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Introduction 
 
Using linear combinations of models to solve object recognition problems is not a new 

idea, still it’s widely use in current research. One of the motivations for using linear 

models is that they enable us to use well-known techniques from Linear Algebra to do the 

hard work. Indeed, powerful tools (ex: Matlab) exist to solve large system of linear 

equations, or to give optimally estimated solutions under the least squares criterion for 

any systems where there is more equations than there is unknown. It turns out that in 

most real world applications we have much more data, therefore equations, than 

unknowns. So using these tools is a big help to get solutions with reduced error. 

 
Basic idea of linear model recognition 
 
The underlying assumption behind recognition by linear combinations of models is that 

we can reconstruct a novel view of an object using linear combinations of the basis 

vectors. That is you can find a coordinate vector g = (g1, g2, …, gn) given the model basis 

W = {v1, v2, …, vn} such that the novel view of the object is: 

x = g1v1 + g2v2 + … + gnvn. 

(Where we use the standard notation of writing the vectors as bold characters). In this 

case each vi and x are images vector and g is a coordinate vector of the novel view 

relative to the subspace W. This assumption is proved analytically for wire frame 3D 

object viewed under rigid 3-D transformations in [4] (which is a landmark paper in the 

field; there is a link to a PDF file in the reference section). 

 

The recognition problem can be divided in two parts: building the model basis and using 

it to recognized novel views (images) of an object. There exist many different ways to 

build the model. In class we have seen appearance-based models. I give my notes on the 

subject in the next paragraph. However, I give you a small bonus paragraph on one 



instance of a shape-based model that I have seen in Prof. Langer’s course 308-646A. I’ll 

conclude with my notes on the 2nd part of the problem: projection on the model subspace 

and how to use it for recognition.  

 

Appearance based model 

All good appearance based model starts with a huge database of images of modeled 

objects viewed from many directions in controlled environment. If the environment is not 

controlled a pre-processing phase is added. This is often the hardest problem: to get a set 

of images that can be combined on a per pixel basis. The pre-processing step can be a 

simple background-foreground segmentation to remove all background information from 

the images, which is very important if you want to obtain a low-dimensional subspace. 

You may also need a tracker to normalize the object absolute position in images, for 

example, using a color based centroid tracker.  

 

For now, assume that we have a set of brightness and scale normalized images of all 

types of objects U = [ X(1) 1,1, …, X(P) R,L ]N
2

x m express in matrix form where the X(p) r,l 

are column vectors which are actually the images (N2-dimensional). We have m = RLP 

such images. R denotes the number of viewpoints, L the number of different lighting 

conditions and P the number of objects.  

 

Once we have such a set we can perform principal component analysis PCA (also called 

Karhunen-Loeve decomposition (KL)). The following steps are easily done by software 

such as Matlab or with numerical recipes in C that can be found on the Web: 

•  Compute the average of all column vectors in U denoted Xavg ; 

•  Subtract the average from each column vector to get the dataset matrix 

D=[(X(1 )
1 ,1-Xa vg), …, ( X(1 ) 1 ,1-  Xa vg)]  N

2
x m ;  

•  Compute QN
2

xN
2 = DDT ; 

•  Compute the eigenvalues λ1, λ2, …, λm of Q and the associated eigenvectors 

e1,e2,…, em ; 



Using the eigenspace theorem we know that with the eigenvalues and eigenvectors we 

can express any images Xj using a linear combinations of eigenvectors added to the 

average image Xa vg .  That is: 

 

 
 
 
 
Where gji is the projection of Xj on ei. 

 
It turns out that with PCA we can make the following approximation: 
 
  
 
 
 
Using a subset of the eigenvectors we can represent most of the variance of the data set. 
This subset is easy to choose because the magnitude of each eigenvalue is a measure of 
how much variance in the data set is due to the associated eigenvectors. So it’s a simple 
matter of sorting the eigenvalues in decreasing order and taking the k greatest and their 
associated eigenvectors as the best possible k-dimensional basis for the new subspace. 
 
Nice applications of this technique for face recognition can be found in [2,3], especially 
look in [3] to find images of the so-called principal “eigenfaces”. You will see that these 
principal components do not look like humans face. Some people argued that 
“eigenfaces” are not efficient because most of the spawned subspace is not composed of 
human looking face. Therefore, its dimensionality could be further reduced. 
 
Another way to approach the face recognition problem using linear models is found in 
[6,7]. Instead of using an appearance-based model, they use a shape and texture model. 
The shape is a vector field of the optical flow between a reference image and the image 
being modeled. Without going into the details, it turns out that segmenting the shape from 
texture gives a model subspace which is actually composed only of human looking faces. 
Look in [7] to find images taken along the 6 first principal components of shape and 
texture subspaces and compare them with the ones you saw in the previous paper. The 
result are stunning because all those images do not represent real people yet most of them 
look like people you could see on the bus. 
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Recognizing object with a novel image 
 
To be able to recognize objects from novel images, we need to project images from the 
database on the universal. The set of all coordinate vectors from one object type in the 
eigenspace outlines an estimate of the object related subspace inside the eigenspace. We 
have seen such subspaces in class where they were represented as curves because there 
was only one independent parameter in the image formation process. However, more 
practical use of the eigenspace technique will usually require 20+-dimensional universal 
eigenspaces. It’s quite hard to find analytical description that best fit a set of points in 
such a high dimensional spaces. In [2,5] this problem is skipped; they simply used the 
Euclidean distance from the projected point to all points in the database to find the closest 
one. This O(RLP) algorithm might be very inefficient for large database.  
 
I need to make a small remark on the projection operation because in the textbook [5] 
in step 5 of the EIGENSPACE_LEARN algorithm they state without proof that the 
coordinate vector g, the projection of an image minus the average image on the 
eigenspace, is simply computed with the following dot product: 
 

gji =  ( Xj – Xavg) ••••  ei 
 

where gji is one component of the coordinate vector gj. Why is that so simple? In 
Linear Algebra, we have seen that projecting a vector on a subspace is somewhat 
more complicated. Indeed in [1], you can find the definition of the projection of a 
vector on a subspace: 

 
Let b be a vector in ℜ n, and let W be a subspace of ℜ n.  
Let b = bW + bW

⊥⊥⊥⊥  where W⊥  is the orthogonal complement of W.  
Then bW is the projection of b on W. 

 
Using only this definition computing the projection of a vector on a subspace is a 
tedious process requiring the computation of W⊥ . However, there exist a much better 
approach. Indeed, if the basis of the subspace is orthogonal, that is the dot product 
between each basis vector is equal to zero, then the following theorem applies [1]:  

 
Let {v1, v2, …, vk} be an orthogonal basis for the subspace W of ℜ n, and 
let b be any vector in ℜ n. The projection of b on W is 
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Furthermore, if the basis is orthonormal, all basis vectors have unit length and we can 
remove the denominators because they are all equal to one.  
 
 
 



We could use the Gram-Schmidt Process to get an orthonormal basis for the 
eigenspace but it turns out that it’s already orthogonal. Indeed, in [1] you can find a 
proof of the following theorem:  

 
Eigenvectors of a symmetric matrix that correspond to different 
eigenvalues are orthogonal. That is, the eigenspaces of a symmetric matrix 
are orthogonal. 

 
It’s fairly obvious that Q = DDT is symmetric (just try out with a 2x2 matrix you will 
see that multiplying a matrix with its transpose always gives a symmetric matrix). 
Therefore, the eigenvectors e1,e2,…, em are orthogonal. However, the eigenvectors 
need to be normalized. This explains why the projection operation can be done very 
efficiently with dot products.  
 
Be sure to check the links in the reference section on the next page…



References  
 
(Note: you must be connected with a McGill IP address to have access to links on this 
page because the papers are actually on the IEEE server. McGill has a VPN now, so you 
can get a McGill IP with Sympatico, Videotron or any other ISP.) 
 

[1] J. B. Fraleigh, R. A. Beauregard: Linear Algebra, Addison-Wesley, 1995. 

[2] T. Jebara. 3D Pose Estimation and Normalization for Face Recognition. 

Bachelor's Thesis, McGill Centre for Intelligent Machines. McGill University, 

1996.  Link: http://jebara.www.media.mit.edu/people/jebara/uthesis/ 

[3] M. Kirby and L. Sirovich. Appliction of the Karhumen-Loeve Procedure for the 

Characterization of Human Faces. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 12(1):103--108, 1990. 

Link:http://ieeexplore.ieee.org/iel1/34/1584/00041390.pdf 

[4] S. Ullman and R. Basri. Recognition by Linear Combinations of Models. IEEE 

Trans. on Pattern Analysis and Machine Intelligence, 13(10):992--1006, October 

1991.  Link : http://ieeexplore.ieee.org/iel1/34/3135/00099234.pdf 

[5] E. Trucco and A. Verri. Introductory techniques for 3-D computer vision. Prentice 

Hall, 1998. 

[6] T. Vetter, M. J. Jones, and T. Poggio. A bootstrapping algorithm for learning 

linear models of object classes. IEEE Conference on Computer Vision and 

Pattern Recognition, pp. 40--47, 1997. Link: http://graphics.informatik.uni-

freiburg.de/publication.html (Can also be found on IEEE but the copy on this 

page is nicer) 

[7] T. Vetter and N. Troje. A separated linear shape and texture space for modeling 

two-dimensional images of human faces. Technical Report, MPI for biological 

Cybernetics, TR15, 1995. Link: ftp://ftp.kyb.tuebingen.mpg.de/pub/mpi-

memos/pdf/TR-015.pdf  

 

 
 

 

http://jebara.www.media.mit.edu/people/jebara/uthesis/
http://ieeexplore.ieee.org/iel1/34/1584/00041390.pdf
http://ieeexplore.ieee.org/iel1/34/3135/00099234.pdf
http://graphics.informatik.uni-freiburg.de/publication.html
ftp://ftp.kyb.tuebingen.mpg.de/pub/mpi-memos/pdf/TR-015.pdf

