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1801 McGill College Avenue, Suite 800, Montréal Québec H3N 2N4

Abstract

This paper describes an approach to combining range
data from both a set of sonar sensors as well as from
a directional laser range finder to efficiently take ad-
vantage of the characteristics of both types of devices
when exploring and mapping unknown worlds. We call
our approach “just in time sensing” because it uses the
more accurate but constrained laser range sensor only
as needed, based upon a preliminary interpretation of
sonar data. In this respect, it resembles “just in time”
inventory control which attempts to judiciously obtain
materials for industrial manufacturing only when and
as needed. Experiments with a mobile robot equipped
with sonar and a laser rangefinder demonstrate that by
judiciously using the more accurate but more complex
laser rangefinder to deal with the well-known ambigu-
ity which arises in sonar data, we are able to obtain a
much better map of an interior space at little additional
cost (in terms of time and computational expense). 1

1 Introduction

This paper describes an approach to combining
range data from both a set of sonar sensors as well
as from a directional laser range finder to efficiently
take advantage of the characteristics of both types of
devices when exploring and mapping unknown worlds.
We call our approach “just in time sensing” because
it uses the more accurate but constrained laser range
sensor only as needed, based upon a preliminary inter-
pretation of sonar data. In this respect, it resembles
“just in time” inventory control which attempts to ju-
diciously obtain materials for industrial manufacturing

1Appeared in “IEEE, International Conference in Robotics
and Automation”, v.1, pp 667-671. Apr. 1996.

only when and as needed.

Sonar sensing is ubiquitous on mobile robots due to
its low cost, the simplicity of the required processing,
and the rapidity with which it can return results reflect-
ing range measurements over a large region of space.
Despite these advantages however, it suffers from sev-
eral shortcomings as a source of range data. Most im-
portantly, the measurements tend to have low spatial
resolution and the observed data (with most interpreta-
tion strategies) are typically confounded by the effects
of multi-bounce specular reflections. For this reason,
the use of sonar is often confined to collision avoidance
rather than mapping.

Laser range sensors, on the other hand, are typically
able to obtain comparatively accurate data with fewer
artifacts when compared to simple sonar sensors. The
laser rangefinder we have developed is based on BIRIS
[3] technology: a special lens with two pinholes near
the nodal point is used. This produces a double image
of objects in the scene with a disparity that depends
directly on the distance of the object from the focal
plane of the lens. We obtain a stereo image using only
a single CCD array. By projecting a laser stripe onto
the scene, a target is made available which can be used
for unambiguous stereo correspondence, allowing true
depth to be readily computed. Two of these BIRIS
sensors mounted on pan tilt units in a specific configu-
ration comprise the McGill QUADRIS sensor platform.

Like all sensing technologies, the BIRIS sensor also
has disadvantages. Its primary shortcoming is that al-
though the accuracy of range measurements is reason-
able over short distances (up to one or two meters),
accuracy degrades rapidly with longer distances (this
is one of the design parameters). Furthermore, obtain-
ing either a dense range image or range data over a



wider field of view than the 25 degrees or so covered by
a typical camera2 lens implies physically sweeping the
camera and laser across the scene, and hence involves
a time delay.

Early work to validate our “just-in-time” sensing
strategy using real sonar data and simulated BIRIS
data was reported earlier [8]. In this paper, we describe
results using real sonar data and real BIRIS data ob-
tained from the McGill QUADRIS platform.

1.1 Background

Various approaches have been considered for the ex-
ploration of unknown or quasi-known environments.
Most work dealing with real noisy sensor data must
cope with the management of sensor uncertainty and
exploration strategies, i.e. selecting successive un-
known locations or objects to visit (investigate) e.g.
[15, 17, 1, 6, 2]. The best way to manage exploration
in the face of real sensor noise remains an open prob-
lem. The question is further complicated by the fact
that the choice of an optimal mapping strategy is sen-
sitive to the specific task at hand. A somewhat dis-
tinct research stream deals with the complexity issues
in autonomous robot exploration of an unknown envi-
ronment [4, 11, 16, 12].

In general, work on sensor fusion has tended to fo-
cus on issues of how best to combine measurements
from different sensors e.g. [18, 5], or how best to ex-
tract data with a single sensor and fuse the measure-
ments over time e.g. [9, 10, 19], rather than how to se-
lectively extract measurements from different types of
sensor. This later problem of combining measurements
over time has, in fact, two variants: that problem of
fusing a set of measurements obtained somehow over
some time period e.g. [14, 7], and the problem of ef-
ficiently selecting where or when to obtain additional
measurements e.g. [21].

An apparently general finding is that the difficulty
of the exploration task is rather sensitive to the level of
sensor noise and the fidelity of the geometric inferences
made about the objects in the environment. Thus, it
seems appropriate to focus some effort on efficiently
obtaining good geometric models since using all of the
sensors on the robot all of the time can lead to serious
inefficiencies in exploration/mapping time and in using
the on-board computational resources.

2Using cameras with a very wide field of view leads to dis-
tortions and a loss of resolution and thus is not an acceptable
solution.

2 Just in time sensing

2.1 The Exploration Context: An Art
Gallery

As an expermental testbed for our sensing method-
ology, we are examing the performance of our approach
in an indoor environment resembling an art gallery or
museum; such an environment has certain practical ad-
vantages as specified below. The environment consists
of a large enclosed room containing several stationary
objects. We make the assumption that a collision-free
paths exists between any two points within the free
space of the room. Although, the objects inside a room
are assumed to be static, the configuration of the room
is subject to change between successive visits by the
robot and must therefore be mapped again every time
it is visited. The floors are flat (except for some well
defined places where stairs exist) and smooth without
any anomalies.

Our robot, an RWI B-12, is equipped with a ring of
sonar sensors which provide coarse range measurements
of distances up to 8 meters omnidirectionally, and a
BIRIS sensor system that can give accurate estimates
over at short range and only in one direction; see Figure
1.

Figure 1: RWI mobile robot equipped with McGill
QUADRIS sensor platform.

In this paper we will also ignore the issue of odome-
try errors. In practice this is a significant issue and we
can address it is a variety of ways [13, 9].

2.2 Processing sonar data

As previously mentioned, a primary robot sensor is
the sonar range finder. Our RWI robot is equipped with
a ring of 12 sonars positioned equidistantly around it,
returning 12 measurements at the same time. In order
to obtain a denser range map which is less susceptible
to artifacts, the robot is commanded to rotate in place



and more measurements are made. More precisely, we
collect a total of 180 sonar measurements at each robot
(x,y) position but not all of them are used.

But as described above, multiple bounces or echos
associated with sonar data may give rise to the follow-
ing errors. Firstly, a phantom “third” wall may appear
where two walls meet at a corner. Secondly, false mea-
surements may be obtained suggesting the presence of
objects far away. In some cases, errors such as these
can be eliminated. Incompleteness and noise in sonar-
based maps is, however, difficult to avoid completely.

In order to deal with such errors in the sonar data,
certain measurements are suppressed from further pro-
cessing. Firstly, measurements (range estimates) be-
yond a certain “logical” distance are discarded, under
the assumption that they may not be reliable. Al-
though this could result in the loss of legitimate infor-
mation, we assume that such information is sufficiently
distant from the robot as to be of little importance in
mapping that part of the environment which is nearby.

A second criterion for discarding erroneous sonar
data is related to knowledge about the immediate sur-
roundings of the robot. From knowledge of likely ob-
jects we know we can reliable detect any object within
a circle of diameter 1m about the robot Consequently,
any prior or subsequent range measurement within this
circle can be assumed to be in error, and therefore is
discarded.

Once those measurements deemed to be in error are
discarded, the sonar data measurements are then clus-
tered together using the “Sphere of Influence Graph”
[20]. Assuming a minimum distance in order to avoid
clustering points at the same position as separate small
clusters. Line segments are then fit to the data clus-
ters by splitting and merging them using a certain con-
fidence measure to obtain new line segments with a
certain confidence [MD94]. From that point on, the
construction of the environmental map is performed in
terms of lines with a confidence measure attached to
them.

2.3 Processing laser range data

In order to improve the results we obtain from pure
sonar data, the BIRIS laser range finder is judiciously
called into play, according to our “just-in-time” sens-
ing strategy. As previously described, the useful range
of BIRIS is about three to four meters but in order
to assume very good accuracy, most of the scans are
performed at one and a half meters range. Another
limitation is its field of view of 25 degrees, which is,
in practice, even smaller due to artifacts appearing at
the edges of the scan lines. The BIRIS sensor may be
used to obtain up to 512 range measurements per scan

whenever something is present (an object or a series of
objects) in the whole field of view.

Once again, the “Sphere of Influence Graph” is used
to cluster measurement data into clusters but this time,
no minimum distance threshold is used, since the data
points are already closer together. When line segments
are grouped into clusters, we have observed almost ideal
confidence levels.

Note too that when BIRIS is used in addition to
sonar, a third criterion for discarding sonar data in er-
ror may be defined as follows. Whenever a line seg-
ment is observed by BIRIS, we assume that no ob-
ject is present inside the triangle formed by the BIRIS
line segment and the position of the robot at the apex.
Moreover, as we shall see, BIRIS is only used in places
where sonar is ambiguous, i.e. where much sonar data
is error.

2.4 Just-in-time BIRIS sensing

We now describe the way in which the mobile robot
explores and maps its unknown environment with just-
in-time BIRIS sensing to complement sonar sensing.
Simply, BIRIS data is only acquired to accurately pin-
point the corners and the borders of objects, where the
sonar data is ambiguous.

The exploration strategy developed as a testbed for
the fusion of sonar and laser data is a form of wall
following, or more accurately, “closest object follow-
ing”. The world is modeled in terms of line segments
with marked endpoints; an endpoint is marked as ei-
ther “terminal” (confirmed) or “non terminal” (to be
confirmed). The algorithm for exploration is outlined
next.

The robot explores its unknown environment by pro-
ceeding to the nearest object (or wall). (When multiple
objects are present in the same sonar scan, the robot
applies a modified breadth first search algorithm in or-
der to structure the way in which it will explore one ob-
ject after another.) The robot then navigates around
the object while increasing the length of the current
line segment until reaching a non-terminal endpoint of
the current line segment in a trajectory parallel to it at
a distance of approximately one meter from it (making,
if necessary, the proper adjustments). It is at this stage
that BIRIS is used.

Non-terminal endpoints will arise when the robot
is approaching the corner of two walls whereby the
current object (the wall that the robot was following)
comes to an end. The robot localizes the potential
corner using sonar data, aims BIRIS at the corner,
and then maps the corner accurately, marking the end-
points of the two lines as terminals, i.e. the end of the
wall that the robot was following, and the beginning of



the other wall.
When the robot reaches the physical extremity of a

line/wall, BIRIS is needed to accurately map the end-
point position. This is because the endpoint critically
defines the geometry yet is especially hard to acuu-
rately position using sonar. Once again, the robot aims
BIRIS at the endpoint of the object currently marked as
“non-terminal”, obtains data, transforms the data into
line segments, and then calculates the exact position
of the endpoint while marking it as “terminal”. When
both endpoints of the closest object line segment are
marked as terminal, then the robot moves away from
until a new object, not fully explored (with at least one
non-terminal endpoint) becomes the new closest object.

2.5 Constructing the map from sonar and
BIRIS data

The incremental construction of the map of the un-
known world takes into account the position and ori-
entation of the line segments, their data source (sonar,
BIRIS), and the confidence measure attached to them.

In particular, the map consists of three types of lines:
Sonar, for the line segments created using only sonar
points; Biris, for the ones that use only BIRIS measure-
ments; Complex, for the ones that appear after merging
Sonar and Biris line segments.

If two lines are almost parallel and their separation is
less than a critical threshold d (in our experiments, d =
5cm), then they are merged. There are two different
cases for merging.

The first case is when there is one Sonar line seg-
ment and one Biris or Complex line segment. Since
BIRIS is much more accurate than sonar, we project
the Sonar line segment onto the Biris/Complex line
segment. In all other cases, we merge two line seg-
ments by taking into account the confidence measure
(fi) associated with each one, and its length (li). If
the two line segments intersect, then a new line seg-
ment passing through the point of intersection is cre-
ated with slope m (Equation 1) where mi is the slope
of the line segment with the largest confidence mea-
sure (length multiplied by confidence). If the two line
segments do not intersect, then we identify their two
nearest endpoints and calculate a weighted midpoint
using the same weights used for the slope, thereby cre-
ating a new line segment passing through the weighted
midpoint with a slope m as described above.

m = α ∗mi + (1− α)mj

α = max( l1
l1+l2

∗ f1,
l2

l1+l2
∗ f2)

(1)

One difficulty arises when merging changes the po-
sition of line segment endpoints. Consider the case of

merging two line segments with one having an endpoint
marked terminal. It is possible that when we map a
Biris or Complex line having a terminal endpoint onto
a Sonar line segment, the length of the sonar line seg-
ment will change, in order to preserve the position of
the terminal endpoint. In this way, BIRIS data helps
“clean up” the Sonar line segments by discarding erro-
neous points and by adjusting the lengths of the Sonar
line segments.

Every time the robot uses its sonar sensors or BIRIS
rangefinder, it updates its map with new Sonar or Biris
line segments, in order to decide how to continue to ex-
plore that part of the environment which is still un-
known. In addition, the partially constructed map
would also be useful for helping the robot return to a
“home base” in case of sensor/BIRIS failure, low power
problems, etc.

3 Experimental results

A set of experiments were conducted in the Mobile
Robotics Lab of McGill’s Centre for Intelligent Ma-
chines using the abovementioned RWI robot and spe-
cially developed running on a Silicon Graphics INDY
workstation. At first, just sonar was used to perform
the world modelling in order to establish a baseline for
comparison; see Figure 2. Note that the robot does
not complete a full tour of the indoor space; just three
walls are followed.

Figure 2: Map of our interior space generated using
only sonar sensors.

The same experiments were repeated for sonar and
BIRIS, in order to demonstrate the improvement in
accuracy. The following four figures are a sequence



of “snapshots” during different stages of the map con-
struction of the same world, using “just-in-time sens-
ing” with BIRIS.

In Figure 3, we observe that the robot started its
exploration at a slightly different position and has now
followed two walls; the portions in the figure shaded
in grey indicate where BIRIS data was used to more
accurately map corners.

Figure 3: Progressive map construction using just-in-
time sensing; Step A

In Figure 4, partial information about the interior
object and about a third wall has been added to the
map. Note too that the artifact present in the lower left
of the previous figure has been “cleaned-up” as part of
the accurate mapping of the third wall.

In Figure 5, we observe that BIRIS is used once again
to more accurately map the corner associated with the
end of the third wall and the beginning of the fourth
wall.

Finally, in Figure 6, the robot has completed the
same partial tour as before (using just sonar), by fol-
lowing three walls. When compared to the map shown
in Figure 2, we observe that the modelling is much
cleaner, especially with respect to the interior (naviga-
ble) space, i.e. artifacts still remain “behind” the walls
of the interior space but they have no bearing on the
way in which the robot would use its map in the future
to navigate within the world now explored.

4 Conclusions

This paper describes an approach to combining
range data from both a set of sonar sensors as well as
from a directional laser range finder to efficiently take
advantage of the characteristics of both types of devices

Figure 4: Progressive map construction using just-in-
time sensing; Step B

when exploring and mapping unknown worlds. We call
our approach “just in time sensing” because it uses the
more accurate but constrained laser range sensor only
as needed, based upon a preliminary interpretation of
sonar data. In this respect, it resembles “just in time”
inventory control which attempts to judiciously obtain
materials for industrial manufacturing only when and
as needed.

Experiments were also reported with an RWI mo-
bile robot equipped with sonar (supplied by RWI)
and a laser rangefinder we have developed at McGill
University’s Centre for Intelligent Machines based on
BIRIS technology. They demonstrate that by judi-
ciously using the more accurate but more complex
laser rangefinder to deal with the well-known ambigu-
ity which arises in sonar data, we are able to obtain a
much better map of an interior space at little additional
cost (in terms of time and computational expense).
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