
Motion

Example 1: Random dot sequences

By using two 2D arrays with random entries and pasting a displaced part of the first into
the second gives motion perception.

Example 2: Estimating time to impact

Simple distance measurement based on information from sequences of images. When does
the robot hit the wall?

Assumption: Relative speed robot-wall is constant.
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Since you can estimate the  height of the point l(t) and its time derivative l‘(t) you can
estimate the time to impact without knowing the real world position of the point or tthe
velocity of the robot.

Motion



Motion is a 2D to 3D problem since what you have got to use is the projection of the 3D
world onto a sequence of 2D images.

The first fundamental assumption to facilitate the calculations is that all moving objects
are rigid.  This assumption implies that all points in an object have the same 3D motion.
The 3D motion can be divided in two components: translational T and angular W.

Two sub-problems of motion
� Correspondence: Which elements of a frame correspond to which element of the next

frame of the sequence. This problem differs from stereo in that disparities are small.
� Reconstruction: Given a number of corresponding elements, and possibly knowledge

of the camera’s intrinsic parameters, what can we say about the 3D motion and
structure of the observed 3D world? Unlike stereo, in motion the relative 3D
displacement between the viewing camera and the scene is not necessarily caused by a
single 3D rigid transformation.

The 2D motion field of a 3D point

The speed of a point is calculated as follows
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Take derivatives of both sides with respect to time
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Plug (4) into RHS.

The resulting 2D motion field is:
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The motion field can give rise to three different cases:

Case one and two
The angular component of the motion field w is zero.
The translational component Tz  is not zero.
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The magnitude of the motion field is therefore:
1. proportional to the distance between p and p0.
2. proportional to 1/depth (i.e. 1/Z).
These two cases gives a radial motion field pointing from or towards p0.



Case three
The angular component w is zero. The translational component Tz  is also zero.
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This case give rise to a parallel motion field.

Instantaneous epipoles

Let P=[x y z]T and P1=[x1 y1 z1]T be two different world points projected into p and p1.
The motion fields for the two latter points are the following:
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Due to the fact that p and p1  are the same in this case the angular component of the



velocities are the same.
We define the relative motion field:
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Where p0=[x0 y0]T are the coordinates of the vanishing point of translation. The motion
field points away from the vanishing point.

Optical flow

Brightness: E(x,y,t) where t is the time. The constant brightness assumption is that the
derivative with respect to time of the brightness is zero.

� The aperture problem gives that the only component of the motion field you can
recover is the normal (in the direction of the gradient of the brightness) component.

 
 Problem description:
 Given a time-varying sequence of images, find the apparent motion (the normal
component of the motion) under the constant brightness assumption.
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 The difference between (5) and (6) is described by
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 When is this error zero?
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 Different approaches to the estimation of the motion field.
 Differential approaches
� use derivatives
� dense
� numerically
 
 Feature based approaches
� tracking features
� Kalman filters (estimation techniques)
� sparse methods

Window based approach
Assumptions:
1. Constant brightness assumption holds
2. Over a window or a patch there is a single dominant motion.

Q is the N x N patch

Q.patch in  points  theis N,N1,...,i,p where
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This is a  standard least squares problem. Find the ν which minimizes Ψ(ν).
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The structure of AAT is numerically important since it could be singular, the problem
could be ill-posed.


