaces.
The list of available control capabilities and telemetry signals is built automatically since the
RGCS connects to the database that is used to generate the on-board software of the remote
system. The RGCS palette contains a list of graphical widgets used to send commands and to
display telemetry. The operator can then build a GUI rapidly by clicking and dragging items on a
control panel and linking them to the resources being controlled or sending telemetry. Figure 5
shows a simple implementation of a command and telemetry panel for a manipulation
application.

Figure 5 - Snapshot of the Remote Ground Control Station

The addition of context dependent panels allows the entire operations process to be run on a
single control station from mission planning to verification, execution and post-mission analysis.
The operator can set up context-dependent control pages connected to different telemetry sources
or commands sinks. For example, in the verification phase, it is possible to send commands to a
simulator of the system and simulate its response before uploading the command to the real
system. In the execution context, the commands are then sent to the real autonomous system and
the telemetry is displayed on the station. The same interface can then be used in post-mission
analysis context to display telemetry from a log file to analyse in detail the execution of a past
mission. The addition of a graphical rendering application provides a powerful interface for easy
interaction with the remote robot.

3.3 The REMOTE Toolbox

The REMOTE 1 Toolbox is the glue that is used to integrate the toolboxes available in the
ARGO framework. It provides a set of standard Application Programming Interfaces (API)
unifying the methods used to send commands and receive telemetry between sub-systems. The
Remote Toolbox can be used to connect a ground station to a remote robot, to integrate inter-
acting sub-systems on the remote robot or even to link ground stations together. It provides
generic, reliable and manageable tools for remote-system control.

Any system that can be locally controlled through a Java class layer can be remotely
controlled through the Remote API. Its modular construction allows easy interfacing with any
communication protocol or media. The Remote API allows the software developer to make
abstraction of the fact that the software is distributed over several processes and platforms. Each
interface is coded with an abstraction layer that is handled by the Remote API through a Java
Layer.

Figure 6 shows how the Remote Toolbox allows the developer to move easily from a local
implementation to a remote implementation. In the latter case, Remote client-server pairs are
created to handle the exchange of commands and telemetry in a manner that is completely
transparent to the operator and the developer.

(a) Local Execution (b) Remote Execution

Figure 6: Remote Architecture Usage Sample

1 Remote stands for Remote Execution and Monitoring of Objects for Teleoperation Environments

The Remote API has been developed as a multi-user, multi-target system and provides
mechanisms for conflict-resolution among users. It offers monitoring and administration tools,
which allow some users to observe and eventually interfere with other users’ actions, without
compromising system stability. Extensive error-tracking and execution-feedback features are
also part of this toolbox, as well as abort mechanisms.

The Remote toolbox provides a set of meta-commands to manage and monitor the
submission/execution queue of commands to a remote device. In particular it allows the user to
cancel previously submitted commands that are queued for execution, to monitor the progress of
commands, from acknowledgement to completion, and to be alerted on any error or abnormal
situation that occurs during the execution process. It allows safe multi-user operation, together
with priority mechanisms that prevent conflicts. It also provides both blocking and non-blocking
operation, as well as batch-mode command envoy. Finally, Remote also provides advanced
scheduling and prioritizing mechanisms.

The toolbox provides default TCP-IP and Local communication protocols. It also offers
the developer the option to provide his own protocol (e.g. Serial, UDP). First tests have been
recently performed with SCPS2-TP technology. SCPS defines a set of revisions to the Internet
protocols to enable them to operate properly over stressed communications links. It extends
normal TCP/IP to become an 'upgraded' TCP for space.

4 SAMPLE CASES
The ARGO framework has been applied to a few reference cases typical of space robotics

applications. Two examples are described in the following section. The first scenario is a satellite
servicing application in Low-Earth orbit. This is representative of most robotic manipulation
tasks in Earth orbit where the environment is known and structured but it is dynamic since the
satellite to be captured is in free flight. Bandwidth limitations and communication dropouts
dominate the quality of the communication link. The satellite-servicing scenario is implemented
on a robotic test-bed in laboratory settings.

The second scenario is a planetary exploration scenario where a rover autonomously
explores the surface of a remote planet. In this case, the communications are subject to long
delays and narrow communication windows. The operator must uplink a command script for a
long period between communication opportunities and cannot intervene during operations. This
scenario is implemented on a laboratory rover used in an outdoor test facility that is
representative of the Martian topography.

4.1 On-Orbit Servicing Scenario

The first category of robotic missions driving the requirements of ARGO is autonomous on-
orbit servicing of failed/failing spacecrafts. The commercial viability of such operations will
require the usage of an efficient operations planning, verification and execution process. In
addition, some basic autonomy capabilities will be required to perform the capture of the client
satellite to be serviced.

Such capabilities will be demonstrated during the TECSAS mission [28] currently planned
for 2009 by the Deutsches Zentrum für Luft und Raumfahrt (DLR). TECSAS is aimed at the in-
flight demonstration of key technologies for on-orbit servicing. The mission consists in sending a
servicer satellite equipped with a robotic arm to capture a client satellite on which maintenance

2 Space Communications Protocols Specification

operations will be performed on orbit. It will demonstrate the capability of rescuing a scientific
micro-satellite with failed control system and prolonging its operational life in space.

The Canadian Space Agency will participate in the TECSAS mission. One of its key
contributions to the mission is the utilisation of the ARGO Toolboxes for the autonomous capture
of an uncooperative satellite. In this context, an uncooperative satellite is defined as a satellite
that was not designed specifically for servicing and/or that does not participate actively to the
rendezvous and capture.

Figure 7:CSA Automation Robotics Testbed

In preparation for TECSAS, the ARGO technologies are validated in the laboratory on the
CSA Automation and Robotics Test-bed (CART). This test-bed, shown in Figure 7, is composed
of two 7-degree-of-freedom (DOF) manipulators. One of the manipulator arms is equipped with
a mock-up of the client satellite in 2/3rds scale. The manipulator is used to emulate the motion of a
tumbling satellite, maintaining constant angular momentum. The other manipulator emulates the
motion of the arm on the servicer satellite and is used for the capture.

The robotic end-effector on the servicer arm is a SARAH hand developed at Laval
University [17]. SARAH, shown in Figure 8(a), is a 10-DOF adaptable under-actuated hand. The
hand, because of its capability to adapt mechanically to different shapes, does not require a
specialized grapple fixture. An active vision system, the Laser Camera System (LCS) of Neptec
shown in Figure 8(b), is used to visually acquire the pose of the client satellite in order for the
manipulator to perform appropriate manoeuvres.

 (a)

(b)

Figure 8: (a) The SARAH Hand grasping the target satellite; (b) Laser Camera System (LCS)

The overall implementation of this On-Orbit Servicing (OOS) demonstration on the CART
test-bed is presented in Figure 9. The overall control architecture of the two robotic arms is
implemented in Matlab/Simulink. The execution code is automatically generated using the Real-
Time Workshop toolbox of Matlab and is compiled and run on a cluster of Pentium IV computers
operating under the real-time QNX environment.

Remote Server

Cortex

ARGO Resource ServerARGO Resource ServerARGO Resource Server
Remote ServerRemote ServerRemote Server

Cortex

TCP-IP / Flight SCPSTCP-IP / Flight SCPS Internet

Hardware

CART SARAHLCS

CART
Simulator

Ground Control Station Surveillance cameras

Figure 9: Overall implementation of the CART testbed

The Cortex Toolbox is used to implement the behaviours required for the autonomous
capture of the client satellite. On TECSAS, the operator will be responsible for the planning and
execution of the long-range rendezvous of the two spacecrafts. The autonomy engine will take
control when the two spacecraft are distant by a few meters. It will be responsible for performing
the final approach of the servicer spacecraft to the client, deploying the manipulator arm and
performing the capture of the slow spinning/tumbling client satellite.

Figure 10: The Cortex engine for the capture scenario in the CSA lab.

Transitions between phases of the operation are triggered by sensory events. The Cortex
engine considers anomalies such as the possibility of the client spacecraft to drift out of the
capture envelope of the manipulator (through translation or rotation), blinding of the vision sensor
or loss of sight, reduction of the safe distance between the two manipulators below an acceptable
limit, or failed capture which results in the client satellite being sent into a tumble. Figure 10,
presents a Cortex implementation of the later phases of a typical OOS after an autonomous far
rendezvous has been performed. Following a modified version of the basic behaviour pattern, the
operator has overriding control of pausing the process using a soft stop and then restarting it, or
terminating the process by using a hard-stop. The actual capture sequence is itself a state machine
of three stages (approach, align, and capture).

In this architecture, the Ground Control Station is first used to develop the command scripts
and autonomous behaviours using the Cortex toolbox. In this context, the RGCS is connected to a
simulator of the remote system, which includes the dynamics of the two satellites, the robot arm
and the vision system. The simulator is then used to validate the command scripts and the
autonomous behaviours associated with each phase of the mission. Depending on the
predictability of the parameters triggering transitions in the Cortex engine, some portions can be
simulated in a very deterministic manner. For example the manipulation of Orbital Replacement
Units (ORU) is performed in a very controlled and static environment, the client satellite itself,
and is subject to very little uncertainty. On the other hand, other portions of the mission, such as
the capture of the client satellite, will be subject to factors such as illumination conditions and
initial conditions on satellite attitude, which are much more unpredictable. The validation of the
portions of the command script and autonomous behaviours associated with these events will
therefore require validation using a broader range of parameters to systematically verify the
plausible outcomes of the mission.

After verification, the RGCS is reconfigured to connect to the real system. The validated
Cortex behaviours and scripts are then uploaded to the system for execution. Depending on the
communication windows, it is possible to require operator confirmation before the performance
of key steps in the command script. The synergy of the Cortex autonomy engine and the Remote
toolbox allow for operator intervention at different phases of an operation without hindering the
autonomy nature of the operation. For example, operator confirmation could be requested before
starting the final capture sequence. This approach would simplify the interactions required

between the attitude and orbit control systems of the two spacecrafts by leaving the coordination
to the ground control personnel.

4.2 Planetary Exploration Scenario

The second category of missions driving the requirement of the ARGO framework is
planetary exploration-class robotic missions. The current approach used for planning, verifying
and executing operations of planetary rovers relies extensively on large teams of operators on the
ground to plan the navigation and scientific operations. Because of the long time delays and
narrow communication windows, command scripts must keep the robot busy for long periods of
time and operators cannot intervene during the command execution. Increasing the autonomy of
planetary rovers offers the potential to greatly enhance the scientific return on investment by
increasing the productivity of the robot.

To validate the ARGO tools for this category of missions, a capability for autonomous long-
range rover navigation has been implemented using a laboratory rover and a terrain representative
of the Martian surface. In this case, long-range navigation is defined as navigation of the rover to
a final destination located beyond its visual horizon. The rover must therefore be able to navigate
through an environment in which operations have not been deterministically validated by
simulation.

The Mobile Robotics Test-bed (MRT) used for long-range navigation experiments is based
on a Pioneer P2-AT robot (see Figure 11). The sensor suite of the MRT includes wheel encoders
for odometry, a six-axis Inertial Measurement Unit (IMU), a digital compass for azimuth as well
as sonars and optical proximity sensors for obstacle and hole detection. A scanning lidar sensor
(ILRIS 3D unit from Optech) is used to obtain detailed terrain models for path planning. The
experiments are conducted in the Canadian Space Agency’s Mars emulation terrain, a facility
emulating several different kinds of Martian topography (plains, hills, canyons, rock fields,
craters) over an area of 30 meters by 60 meters (see Figure 12).

The proposed approach to long-range navigation requires 3D environment sensing, feature-
based localization, inertial navigation and guidance and map-based path planning, all under FSM
based reactive behaviours.

Figure 11 - The Mobile

Robotics Test-bed
Figure 12 - The Mars Emulation Terrain

As in the On-Orbit Servicing scenario, Cortex is used to implement all autonomous
behaviours.

Figure 13 shows the high level decomposition of the behaviour required for navigation
over the horizon. Every box represents a hierarchical finite state machine (FSMs) that is in itself
decomposed into smaller finite state machines, each one implementing simpler behaviours.

The default entry point for this behaviour is a call to the lower-level behaviour used to scan
the terrain using the lidar sensor thus obtaining a dense 3D surface scan. The Scan behaviour is
also used to generate a triangular mesh of the recently scanned terrain model. Nominally, the next
action taken by the FSM is to call the Localize behaviour to position the robot in the world model
using an iterative closest point algorithm [11]. This behaviour also merges the recently scanned
terrain model with any a-priori terrain models obtained from previous observations. The next step
is then to plan a path towards the final destination using a graph search algorithm on the
triangular mesh.

The Navigate behaviour decomposes into lower level behaviours responsible for executing
the planned path and reacting to the presence of obstacles. Several events can cause transitions to
occur in the High-Level Navigation behaviour. Examples of such events include the detection of
obstacles, the presence of a high terrain uncertainty index, or failure of any of the lower level
behaviours to complete successfully. For simplicity of illustration, the FSM shown in Figure 13
has been depicted without most of the transitions associated with error conditions.

Each of the lower level behaviours is typically based on the behaviour template shown in
Figure 14. This template is mostly used for behaviours that run in a continual fashion (as opposed
to a series of discrete events). It provides the standard modes in which the behaviours can be at
any time (e.g. Initialising, Running, Pause, Recovering from error, etc.) along with the transitions
that can be expected between these standard modes.

Figure 13 - High-Level Navigation
Behaviour

Figure 14 - Basic Behaviour Template

Because the rover nominally operates in an environment that is unstructured and only

partially known, verification of behaviours and command scripts cannot be performed in a
deterministic fashion before every uplink. It is therefore not necessary in this case to connect the
Ground Control Station to a simulator in an attempt to predict the outcome of every operation.
Instead, validation is done extensively when the behaviours are developed in an attempt to predict
the reaction of the system within certain bounds of environment parameters. The RGCS connects
to the remote equipment in “batch” mode uplinking behaviours and command scripts in batch and
receiving packets of telemetry typically after the completion of the navigation task.

For the planetary exploration scenario, the modularity of the ARGO toolboxes allows us to
combine different basic behaviours in a variety of ways and, as such, to identify recurrent
behaviours. Moreover, the development of a basic library of behaviours enables the rapid
prototyping and testing of a variety of algorithms.

5 CONCLUSION
Frameworks such as ARGO offer great potential to reduce the cost of operations through

integration, and to enable more capable missions through the addition of autonomy. However,
several important steps remain before such frameworks are accepted. The biggest problem it faces
at the moment is its incompatibility with the current operations paradigms.

The operations culture of space robotics programs has been inherited from past manned
programs such as Apollo where the impact of any failure could have been catastrophic on the
survival of the crew. The current methodology for space robotic operations on manned programs
such as the ISS requires the involvement of a local operator for control and monitoring and the
support of ground support personnel to monitor the operations in real-time. All operations
carried-out by these robotic systems are thoroughly verified in simulation prior to their execution
in space. Scenarios are run to verify all possible combinations of nominal and anomalous
conditions in order to guarantee safety and mission success under all foreseeable circumstances.

Increasing the level of autonomy of a space robot implies that some operational decisions
will be made locally based on external events such as sensor data, or on internal events such as
malfunctions. These events will certainly impact the execution of the sequence of operations.
They are difficult to predict in a reliable fashion and, therefore, it will be nearly impossible to
determine exactly the sequence of actions to be taken by an autonomous robot in an unknown
environment. Task verification using the current paradigm would require predicting the exact
sequence of events for nominal and off-nominal scenarios. Thousands of simulations would have
to be run to generate all reasonable combinations of conditions to be expected and there would be
no way to identify which of these simulation runs would in fact occur during the next operations
cycle. At best, one could use a Monte Carlo approach to determine probabilistically the chances
of success. This is obviously neither an efficient nor an acceptable way of ensuring dependability.

The operational procedures currently used depend on the deterministic prediction of the
behaviour of robots during every operations sequence. This will not be possible for autonomous
robots operating in the presence of uncertainty. A plethora of external factors such as
environmental conditions, over which operators will have little or no control, will affect the
outcome of autonomous sequences. At best, analyses could be made to guarantee the safe
operation of the autonomous system and assess the success probability within certain bounded
conditions. This will require a shift in the operations paradigm trading a potential increase in the
productivity of space robots for the acceptance that less than 100% of planned operation
sequences will be conducted with success on the first attempt.

The next steps to gain acceptance for the ARGO framework is to perform extensive field-
testing. ARGO is already central to all robotics laboratory activities led at the Canadian Space
Agency and plans are being made for its usage in mining/drilling applications as well as for the
control of unmanned vehicles. The true test will be its usage in the TECSAS mission currently
being planned by the CSA and DLR. TECSAS will be a satellite servicing technology
demonstration mission. It will involve the rendezvous and capture of a client micro-satellite by a
servicer equipped with a robotic arm. The current plans of the CSA are to obtain flight heritage
for several ARGO toolboxes through TECSAS. The target application is the fully autonomous
capture of the freely spinning client micro-satellite by the servicer without the necessity for
human intervention.

Frameworks like ARGO offer tremendous potential to reduce the cost of operations and to
increase the productivity of space robots. Such capabilities undoubtedly will have a critical
impact on all space robotic operations in the near to mid-term future. In fact, they will be crucial
to the successful implementation of the exploration plans being put forward by the major space
agencies of the world. The current plans for robotic missions call for ever more ambitious

missions with increasing expectations in terms of productivity and scientific return on investment.
In several cases, the key to increasing capability and reducing operational complexity/cost will be
to augment the local decision making capability thus reducing the need for active human
involvement. Extrapolating costs based on past experience with programs such as the
International Space Station, it is clear that a shift will have to take place in the operations
philosophy in order to reduce cost and augment capabilities. Similarly, if commercial on-orbit
servicing is to become a reality, frameworks like ARGO will play a key role in bringing the cost
of operations to an acceptable level.

6 REFERENCES

[1] Alami, R., Chatila, R., Fleury, S., Ghallab, M., and Ingrand, F., “An Architecture for

Autonomy”, International Journal of Robotics Research, Vol. 17, no. 4, April 1998
[2] Baumgartner, E.T., “In-Situ Exploration of Mars Using Rover Systems”, Proc. of the

AIAA Space 2000 Conference, Long-Beach, CA, USA, September 2000.
[3] Brooks, R. A. "A Robust Layered Control System for a Mobile Robot", IEEE Journal of

Robotics and Automation, Vol. 2, No. 1, March 1986, pp. 14-23; also MIT AI Memo
864, September 1985.

[4] Brunner, B., Landzettel, K., Schreiber, G., Steinmetz, B.M. and Hirzinger, G., “A
Universal Task-Level Ground Control and Programming System for Space Robot
Applications - the MARCO Concept and its Applications to the ETS-VII Project”, Proc.
Fifth International Symposium on Artificial Intelligence, Robotics and Automation in
Space (iSAIRAS 99), ESTEC, Noordwijk, The Netherlands, pp.217-224, June 1-3 1999.

[5] Dudek, G. and Sim, R., "RoboDaemon - A device independent, network-oriented,
modular mobile robot controller", Proceedings of the IEEE Conference on Robotics and
Automation (ICRA), Taipei, Taiwan, 2003.

[6] Dupuis, E. and Gillett, R., “Remote Operation with Supervised Autonomy”, 7th ESA
Workshop on Avanced Space Technologies in Robotics and Automation (ASTRA 2002),
Noordwijk, The Netherlands, November 2002.

[7] Dupuis, E. Gillett, R., Boulanger, P., Edwards, E. and Lipsett, M., “Interactive,
Intelligent Remote Operations: Application to Space Robotics”, SPIE Telemanipulator
and Telepresence Technologies VI, Boston, Septembre 1999.

[8] Dupuis, E., Gillett, R., L’Archevêque, R. and Richmond, J., “Ground Control of
International Space Station Robots”, Journal of Machine Intelligence and Robotic
Control, Special Issue on Space Robotics, Vol. 3, No. 3, pp. 91-98, September 2001.

[9] Edwards, E., Lamorie, J., Younghusband, D., Brunet, C. and Hartman, L., "Independent
SCPS-TP development for fault-tolerant, end-to-end communication architectures", in
Proceedings of Datat Systems in Aerospace – DASIA 2002, July 2002, Dublin, Ireland.

[10] Fontaine, B., Steinicke, L., Visentin, G.,” A reusable and flexible control station for
preparing and executing robotics missions in space”, International Symposium on Space
Mission Operations & Ground Data Systems - 'SpaceOps 96', Munich, Germany;
September 1996.

[11] Gemme, S., Nsasi Bakambu, J. and Rekleitis, I., “3D Reconstruction of Environments
for Planetary Exploration”, Proc. of 2nd Canadian Conference on Computer and Robot
Vision – CRV 2005, Victoria, BC, Canada, May 2005.

[12] Gerkey, B.P., Vaughan, R.T. and Howard, A., "The Player/Stage Project: Tools for
Multi-Robot and Distributed Sensor Systems". In Proceedings of the International
Conference on Advanced Robotics (ICAR 2003), pages 317-323, Coimbra, Portugal,
June 30 - July 3, 2003.

[13] Gottselig, G., Orbital Express advanced technology demonstration (ATD), January 2003.
[14] Hayati, S.A. Udomkesmalee, G. Caffrey, R.T., “Initiating the 2002 Mars Science

Laboratory (MSL) focused technology program”, IEEE Aerospace Conference, Golden,
CO, USA, March 2004.

[15] Huntsberger, T., Pirjanian, P., Trebi-Ollennu, A., Das , H., Aghazarian, H., Ganino, A.J.,
Garrett, M., Joshi, S.S., Schenker, P.S., “CAMPOUT: a control architecture for tightly
coupled coordination of multirobot systems for planetary surface exploration”, IEEE
Transactions on Systems, Man and Cybernetics, Part A, , Volume: 33 , Issue: 5 , Sept.
2003.

[16] Konolige, K. and Myers, K. The Saphira architecture for autonomous mobile robots. In
Artificial Intelligent and Mobile Robots, chapter 9,
pages 211--242. AAAI Press, 1998.

[17] Laliberté, T., Birglen, L., and Gosselin, C.M., Underactuation in robotic grasping hands,
Japanese Journal of Machine Intelligence and Robotic Control, Special Issue on
Underactuated Robots, Vol. 4, No. 3, pp. 77--87. 2002

[18] L'Archevêque, R. and Dupuis, E., "Autonomous Robotics and Ground Operations", Proc.
of the 7th International Symposium on Artificial Intelligence, Robotics and Automation
in Space – iSAIRAS 2003, Nara, Japan, May 2003.

[19] Maxwell, S., Cooper, B., Hartman, F., Wright, J. and Yen, J., “The Design and
Architecture of the Rover Sequencing and Visualization Program (RSVP)”, 8th
International Conference on Space Oeprations, Montréal, Canada, 2004.

[20] Montemerlo, M., Roy, N., and Thrun, S., ”Perspectives on Standardization in Mobile
Robot Programming : The Carnegie Mellon Navigation (CARMEN) Toolkit''.
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003). Las Vegas, October, 2003.

[21] Nesnas, I.A., Wright, A., Bajracharya, M., Simmons, R., and Estlin, T., "CLARAty and
Challenges of Developing Interoperable Robotic Software," invited to International
Conference on Intelligent Robots and Systems (IROS), Nevada, October 2003.

[22] Oda, M., “Space Robot Experiments on NASDA's ETS-VII Satellite - Preliminary
Overview of the Experiment Results”, Proc. 1999 IEEE Conf. on Robotics and
Automation (ICRA 99), Detroit, USA, pp.1390-1395, 1999.

[23] Parker, L.E., ALLIANCE: An Architecture for Fault Tolerant Multi-Robot Cooperation,
IEEE Transactions on Robotics and Automation, 14 (2), 1998.

[24] Pedersen, L., Sargent, R., Bualat, M., Kunz, C., Lee S., , and Wright, A., “Single-Cycle
Instrument Deployment for Mars Rovers”, Proc. of 7th International Symposium on
Artificial Intelligence, Robotics and Automation in Space, Nara, Japan, May 2003.

[25] Popov, A., “Mission Planning on the International Space Station Program. Concepts and
Systems”, IEEE Aerospace Conference, Big Sky, MT, USA, March 2003.

[26] Potter, S.D., “Orbital Express: Leading the way to a new space architecture”, 2002 Space
Core Tech Conf., Colorado Spring, November 2002.

[27] Smith, P.H., “The Phoenix Scout Mission”, American Geophysical Union Fall Meeting
Abstracts, December 2003.

[28] Sommer, B., On-Orbit Servicing of Satellites (OOS) as a major application field – The
TECSAS mission, 54th International Astronautical Congress of the International
Astronautical Federation (IAF); Bremen, Germany; Sep. 29 - Oct. 3, 2003.

[29] Van Winnendael, M., Gardini, B., Roumeas, R., and Vago, J., “The ExoMars Mission of
ESA's Aurora Programme”, Earth & Space 2004 - Ninth Biennial Conference of the
Aerospace Division, Houston, Texas, USA, March 2004.

[30] Vaughan, R.T., Gerkey, B.P., and Howard, A. "On Device Abstractions For Portable,
Resuable Robot Code".. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003), pages 2121-2427, Las Vegas, Nevada,
October 27 - 31, 2003.

[31] Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R. and Das, H., “The CLARAty
Architecture for Robotic Autonomy”, Proceedings of the 2001 IEEE Aerospace
Conference, Big Sky, Montana, March 10-17, 2001

[32] Whelan, D.A., Adler, E.A., Wilson, S.B. and Roesler, G.M., “DARPA Orbital Express
program: effecting a revolution in space-based systems”, in Proc. SPIE Vol. 4136, p. 48-
56, Small Payloads in Space, p. 48-56, Small Payloads in Space, November, 2000.

	INTRODUCTION
	CONCEPT OF OPERATION
	THE ARGO TOOLBOXES
	The Cortex Autonomy Toolbox
	Reconfigurable Ground Control Station
	The REMOTE Toolbox

	SAMPLE CASES
	On-Orbit Servicing Scenario
	Planetary Exploration Scenario

	CONCLUSION
	REFERENCES

