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ABSTRACT
The Agile Wrist, a spherical wrist with a parallel, isotropic

architecture for highest orientational accuracy, is being designed
as a module of an 11-degree-of-freedom (dof) robot.

The wrist consists of two main elements, the base and the
moving plates. The two plates are coupled by means of three
identical legs, each of these composed of two links, proximal and
distal, coupled to each other by a revolute joint. Each leg, in turn,
is coupled to its proximal plate via revolute joints. Moreover, the
three axes of the leg-revolute joints are concurrent at the center
of the wrist, each axis making an angle of 90� with its neighbor.
Direct-drive DC motors are used to rotate the wrist proximal links
and electrical brakes and optical encoders are located on each of
the motor shafts for control purposes.

In this paper we introduce a two-level approach to the opti-
mum design of the proximal link of the Agile Wrist. First, the
shape of the midcurve producing minimum stress concentrations
is obtained by means of the concept of curve synthesis using cu-
bic splines. At the second level, the optimum cross-section along
the midcurve producing a link of minimum weight is determined.

INTRODUCTION
The Agile Wrist (AW), shown in Figure 1, is the three-

dof orienting module of the redundant, 11-axis Multi-Modular
Manipulator (M3) currently under design at McGill University’s
1

Figure 1. A RENDERING OF THE AGILE WRIST

Centre for Intelligent Machines (Angeles et al, 1999). It owes
its name to the Agile Eye (AE) developed by Gosselin and his
team at Université Laval, Quebec, Canada (Gosselin and Lavoie,
1993; Gosselin and Hamel, 1994; Gosselin and Gagné, 1995).
However, while keeping the advantages of a parallel, isotropic ar-
chitecture for highest orientation accuracy, the AW has a lighter
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weight as compared to the AE; moreover, the AW avoids colli-
sions between the tool installed on top of the mobile platform and
the moving links. A robot architecture is said to be isotropic if it
allows for robot postures whereby the Jacobian matrix has all its
singular values identical and nonzero.

The AW consists of two plates coupled by three identical
legs. Each leg is composed of two links, the proximal and the
distal, coupled to each other by means of a revolute joint. The
shapes of the midcurves of the distal links are restricted to be cir-
cular arcs, whereas those of the proximal links are only shape-
constrained at their two ends. Since the design of the distal link
is rather simple, we focus in this paper on the optimum design of
the midcurve and the cross-section of the proximal link.

In the design of the proximal link, we aim at minimizing the
weight while avoiding stress concentrations. The design consists
of two levels: (i) finding the shape of the midcurve which renders
minimum the stress concentrations and (ii) determining the cross-
section which minimizes the overall weight subject to a maxi-
mum allowable stress. The midcurve is obtained by means of the
concept of curve synthesis (Angeles, 1983) using cubic splines;
the optimization problem thus resulting is then solved with the
aid of the ODA package (Teng, and Angeles, 2000). Next, we re-
sort to finite element analysis (FEA) and structural optimization,
by means of ProMechanica to solve the problem of determining
the cross-section along the midcurve that produces a link of min-
imum weight subject to the maximum allowable stress.

KINETOSTATIC ANALYSIS

While the kinematic analysis of parallel spherical wrists has been
the subject of many publications, the static analysis has received
less attention. Yi, Freeman and Tesar (1992) proposed a force
and stiffness transmission analysis for a spherical shoulder mech-
anism by means of the Jacobian matrix. This kind of analysis pro-
vides the designer with useful information to select the appropri-
ate actuators, but in the case of spherical wrists, only moments are
taken into account by the analysis, the forces at the joints remain-
ing indeterminate. While designing the links of the Agile Wrist,
we had to be sure that they can withstand the load of the tool, but
no moments are created if this load is directed along a line passing
through the center of the wrist, which is the case when the Agile
Wrist is in its nominal posture, with its base oriented horizontally.

In our case, the base of the Agile Wrist can be oriented vertically;
in this orientation, it is then possible to determine the moment ex-
erted by the weight of the tool at the centre of the wrist by us-
ing a Jacobian approach and then evaluating the loading moment
that acts on the most heavily loaded leg. The ensuing kinetostatic
analysis enables us to determine which maximum moment mag-
nitude the Agile Wrist can withstand using the prescribed actua-
tors.
2

Kinematics of the Agile Wrist and of the ith Leg
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Figure 2. THE ith LEG OF THE AW

Each leg of the Agile Wrist is a serial RRR spherical wrist, as
shown in Fig. 2. This serial wrist is orthogonal, i.e., its neighbor-
ing revolute axes are laid out at 90�. The angular velocity ωωω of
the end effector of the Agile Wrist can be expressed as a function
of the joint rates of the ith leg, i.e.,

θ̇iui + φ̇iwi + ψ̇ivi =ωωω (1)

To eliminate the unactuated rates of the previous expression,
eq.(1) is dot-multiplied by the cross-product wi�vi, namely,

θ̇i(wi�vi) �ui = (wi�vi) �ωωω (2)

Upon assembling the scalar equations (2) for i = 1;2;3, we have

Bθ̇θθ = Aωωω (3)

where θθθ = [θ̇1 θ̇2 θ̇3]
T is the vector of actuated joint rates at the

base of the AW, and matrices A and B are defined as

A =

2
4
(v1�w1)

T

(v2�w2)
T

(v3�w3)
T

3
5 (4a)

and

B = diag[u1�w1:v1; u2�w2:v2; u3�w3:v3] (4b)
Copyright  2001 by ASME



If B is nonsingular, then

θ̇θθ =�B�1Aωωω (5)

Assuming n to be the moment acting on the end-effector, taken at
the center of the wrist, and τττ the vector array of actuator torques,
the power developed by the load and the motors, Πe and Πm is,
respectively,

Πe = nTωωω; Πm = τττTθ̇θθ (6)

From the Principle of Virtual Work, under kinetostatic, conserva-
tive conditions, we obtain

nTωωω = τττTθ̇θθ (7)

Upon substituting eq.(5) into eq.(7), we thus have, for any ωω,

n =�AT B�Tτττ ) τττ =�BA�1n (8)

Moreover, n is distributed among all three legs, with the ith leg
taking up a part ni of n, i.e.,

n = n1 +n2 +n3 (9)

Let µµµi = [τi 0 0]T be the three-dimensional joint-torque vector of
the ith leg. We have

Ji
T ni = µµµi (10)

where Ji is the ith-leg Jacobian matrix, defined as

Ji = [ui wi vi] (11)

Upon inverting eq.(10), we obtain

ni = Ji
�Tµµµi (12)

which is the share of the load taken up by the ith leg. To calculate
Ji
�1, reciprocal bases (Brand 1965) can be used, thus obtaining

∆i = det(Ji) = ui�wi �vi (13a)
3

and

Ji
�1 =

1
∆i

2
4
(wi�vi)

T

(vi�ui)
T

(ui�wi)
T

3
5 (13b)

whence,

ni = Ji
�1µµµi =

τi

ui�wi:vi
wi�vi (14)

The load ni taken by one leg is thus normal to the plane defined
by the second and third-revolute axes of the ith leg. This could
not be otherwise, for each of these revolutes being unactuated, it
can exert a moment on the links that it connects only in a direc-
tion lying in a plane normal to its axis. Moreover, the moment
exerted by the end-effector onto the distal link must be equal and
of opposite sign to that exerted by the proximal link onto the same
distal link, under the equilibrium of forces.

Load Moment Acting on the Most Heavily Loaded Leg
We consider a loading condition in which the base of the AW is
oriented vertically and the AW is in its nominal isotropic posture,
as depicted in Fig. 3; the most heavily loaded leg appears here to
be the second leg.
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Figure 3. POSTURE OF THE AW FOR THE KINETOSTATIC ANALYSIS

As depicted in Fig. 3, we assumed that the weight of the tool and
the moving platform is concentrated at the center of the moving
platform, C, with O denoting the center of the wrist and Ci the
center of the revolute joint coupling the ith leg with the moving
platform. The distance between O and Ci is denoted by Rm. The
force vector at pointC is noted f=Fi and the vector pointing from
O to C is noted c = Rmk; vector i, directed along the vertical, is
in a plane parallel to the base, and vector k, directed along the
horizontal, is collinear with a line passing through H, the center
of the base, and O. The unit vectors ui, i = 1;2;3, form an or-
thonormal frame U which will be used henceforth. The nominal
Copyright  2001 by ASME



configuration for the distal vectors is characterized by

v10 =�u3; v20 =�u1; v30 =�u2 (15)

and for the intermediate unit vectors by

w10 = u2; w20 = u3; w30 = u1 (16)

In the frame U(O, u1, u2, u3), the coordinates of the points A1 and
H are (d , 0 , 0) and (d=3 , d=3 , d=3), respectively. Since vector
k has the same direction as the vector pointing from H to O, and
vector i the same one as the vector pointing from A1 to H, vectors
k and i are readily obtained after a normalization process. Vector
j can then be obtained by means of the cross product: j = k� i.

k =�
p

3
3

u1�
p

3
3

u2�
p

3
3

u3 (17)

i =�
p

6
3

u1 +

p
6

6
u2 +

p
6

6
u3 (18)

The moment nO with respect to the center of the wrist is given by

nO = c� f+nC (19)

where nC is the load moment vector with respect to point C, here
considered equal to zero. From eq.(19) we obtain

nO = RmF(i�k) (20)

We determine the torque at each actuated joint with relation (8).
For the nominal configuration, �BA�1 corresponds to the 3� 3
identity matrix. Equations (8) and (14) lead to:

τττ0 = n0 (21)

and

ni0 = τi0ui (22)

where τi0 given by

τi0 = RmF(i�k) �ui =

p
2

2
RmF (23)
4

The moment at the distal joint coupling the distal link with the
moving platform is, then,

ni0 =

p
2

2
RmFui (24)

According to Servo Systems, of Montville, NJ, the manufacturer
of the Agile Wrist direct-drive motors, these can provide a peak
torque of 0:353 Nm. Relation (8) enables us to determine the mo-
ments that the Agile Wrist can balance for eight different cases:

τ1 =�0:353 Nm, τ2 =�0:353 Nm and τ3 =�0:353 Nm

For the nominal configuration, eq.(8) yields the moment:

nO = τ1u1 + τ2u2 + τ3u3 (25)

The components of the moment nO in frame V (O, i, j, k) are

Mx = τ1

p
3

3
� τ2

p
3

3
� τ3

p
3

3
(26)

My = τ2

p
2

2
� τ3

p
2

2
(27)

Mz =�τ1

p
6

3
+ τ2

p
6

6
+ τ3

p
6

6
(28)

If we suppose that the moment about the center of the wrist is only
due to the weight of the tool that acts at the centroid of the moving
platform that is, jMyj = RmF, then the mass of the tool that this
manipulator can support is about 0.7 kg (Rm is about 74 mm, the
radius of the distal link). However, this estimate is done for the
worst loading condition, i.e., with the base oriented vertically.

STATIC ANALYSIS
The Agile Wrist is composed of seven moving links: the mov-
ing platform, three distal links and three proximal links. These
links are coupled by revolute joints. We thus have nine revolute
joints in the whole mechanism and 9�5 = 45 unknown reaction
components. Indeed, by virtue of the nature of revolute joints,
the moment about any point along each unactuated joint axis is
zero. By the same token, the moment about an actuated revolute
is known. Upon applying the static equilibrium conditions, we
obtain 7�6= 42 equations, the problem thus being statically in-
determinate. To solve it, we need additional information or engi-
neering hypotheses. In fact, we decided to solve the indetermi-
nacy by replacing, both in the mold and in the design, the unactu-
ated revolute joints by cylindrical joints. The moment component
about any point along each cylindrical joint is equal to that of the
corresponding revolute but now also the force along the axis of
Copyright  2001 by ASME



the cylindrical joint is zero. The number of unknowns is then re-
duced to 3�5+6�4 = 42 and the system becomes determinate.
Such an approach was also adopted by Larochelle and McCarthy
(1992) while discussing the static analysis of spherical nR kine-
matic chains with joint friction. Even if they did not aim at replac-
ing the revolute joints by cylindrical joints, they stated that due to
the geometry of the joints, no force is transmitted along the axis
of unactuated joints. It is to be noticed that such changes do not
have any effect on the kinematics of the Agile Wrist; moreover,
they avoid overconstraints and ease the assembly of the mecha-
nism.

Static Analysis of the Proximal Links
For the purpose of optimization, we conduct a static analysis,
whereby all links are assumed rigid and two types of forces are
considered: those exerted by the environment, e.g. the weight
of the moving platform and the tool, and those coming from the
kinematic joints. The weight of the proximal links is neglected.
Let fd pi

= [Xd pi
Yd pi

Zd pi
]T and fbpi

= [Xbpi
Ybpi

Zbpi
]T be

the forces exerted by the ith distal link on the ith proximal link
at point Ki, and by the base on the ith proximal link at point Bi,
respectively. Moreover, mmdi

= [Umdi
Vmdi

Wmdi
]T and mbpi

=

[Ubpi
Vbpi

Wbpi
]T denote the moment about Ci exerted by the

moving platform on the ith distal link and the moment about Bi

exerted by the base on the ith proximal link, respectively. The
wrenches exerted by the distal link on the proximal link wd pi

and
those exerted by the base on the proximal link, wbpi

, are thus,

wd p1
=

2
6666664

Ud p1

0
Wd p1

Xd p1

0
Zd p1

3
7777775

wd p2
=

2
6666664

Ud p2

Vd p2

0
Xd p2

Yd p2

0

3
7777775

wd p3
=

2
6666664

0
Vd p3

Wd p3

0
Yd p3

Zd p3

3
7777775

wbp1
=

2
6666664

0
Vbp1

Wbp1

Xbp1

Ybp1

Zbp1

3
7777775

wbp2
=

2
6666664

0
Vbp2

Wbp2

Xbp2

Ybp2

Zbp2

3
7777775

wbp3
=

2
6666664

0
Vbp3

Wbp3

Xbp3

Ybp3

Zbp3

3
7777775

From the equilibrium of forces acting on the proximal link, i.e.,
fd pi

+ fbpi
= 0 (i = 1; 2; 3), we have

Xd p1
+Xbp1

= 0
Yd p1

+Yd p1
= 0

Zbp1
= 0

Xbp2
= 0

Yd p2
+Ybp2

= 0
Zd p2

+Zbp2
= 0

Xd p3
+Xbp3

= 0
Ybp3

= 0
Zd p3

+Zbp3
= 0
5

The balance of moments acting on the proximal link yields, for
each leg, three equations and, consequently, for all the legs, nine
equations. The vector equilibrium equations, for each leg, with
moments about point Bi, are given by

md pi
+mbpi

+(nKi �nAi)� fd pi
= 0; i = 1; 2; 3 (29)

We then obtain nine additional scalar equations

Ud p1
+Ubp1

= 0
Vbp1

= 0
Wbp1

= 0

Ubp2
= 0

Vd p2
+Vbp2

= 0
Wbp2

= 0

Ubp3
= 0

Vbp3
= 0

Wd p3
+Wbp3

= 0

The wrenches acting at the proximal links are thus

wd p1
=

2
6666664

0
0p

3=3)FRm

(
p

3=3)F
0
0

3
7777775

wbp1
=

2
6666664

0
0
0

�(
p

3=3)F
0
0

3
7777775

(30)

wd p2
=

2
6666664

(
p

3=3)FRm

0
0
0

(
p

3=3)F
0

3
7777775

wbp2
=

2
6666664

0
0
0
0

�(
p

3=3)F
0

3
7777775

(31)

wd p3
=

2
6666664

0
(
p

3=3)FRm

0
0
0

(
p

3=3)F

3
7777775

wbp3
=

2
6666664

0
0
0
0
0

�(
p

3=3)F

3
7777775

(32)

Since we assumed that the wrenches are applied at the center of
the revolute and cylindrical joints, we determine their effect at the
center of the surface of each link end by taking into account the
original geometry of the link. Forces are unchanged and moments
are given by the relation

mB = mA +(nB�nA)� fA (33)

A safety factor of 1.5, corresponding to a service factor for sup-
porting light machinery, shaft- or motor-driven, according to the
Copyright  2001 by ASME



AISC code (Shigley 1989), was taken into account. Furthermore,
the loads below, expressed in frame U, were introduced at the sur-
faces of the proximal links,

wd p1
=

2
6666664

0
0

3:3125
43:3013

0
0

3
7777775

wbd1
=

2
6666664

0
0

�0:2165
�43:3013

0
0

3
7777775

(34)

where forces are in N and moments in Nm.

LINK-SHAPE OPTIMIZATION
A two-level approach in the optimization of the proximal

links is outlined in the section below: a) optimization of the mid-
curve and b) optimization of the link shape.

Optimization of the Midcurve
The optimization of the midcurve of the Agile Wrist was re-

ported earlier (Angeles et al, 2000). For completeness, we in-
clude in this subsection an outline thereof.

The midcurve of the proximal link, connecting two points ly-
ing at different distances a and b from the center of the sphere, O,
is shown in Fig. 4. The shape of the midcurve is to be obtained
by means of the concept of curve synthesis proposed in (Ange-
les, 1983) using cubic splines. Because curvature discontinuities
induce stress concentrations (Neuber, 1961), we impose the con-
dition that the midcurve be of the G2-class, i.e., with continuous
tangent and continuous curvature everywhere. Additionally, the
proximal link is to end on straight segments in order to accommo-
date the bearings, and hence, the midcurve should blend smoothly
with such segments (Fig. 4). The spline-synthesized curve thus
should lead to an optimum shape of the link ensuring minimum
stress concentrations in the designed link. The geometric require-
ments imposed on the midcurve Γ are (i) to ensure a blending as
smooth as possible of the end straight segments with the curved
segment; and (ii) to minimize the curvature changes throughout
Γ.

We can now define the supporting points of the midcurve Γ
as the set fPkgN

1 , with polar coordinates fρk;θkgN
1 . We thus have

to specify angles α and β so that they will yield straight segments
of equal length l0 at the ends of the midcurve. We now have, for
k = 1; : : : ;N�1,

θ1 = α; θN =
π
2
�β; (35)

θk = α+
k�1
N�1

[
π
2
� (α+β)]: (36)
6

Figure 4. THE MIDCURVE OF THE PROXIMAL LINK

Moreover, we specify

ρ1 =
q

l2
0 +a2; ρN =

q
l2
0 +b2: (37)

For a fixed value of N, then, we look for N�2 values ρk, for
k = 2; : : : ;N�1, that will produce a smooth curve that obeys the
conditions for G2-continuity, namely,

1. its tangent at P1 should make an angle of 90��α with line
OP1;

2. its tangent at PN should make an angle of 90�+β with line
OPN;

3. its curvature should vanish at both P1 and PN; and
4. its curvature should have a smooth distribution everywhere.

We recall now the expressions for the angle γ that the tangent
of a curve at a point makes with the radius vector at that point
(Jeffrey, 1969), and for the curvature κ at a given point, in polar
coordinates:

tanγ =
ρ(θ)
ρ0(θ)

; κ =
ρ2 +2(ρ0)2�ρρ00

(ρ2 +(ρ0)2)3=2
; (38)

where we have used the notation

ρ0 � ρ0(θ); ρ00 � ρ00(θ): (39)

Hence, conditions 1 and 2 above take the forms

ρ1

ρ0

1
= tan

�π
2
�α

�
; (40a)

ρN

ρ0

N
= tan

�π
2
+β

�
: (40b)
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Additionally, we prescribe zero curvature at points P1 and PN:

ρ2
1 +2(ρ0

1)
2�ρ1ρ00

1 = 0; (41a)

ρ2
N +2(ρ0

N)
2�ρNρ00

N = 0: (41b)

In any event, a gradient numerical method will be needed,
and hence, derivatives of slope and curvature with respect to the
unknowns are required. We therefore use nonparametric splines
ρ = ρ(θ), which lead to partial derivatives with respect to the un-
knowns that are constant matrices.

Furthermore, we enforce the condition of minimum curva-
ture changes by imposing the minimization of an objective func-
tion z that measures the magnitude of the curvature values at the
supporting points. Moreover, in order to avoid large curvature
changes, we impose an additional constraint: that the curve be
convex. We can now formulate the optimization problem below:

z�
N�1

∑
2

κ2
k ! min

x
(42)

where x � [ρ2 � � � ρN�1 ]
T is the vector of design variables,

and κk � κ(ρk;θk). Moreover, the convexity condition is ex-
pressed as

ρiρi+1�2ρi�1ρi+1 cos∆θ+ρi�1ρi � 0; i= 2; � � � ;N�1: (43)

Note that the conditions 1 and 2 mentioned above were used to
impose end conditions for the cubic spline when conditions 3 and
4 were included in the optimization problem as constraints.

When solving the problem, the following values of link pa-
rameters were taken from the current design (in mm): a = 89:5,
b = 75:5 and l0 = 12:0.

The solution of the problem described above for N = 20 sup-
porting points is displayed in Table 1.

Optimization of the Cross Section
The optimization of the link cross section along the midcurve

obtained above comprises two steps: first, for each given geom-
etry, find the optimum solutions rendering minimum the weight
of the link; second, among the solutions, find the one that ren-
ders minimum the volumetric strain energy variation. The design
variables are the scaling factors defining the size of the cross sec-
tion of a given shape at points along the midcurve. A link is then
created as a solid with size-variable cross section. A discrete set
of points is defined along the midcurve, the cross sections at two
neighbouring points being obtained by sweeping and blending si-
multaneously a cross-section to one another to obtain an envelope
7

Table 1. NUMERICAL RESULTS FOR THE OPTIMUM MIDCURVE OF

THE PROXIMAL LINK

Point No. ρ κ

1 90.300900 0.0000000000

2 91.215865 0.0175751286

3 91.984276 0.0183735900

4 92.464602 0.0188806884

5 92.633872 0.0190488823

6 92.484503 0.0188512423

7 92.025255 0.0182888496

8 91.281149 0.0174028281

9 90.291877 0.0162739850

10 89.108383 0.0150138049

11 87.787779 0.0137477721

12 86.387328 0.0125945774

13 84.958746 0.0116465439

14 83.544055 0.0109561503

15 82.173702 0.0105311943

16 80.866940 0.0103386200

17 79.633852 0.0103156475

18 78.478214 0.0103864327

19 77.400404 0.0104809936

20 76.447700 0.0000000000

shape as smooth as possible by using the Pro/Engineer Standard
module.

We resort to the FEA by means of the optimization tool in the
Structure module of Pro/Mechanica, using aluminium AL2014.
The objective function is given as the weight of the link subject to
limits on the maximum and minimum principal stresses, the von
Mises stress, and the shear stress components. Due to the com-
plexity of the model and the high number of variables involved,
the optimization module could not even finish the first iteration.
We then handled the problem recursively, by increasing the num-
ber of size-variable cross sections from two until the mass differ-
ence between two successive iterations became negligible: for a
given cross-section shape, the aim was then to determine the min-
imum number of variable sections required to obtain the optimum
shape. Between the two successive shapes obtained before, we
keep the one that minimizes the strain energy variation and keep
Copyright  2001 by ASME



also the shape satisfying the same criterion among all the opti-
mum shapes.
Figure 5 depicts the location of the first five variable sections
and Fig. 6 shows the different cross-section shapes tested. It was
found that, for any of the shapes of Fig. 6, the mass difference
was insignificant when the number of variables exceeded five.
Moreover, with some cross sections, such as the “I-beam” and the
“round-square”, we were not able to find a solution. In others,
such as the elliptical section, the results led to too heavy links.
Optimum circular cross sections were not easy to find either.

Figure 5. PROXIMAL LINK WITH VARIABLE CIRCULAR CROSS-

SECTIONS

It is worth mentioning that we narrowed the geometrical
boundaries of the design variables in order to speed up the con-
vergence. Among the different types of sections tested, the cir-
cular and rectangular shapes reported better solutions in terms of
weight. However, while comparing the stress and the strain en-
ergy in the proximal links for the two different sections, the cir-
cular cross-section turns out to have a more homogeneous stress
distribution, with a strain energy per unit volume close to con-
stant. Comparisons are shown in Figs. 7 & 8. Moreover, this re-
sult matches the Venkayya criterion (Venkayya, 1971), according
to which the optimum design is the one in which the strain energy
per unit volume is constant. Another interesting observation is
that the stress along the midcurve is at its lowest level at every
cross section.
As we can see in Figs. 9 & 10, the optimum shapes found when
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p3
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Figure 6. THE VARIOUS CROSS SECTIONS TESTED

Figure 7. STRAIN ENERGY INSIDE THE OPTIMUM SHAPE WITH

TWO CIRCULAR CROSS SECTIONS

increasing the number of parameters (that is, the number of sec-
tions) from two to five for the circular link are geometrically very
close. The proximal link with only two variable sections has a
better homogeneity regarding stress and strain energy since the
simultaneous blending and sweeping from the first section to the
second is smoothest. For this reason we decided to use the shape
with two circular sections as an initial shape for the proximal link.
Copyright  2001 by ASME



Figure 8. STRAIN ENERGY INSIDE THE OPTIMUM SHAPE WITH

TWO RECTANGULAR CROSS SECTIONS

Table 2. RESULTS USING CIRCULAR CROSS-SECTION WITH TWO

AND FIVE DESIGN VARIABLES

# of sections 2 5

r1 (mm) 1.526 1.487

r2 (mm) 2.619 1.543

r3 (mm) 2.134

r4 (mm) 2.505

r5 (mm) 2.861

Weight(g) 4.591 4.411

Results of the optimization for this shape are listed in Table 2.
To design the straight end, whose form was fixed as a rectangu-
lar parallelepiped, we inscribed the circular section in a square
whose edge length is slightly bigger than the biggest diameter ob-
tained for the two links, in order to allow for a fillet to avoid stress
concentrations.

In addition, the design of the cross section of the distal links
was conducted using the same approach described above. The
optimum solutions obtained indicated a very small variation in
the size of the cross section along its midcurve, i.e., the cross sec-
tion is almost uniform. Therefore, in order to reduce the manu-
9

Figure 9. MAXIMUM STRESS IN THE OPTIMUM SHAPES WITH TWO

CIRCULAR CROSS SECTIONS

Figure 10. MAXIMUM STRESS IN THE OPTIMUM SHAPES WITH FIVE

CIRCULAR CROSS SECTIONS

facturing cost, we adopted a uniform cross section in the design
of the shape of the distal links.

CONCLUSIONS
We introduced a two-level approach to the optimum design

of the proximal links of a parallel spherical manipulator, the Ag-
ile Wrist. In this approach, we first determined the link midcurve
by means of cubic splines, while minimizing the curvature vari-
ations so that the stress concentration was minimized. In the sec-
Copyright  2001 by ASME



Table 3. THE OPTIMUM SOLUTIONS.

max principal stress 4:2369�108 Pa

max von Mises stress 3:9357�108 Pa

max xx stress 3:9043�108 Pa

max xy stress 7:3325�107 Pa

max xz stress 1:9263�108 Pa

max yy stress 1:5218�108 Pa

max yz stress 1:5718�108 Pa

max zz stress 2:9715�108 Pa

min principal stress 3:6762�108 Pa

# of shells 8

# solids 171

Total Elapsed Time 741.08 s

Total CPU Time 275.01 s

Max Memory Usage 86976 kilobytes

ond level, we found the size of the cross-section along the mid-
curve. We resorted to a finite element analysis using ProMechan-
ica, the optimum geometries being obtained by trying different
cross-sections. The results obtained showed a substantially uni-
form distribution of strain energy per unit volume along the prox-
imal link, which verifies Venkayya’s criterion.
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