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ABSTRACT

Abstract

A new approach for computing qualitative part-based descriptions of 3D objects from

single- and multi-view range data is presented. This research is motivated by both a theory

of human image understanding (Recognition-by-Components) and the need for qualitative

recognition by an autonomous robot in order for it to e�ciently interact with its environ-

ment.

Object descriptions are obtained in two consecutive steps: (1) object segmentation into

parts and (2) part model identi�cation. Segmentation is achieved by �rst computing the

simulated electrical charge density distribution on a tessellated triangular mesh of the object

surface. The algorithm then detects the object part boundaries where the the charge density

achieves a local minimum. The charge density distribution can simultaneously provide an

indication of the gross and �ne object structures. Parametric geons are introduced as the

part models, which indicate both qualitative shape and quantitative attribute information.

Model recovery is achieved by �tting all parametric geons to a part and then selecting

the best model based on the minimum �tting residual. A new objective function used

for model recovery is optimised by a global optimisation technique (Very Fast Simulated

Re-Annealing).

The advantages of this approach are demonstrated through experimentation. By using

a physical analogy to the well known transversality principle, part segmentation does not

require an assumption of surface smoothness or the choice of a particular scale to com-

pute local surface features. The formulation for parametric geons provides a global shape

constraint, which ensures reliable part model recovery even when the part shape is not

an exact instance of a parametric geon. By directly comparing a part with all candidate

models, this approach explicitly veri�es the shape of the resultant part descriptions. The

computed part-based descriptions are well suited for the object recognition task carried out

by an autonomous robot.
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R�ESUM�E

R�esum�e

Ce travail pr�esente une approche pour le calcul qualitatif de la description en parties d'objets

3D, per�cus �a partir d'une ou de plusieurs vues de distance. Cette recherche est motiv�ee

�a la fois par la th�eorie de compr�ehension des images de l'être humain (reconnaissance par

composantes) et le besoin d'une reconnaissance qualitative permettant �a un robot autonome

d'interagir e�cacement avec son environnement.

Les descriptions d'objets sont obtenues en deux �etapes: (1) la segmentation d'objet

en parties et (2) l'identi�cation de ces parties. La segmentation est accomplie en calculant

tout d'abord la simulation de distribution de densit�e de charge sur tesselation triangu-

laire de la surface de l'objet. L'algorithme d�etecte alors les fronti�eres des composantes de

l'objet, dont la densit�e de charge atteint un minimum local. La distribution de densit�e

de charge peut �egalement fournir une indication sur les structures �nes et grossi�eres de

l'objet. Les G�eons param�etriques seront le mod�ele des parties d'objet, et indiqueront �a la

fois une information qualitative de forme et une information quantitative. La s�election du

mod�ele d'une partie est obtenue par la mise en correspondance des mesures et des G�eons

param�etriques et en s�electionnant le mod�ele qui obtient l'erreur r�esiduelle minimale. Une

nouvelle fonction objectif utilis�e pour la reconnaissance de mod�ele est optimis�ee par une

technique d'optimisation globale (Recuit simul�e tr�es rapide).

Les avantages de cette approche sont d�emontr�es par l'exp�erimentation. En utilisant

l'analogie physique bien connue du principe de transversalit�e, la segmentation en partie ne

n�ecessite pas d'hypoth�ese de surface lisse ou le choix d'une �echelle particuli�ere pour cal-

culer les caract�eristiques locales de la surface. La formulation des G�eons param�etriques

fournie une contrainte globale de forme qui assure une identi�cation �able du mod�ele d'une

partie même lorsque la forme de cette derni�ere n'est pas une instance exacte d'un G�eon

param�etrique. Par une comparaison directe d'une partie avec tous les mod�eles candidats,

cette approche v�eri�e explicitement la forme des descriptions en partie r�esultantes. Les de-

scription en parties ainsi calcul�ees s'av�erent bien adapt�ees pour les tâches de reconnaissance

d'objet requises par tout robot autonome.
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CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

To interact with the environment, an autonomous robot must identify targets and avoid

obstacles in its environment. More speci�cally, the robot must often recognise and localise

objects by interpreting sensor data in terms of previously existing knowledge about the ob-

jects. This task requires image data, object models in a database, an object representation

process that computes a description of the object from image data and an object recogni-

tion process that matches the description against object models. Sensor data usually only

provide point-by-point measurements such as the distances from the sensor to objects in

the viewed scene. However, these numerous and unstructured data are not appropriate to

represent the environment for a mobile robot executing complicated roles in, say, an o�ce

or factory milieu. Such a robot must make use of symbolic models which are concise and

organised descriptions about the structure of the world. Thus the object representation

process is important because it transforms sensor data to symbolic descriptions which are

consistent with the models in a database and support e�cient model matching. This signal-

to-symbol mapping is, thus, at the heart of any functioning autonomous robot carrying out

complex tasks.

In this thesis, we present a new approach to three-dimensional (3D) shape representa-

tion of objects based on parts. The input to our system is a single range image or multiple

range images. Our task is twofold. The �rst is to segment the object into individual parts.

The second is to select a particular part model from a few prede�ned model candidates

which describes the best shape approximation of each segmented object part. Our approach

�rst computes a novel physics-based surface property, the simulated charge density distri-

bution over the object surface and decomposes the object into parts at the part boundary

where the charge density achieves a local minimum. We then employ a new top-down strat-

egy to recover models for each segmented part by directly comparing the part shape with

1



CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1. Part-based description of a 3D object. (a) The range image of an object. The
shading is added arti�cially to enhance the 3D nature of the object. (b) The data in (a) are
interpreted by our system to consist of two parts. Each part is approximated by an ideally-shaped
volumetric model. In this case, the top part is a tapered cylinder and the bottom part is an

ellipsoid.

the shapes of known part models. The segmentation method e�ciently deals with certain

problems in traditional approaches, such as unrealistic assumptions about surface smooth-

ness and instability in the computation of the surface feature. The model recovery method

obtains part models more robustly and accurately than previous work.

Consider a simple example of a 3D object that could be imaged by a laser range�nder

mounted on a mobile robot. Figure 1.1 (a) shows the range image of a bowling pin. Here

the value at each pixel indicates the distance from a position on a regularly spaced grid

in the sensor image plane to a point on the object surface in the scene. Our approach

produces an object model, which simply consists of two generic shapes, an ellipsoid and

a tapered cylinder, as shown in Figure 1.1 (b). This model is a coarse description of

the object. It reveals that the object consists of two intuitive parts described by ideal

shape symbols or models. The part models are also associated with certain parameters

which describe their size, position and orientation, as well as the tapering rates for the top

part. This kind of description reects the object structure at a scale that is similar to our

intuitive notion of a part [93]. It encodes symbolic shape information for object parts at

the qualitative level. All part model shapes are ideal and distinctive; the number of shape

types of part models is �nite. The descriptions also include size, deformation and pose

information at the quantitative level. Restrictions on an object's shape are applied solely to

parts. Although their number is indeed limited, the composition of these part models using

various simple spatial relations can represent many objects [15]. Such an object description
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can support symbolic reasoning for an autonomous robot which needs to recognise objects

in its environment.

1. Background

In order to recognise an object from a range image, a computer vision system must

convert the image data into a symbolic description or model of the object shape which is

somehow consistent with the actual object shape. Two major questions need to be addressed

in this regard. First, at what level of description should object shapes be represented?

This issue is related to the domain of perceptual psychology [60, 136, 15, 93]. The

description must reect structural information in nature and permit e�cient matching to

models. Secondly, how can one derive such a description robustly? This question is of

primary interest to the �eld of computational vision [82, 6, 143]. The answers to these

questions serve as the constraints for and motivate the development of computer vision

algorithms.

The signi�cance of object descriptions at the part level is well understood [82, 72,

60, 136, 80]. Many objects consist of parts or components which can be distinguished

perceptually, geometrically or functionally from each other. Object parts have perceptual

salience and reect the natural structure in the world [6]. Building object part-based

descriptions for various tasks has been a major strategy for many years [87, 82, 94, 6, 95,

46, 133, 41, 65, 13]. The primary reason for this is that part-based descriptions help to

bridge the gap between image features and symbolic descriptions of objects [96]. Therefore

they can be more robustly and e�ciently indexed into a database than some other features,

such as edges or surfaces. Parts are also advantageous for representing non-rigid objects [60].

Moreover, part descriptions also support function-based object recognition [129, 130]. In

this case, objects are speci�cally identi�ed by a certain functionality, which is most likely

associated with the object's parts rather than its edges or surface patches.

It is a common observation of nature that a variety of objects can be constructed

from a few simple primitive prototypes. In the art of sculpture, a few volumetric shapes

are regarded as fundamental units for constructing sculptures [154]. Three basic colours

su�ce to make di�erent pointillistic paintings [75]. Twenty-six letters make up the list of

all English characters. We need only 44 phonemes to code all of the words in the English

language [15]. In an analogous fashion to the phonemes in speech, Biederman has proposed

a theory of human image understanding for the early identi�cation of objects, the so-called

Recognition-By-Components (RBC) [15]. He has proposed 36 distinct volumetric shapes,
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Figure 1.2. Objects described by a few geons.

called geons (geometrical ions) as descriptions for object parts. The shapes of geons, such

as a block or a cylinder, are generic in the sense that they are de�ned qualitatively and

can be combined to describe many di�erent objects. Line drawings of several examples are

given in Figure 1.2. Biederman postulated that if an arrangement of a few geons could be

recovered from line drawings of an object such as one of those shown in Figure 1.2, the

object could be recognised quickly, even when occluded, novel, rotated or degraded. He

and his colleagues have conducted psychophysical studies [15, 18, 19, 20, 33, 21] and

created arti�cial neural network simulations [65] to support geon-based recognition. The

RBC proposal that an object's part-based representation can be constructed using a �nite

set of generic shape prototypes is the essential motivation behind our research. In this

thesis, we focus on several important issues regarding the computational aspects related to

this theory.

2. Statement of the Problem

The speci�c problem we consider in this thesis is to segment an isolated 3D object into

its parts and describe the shape of each part in terms of a few generic part models. The

objects are composed of multiple parts. It is important to note that the object surfaces
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need not be smooth and the shapes of object parts need not fully conform to the shapes of

the part models.

RBC hypothesises that line drawings of objects extracted from intensity images by an

edge detection operation [30] are used to derive geon-based descriptions [15]. However,

edges and line drawings are signi�cantly di�erent. Edges reveal image information which

reects the rapid changes in image intensity. But line drawings generally convey information

about object surface discontinuities in orientation and depth. In practice, \clean" line

drawings can rarely be obtained from edge maps due to the colour and texture of object

surfaces or complex illumination con�gurations. All studies based on line drawing analysis

have assumed that complete line drawings can be extracted and that the objects of interest

are composed of instances of complete geons. Unfortunately, it is not clear how to derive

geons from imperfect line drawings of objects which consist of non-ideally shaped parts.

As an alternative we use range rather than intensity images. We believe that the depth

information provided by range images can facilitate the extraction of geons from objects

which consist of imperfect geon-like parts. In many situations, an autonomous mobile

robot is equipped with a laser range�nder. It is therefore important to study how to derive

symbolic descriptions of objects using range information. These could then be used as the

basis for object recognition.

A range image is de�ned as a set ofM discrete samples of a scalar function f : I2 ! R

zi = f(ui)

where ui 2 I
2 is the index of the 2D image grid, zi 2 R and i = 1; :::;M . A range image

gives the distances between the image plane and the points on the surface of objects in

the scene. By consulting a lookup table that indicates the relationship between the image

coordinate system and the range�nder coordinate system, a range image can be further

converted to range data. These are de�ned as a set of M discrete samples of a vector

function f : I2 ! R3

di = f(ui)

where di 2 R3 and i = 1; :::;M . Range data provide explicit 3D coordinates in the

range�nder coordinate system. Our system starts with range data and applies the RBC

theory to the range data rather than to line drawings as in the original proposal [15]. In

RBC, geons are de�ned by qualitatively specifying the 3D properties of generalised cylin-

ders [22] which are parameterised volumetric models. This concept is clearly not restricted

just to line drawings of objects and can be applied to range data. However, the technique

5



2. STATEMENT OF THE PROBLEM

for actually deriving part-based descriptions from range data is very di�erent from Bieder-

man's computational hypothesis. More importantly, some di�cult problems which exist in

the approaches based on line drawing analysis can be e�ciently dealt with by using range

data. This will be elaborated in the next few paragraphs and emphasised in Chapter 3.

Some terminology used in this thesis is worth explaining at this point. A physical surface

is the boundary between the space occupied by an object and free space. The positions

on the object physical surface are encoded as surface data points in range images or range

data. By a physical part, we mean a portion of the object surface which can be distinguished

meaningfully 1 from the rest of the object. In the context of part segmentation, a part is a

set of surface data points on a physical part.

RBC proposes that a part-based description includes part models, geons, and spatial

relations between parts [15]. Both geons and the spatial relations are described in pure

qualitative terms. Our part-based description of an object is composed of the number of

parts and the descriptions of part models. Each part model includes its shape type, its

pose, its size, the tapering rates if it is a tapered shape and the axis curvature if it is a

curved shape. As an example, Table 1.1 shows the part-based description of the bowling pin

shown in Figure 1.1. The shape type for each part model is given in qualitative terms and

other features are described quantitatively. In our case, the spatial relationship between

parts is encoded in the pose information, which can be converted into a qualitative relation.

To obtain such a description, one needs to know: (1) Which are the parts? and (2) What

is the model for each of the parts? The former is the issue of part localisation (object

segmentation), while the latter deals with part identi�cation (model recovery).

The problem of object segmentation can be stated as follows: given a set of surface

points of an object, classify these data points into meaningful subsets, each of which is on

a single physical part of the object. Figure 1.1 (a) is an example of a range image which

needs to be segmented into parts. Since range data are only a set of discrete data, they do

not provide any explicit part information. To segment the object into parts, one must �rst

specify a de�nition of meaningful parts. Then based on this de�nition one may conceive of

a segmentation algorithm. Such algorithms for part segmentation have been traditionally

based upon the geometrical properties of objects. For example, objects can be de�ned

in terms of part boundaries where object surfaces are sharply concave [60]. In general,

algorithms employ the surface principal curvature to locate the deep concavity [49, 47]. As

1This is not de�ned exactly and must draw upon psychophysics. De�nitions of parts are discussed in [72, 60,
80, 118].
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number of parts 2

part index 1 2

shape type ellipsoid tapered cylinder

tx = �0:974 tx = 2:643

translation ty = 15:917 ty = �43:104

tz = 0:090 tz = �0:670

rx = �89:3127 rx = 90:6738

rotation ry = �3:57199 ry = 3:49784

rz = �179:45 rz = �172:721

ax = 21:503 ax = 8:719576

size ay = 21:987 ay = 8:675747

az = 38:048 az = 20:69575

tapering rate kx = 0:0000 kx = 0:3379

ky = 0:0000 ky = 0:3515

curvature of axis 0:0000 0:0000

Table 1.1. The part-based description of the bowling pin shown in Figure 1.1. Here the shape
types of the part models are given in qualitative terms and the rest of the features are described
quantitatively. The details of the latter will be explained later. Qualitative object recognition can
be performed by matching the number of parts and the shape types of parts to the object models
in a database. The other quantitative information is used only if they are needed.

an alternative approach, we use a surface physical property, the simulated electrical charge

density distribution, to perform 3D object segmentation into parts [149, 148]. There exists

an analogy between a discontinuity of surface tangents and the singularity of the electrical

charge density over the object surface. It is well known that for a charged conductor,

the charge is only distributed over the outer surface of the object, tends to accumulate

at a sharp convexity, and vanishes at a sharp concavity. In this thesis we propose that

object part boundaries, which are usually denoted by a sharp surface concavity [60], can be

detected by locating surface points which exhibit local charge density minima. This physical

de�nition allows us to develop an e�cient algorithm which does not su�er from some of the

traditional problems, such as unrealistic assumptions about surface smoothness, instability

of local surface feature computations, and the need to select crucial user-de�ned parameters.

The problem of part identi�cation can be stated as follows: Given a set of data points

on a particular part and all candidate part models, �nd a model which is the best description

of that part. This is illustrated in Figure 1.3. A single-part object is shown at the left and
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object shape

model shapes

?
best model

Figure 1.3. An example of part identi�cation. A single-part object is shown at the left and
three possible part models are presented in the middle. The question to be answered is: Which
model is the best description of the object?

three possible part models are presented. The question to be answered is: Which model

is the best description of the object? It is important to stress at this juncture that the

shapes of object parts are usually not exact instances of the part models. Therefore the

model recovery algorithm must be able to approximate a part shape by a model shape.

However, in all previous work with geons, qualitative part models were recovered without

any explicit shape veri�cation. They either did not verify the overall shape of the resultant

model, or veri�ed it in the model parameter domain but not by shape. In this thesis, we

propose a top-down strategy to compute the qualitative shape models of parts robustly and

accurately from data representing parts whose shapes are not fully consistent with their

models. We introduce parametric geons as object part models in the form of implicit equa-

tions of restricted deformed superellipsoids [8, 123]. Parametric geons are seven qualitative

shapes associated with pose and attribute parameters which control the model size, taper-

ing rate, and axis curvature [145]. Parametric geons provide explicit global constraints

on the qualitative shape of part models. This constraint allows the algorithm to directly

compare the model shapes with a part shape. In the literature, bottom-up approaches are
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used [41, 65, 88, 13, 101] which do not employ such a global constraint. In these cita-

tions, computed geons are matched to local features only. Similarly, in the only previous

work which used parametric models [100], shape veri�cation is performed by comparing

the Euclidean distances in parameter space of superellipsoid parameters 2. However, the

Euclidean distances of model parameters do not exactly measure the shape similarities of

superellipsoids. For example, one superellipsoid shape may be described by two di�erent

sets of parameters. In contrast to previous work, we perform qualitative model recovery by

comparing all parametric geon models to a part and selecting a model of that part based on

the similarity between the part shape and each candidate model [146, 147]. The paramet-

ric geons and model recovery strategy provide a mechanism for explicit shape veri�cation,

thereby achieving more reliable shape approximation.

The part-based descriptions produced by our approach have wide potential applica-

tion. In many situations objects can be easily distinguished by their parts. More exact

information about objects is only secondary. For an autonomous robot navigating in an

o�ce environment, its task is to avoid obstacles and identify possible targets. Obstacle

shapes are usually very di�erent from target shapes. Descriptions of objects based on para-

metric geons are often su�cient for an autonomous agent to perform those tasks. Another

example pertains to automated manufacturing where an assembly machine may need to

quickly classify and select industrial parts on a conveyor belt. This could be done on the

basis of coarse shape descriptions. Parametric geon-based descriptions are very useful for

this purpose.

3. Thesis Overview

In Chapter 2, we begin with a review of the previously related research on object

segmentation into parts, volumetric primitives and part model recovery. Segmentation can

be approached in two di�erent ways: by searching for di�erences or similarities [155]. The

technique for searching for di�erences is boundary-based; it locates part boundaries and

decomposes the object into parts at these boundaries. The search for similarities is shape

(or region or primitive)-based and directly �nd parts based on their shapes. We categorise

volumetric primitives as quantitative and qualitative according to whether the de�nition of

shape relies on a continuous metric or qualitative terms. We also discuss two major model

recovery schemes, bottom-up and top-down, used in the past. The bottom-up approaches

2Although a major aspect of this work is to recover the superellipsoid models, the ultimate goal is to derive a
qualitative shape model from the superellipsoid parameters. Thus, there is a di�erence between this work and others
dealing with superellipsoid model recovery [94, 27, 123].
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multiview 3D data

object segmentation

PROCESSING

data preparation

model selection

range data

triangular mesh

segmented parts

charge density distribution

image acquisition

multiview integration

part decomposition

charge density computation

surface triangulation

model fitting

part identification

STAGE

(optional)

best models of parts

INFORMATION

potential models of parts

Figure 1.4. A simpli�ed ow diagram for information processing.

infer part models by collecting and grouping local features. In top-down approaches, global

shape constraints of part models are used to guide model search.

In Chapter 3, we present the motivation for and methodology of this thesis. We �rst

summarise the RBC theory and its computational hypotheses. We then discuss some dif-

�cult issues in previous work on geon recovery, such as, inability of perfect line drawing

extraction, nonuniqueness of geon de�nitions, instability of part segmentation, lack of ex-

plicit shape veri�cation and insu�ciency of using single-view data. We also describe our

alternatives for dealing with these problems. General assumptions about object shapes,

part shapes, part models and preprocessing for our approach are proposed and used as

constraints for developing algorithms. A general framework in terms of a constrained opti-

misation is presented to solve the problem dealt with in this thesis. We also make a com-

parison between our work and previous research in part segmentation, qualitative shape

approximation, volumetric models and part model recovery.

Chapters 4 and 5 describe the details of our approach. A ow diagram of the pertinent

information processing is given in Figure 1.4. Single-view or multiview range data are

obtained by a laser range�nder. Multiview range data are further registered and integrated
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into a world coordinate system. Redundant data which are contained in more than one

view are removed.

In Chapter 4, we propose a new approach to 3D object segmentation into parts based

on a simulated electrical charge density distribution. In order to compute the distribution

numerically, we tessellate the object surface using a closed triangular mesh and then apply

a �nite element method. A direct connection graph based on the spatial relations between

triangles in the triangular mesh is then constructed as a convenient coordinate system on

the object surface. Employing this graph, we detect triangles on part boundaries where the

charge densities achieve local minima. These triangles are deleted from the graph which are

then divided into a few subgraphs. In this way, the object is broken into parts. Triangles

belonging to the same physical part are easily obtained by a connected component labelling

process.

In Chapter 5, we introduce a new approach to part model identi�cation. We de�ne

parametric geons as object part models and compare them with Biederman's geons. We

perform the model recovery using an optimisation procedure and introduce a new objective

function for this purpose. We also discuss the characteristics of the objective function and

the optimisation technique.

In Chapter 6, we examine the systematic experimentation we performed. Both synthetic

and real data obtained from single and multiple viewpoints are used. We describe the

data acquisition system and specify all user-de�ned parameters in our algorithms. For

part segmentation, we investigate the characteristics of charge density distributions over

2D contours and surfaces of 3D solid objects. Then we segment objects into parts. For

part identi�cation, we obtain parametric geon-based descriptions of multi-part objects. We

also examine the e�ciency of the objective function for model �tting, the discriminative

properties of parametric geons, the e�ect of object shape imperfection and the salience of

multiview data for shape approximation.

In the last chapter, we summarise the thesis, discuss the contributions and limitations,

and point out some directions for future work.

4. Claims of Originality

This research explores computational strategies for qualitative shape representation of

a 3D object sensed by a laser range�nder. Our approach computes a coarse object shape

description by (1) segmenting an object into parts based on physics, and (2) representing
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each part by a qualitative shape type and its quantitative size, pose and deformation infor-

mation. This kind of description supports e�cient object recognition which would be useful

for an autonomous agent carrying out complex tasks.

The contribution of this thesis is a new paradigm for qualitative volumetric shape-

based representation of 3D objects in range images. The major contribution this research

makes to knowledge in the �eld of computer vision is a physics-based approach to object

segmentation into parts. It is based on an analysis of the simulated electrical charge density

distribution on the object. To our knowledge, this is the �rst time such an analogy has been

used to characterise an object's shape and segment it into parts. This approach provides a

superior alternative to traditional geometry-based approaches and creates a new direction

for object shape representation.

The main contributions of our research are as follows:

� Shape Characterisation We propose a novel physical property, the simulated elec-

trical charge density distribution, to characterise three-dimensional object shapes.

� Part Segmentation We segment an object into parts at the part boundary points,

which are characterised by the local minima of the simulated electrical charge den-

sities.

� Model RecoveryWe de�ne the part models, parametric geons, by explicitly speci-

fying the qualitative shapes of part models and recover the models by a direct shape

comparison.

� Implementation and Evaluation We successfully obtain parametric geon-based

descriptions of objects. We also examine properties of charge density distributions

over 2D contours and 3D surfaces, and investigate the quality of model recovery

a�ected by di�erent objective functions, shape imperfections and amount of input

data.

To summarise, this thesis explores computational strategies for obtaining a qualitative

shape representation of a 3D object sensed by a laser range�nder. We propose a new ap-

proach to object segmentation into parts and part model recovery. The charge density-based

segmentation is a novel computational paradigm for part segmentation and overcomes some

of the di�cult issues which are characteristic of traditional approaches. Our approach to
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model recovery performs explicit shape veri�cation by taking advantage of the global shape

constraints provided by parametric geons, thereby achieving reliable shape approximation.

These will be described in detail throughout this thesis.
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CHAPTER 2

Related Work

In this chapter, we will �rst survey previous research on part-based object representation.

We particularly focus on three topics: (1) part segmentation, (2) volumetric part models,

and (3) part model recovery. We do not intend to describe in detail the individual contribu-

tions on these topics, but prefer to classify di�erent approaches into categories and evaluate

the methodology in each one. The related work on charge density computation and surface

triangulation is briey reviewed in Chapter 4. A comparison between our work and the

previous research discussed in this chapter is made in the next chapter.

Before reviewing the previous work, we specify certain terminology related to the con-

cept of dimension as used in this thesis. Generally speaking, the dimensionality of an entity

is referred to as the domain of that entity. Accordingly, 3D data are a collection of discrete

samples, di 2 R3; i = 1; :::;M , which de�ne certain positions on the object surface. 2D

data are indexed by a pair of variables and lie in a plane. Range data are a set of 3D data

which are obtained from range images and which can be also indexed by a 2D integer grid

of the range image. An object surface is represented by a set of 3D data. A 3D object is a

connected, bounded space enclosed by its surface. A 2D object is strictly de�ned in a 2D

domain, such as a planar closed contour.

1. Part Segmentation

The problem of 3D object segmentation into parts is to decompose the complete object

surface into di�erent meaningful regions. A more formal de�nition of image region segmen-

tation is given as follows [64, 79]: Let X be the sampling lattice, the domain of the image

data, I(i; j). A logical predicate P (�) is de�ned on the subsets Sk of X .

Definition 2.1. A segmentation of X is a partition of X into subsets or regions Sk; k =

1; ::; N for some N such that
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1. X =
SN
k=1 Sk every pixel (i; j) must be in a region

2. Sk
T
Sl = 0 regions must not overlap for all k 6= l

3. P (Sk) =TRUE P is the evaluation of the region property for each k

4. P (Sk
S
Sl) =FALSE adjacent regions must have di�erent properties for all k 6= l

This de�nition was originally proposed for the problem of 2D image segmentation. In

this case, the predicate P (�) was de�ned for image intensities. We believe that it can also

be applied to other segmentation problems if the domain of the image data and the logic

predicate are generalised. For example, if we use an appropriate domain for 3D data and

apply P (�) to the object surface, the de�nition will apply to 3D object segmentation.

Various part segmentation strategies di�er fundamentally by how they utilise di�erent

predicates P (�). Thus in our discussion of previous research, we will consider the underlying

data domains and the evaluation of part properties. Note that we only discuss segmentation

of 3D objects into parts. Reviews for 2D objects can be found in [114, 117].

1.1. Shape-based Approaches Shape-based approaches 1 decompose objects into

parts according to the similarity between the shapes of part models and object parts. Let S

be a set of data points representing the surface of an object. LetM = fMi; i = 1; :::; Nmg be

the set of part models, which are known before segmentation; here Nm is the number of part

models. M 0 is de�ned as a collection of individual Mi's which, when combined, constitute

the complete object. Let Y be a measure of the similarity between Mi and Sj � S, where

j = 1; :::; Ns. Let � be a tolerance threshold associated with the shape similarity measure

Y . A logical predicate P (�) is de�ned on the S and M 0:

Definition 2.2. A shape-based segmentation of S is a replacement of S with M 0, such

that

1. for some i; j, Y (Sj;Mi) < � the shape of the partial surface is similar to a part model

2. for all k 6= i; Y (Sj;Mk) > � this surface is not similar to other part models for all k

3. for M 0, P (M 0;S) = TRUE global shape veri�cation

We assume thatM 0 is the result of segmentation and the spatial relationships between

parts are implicitly contained in M 0. An important aspect of this kind of approach is that

part segmentation and part identi�cation are performed simultaneously. An example is

presented in Figure 2.1. Before segmentation, it is assumed that object parts are de�ned

by model shapes in the setM, such as a cylinder, a cuboid and a cone. Since the shape of

1These are also referred to in literature as primitive-based or region-based approaches.
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Figure 2.1. Shape-based segmentation. The object is segmented into two parts, the cylinder
shown shaded and the cuboid shown as a line drawings. The shapes of these parts are consistent
with prede�ned part models.

a subset of the object surface (the shaded portion) is the same as a cylinder, the unshaded

portion is the same as a cuboid, and the combination of the two with the appropriate spatial

relation is similar to the shape of the entire object, we can say that this object has been

segmented into two parts, a cylinder on the top of a cuboid.

Several shape-based approaches have been proposed which use hypothesis-and-veri�cation

strategies [90, 84, 94, 92, 34, 42, 57, 62, 124, 37, 77]. They �rst generate a hypothesis

of a con�guration of an object composed of part models, assuming that the shape of each

part is the same as that of a model. Secondly, they evaluate a measure of the similarity

between the hypothesis and the real object shape. If the measure is worse than a preselected

threshold, another hypothesis is generated and evaluated until the similarity measure is less

than the preselected threshold. The last hypothesis is then adopted as the desired object

segmentation.

This kind of approach performs object segmentation into parts directly using part

shapes as constraints. It is particularly advantageous when part boundaries are locally am-

biguous, for example, the \elbow problem" given in [60] (see Figure 2.2). In this case, part

shape plays a crucial role for decomposition because the results of any segmentation are

ultimately veri�ed by the part models [7]. Some researchers argue that when image data

are incomplete and imperfect, object shape itself is necessary to achieve good segmenta-

tion [109, 102]. That is, scene segmentation and shape representation are interdependent.

However, from a practical point of view, this approach is more complex than boundary-based

approaches (see Section 1.2). This is because one must determine not only the locations

of parts but also their shapes. In contrast, boundary-based methods �rst determine the

locations of the parts and leave part identi�cation to the following stage. Another problem
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Figure 2.2. The elbow problem. On the front at surface of the object, there is no local
indication showing how the surface can be segmented into parts. The dashed lines indicate three
possible options.

with these techniques is the possible non-uniqueness of the decomposition. This is because

the model shape information only provides the necessary condition for segmentation. For

example, in Figure 2.1, it is true that one part is a cylinder. However, two cylinders with

the same diameter (one on the top of the other) can also make up the same part. If the

model shape was not very similar to the actual part shape, the problem of nonuniqueness

would be worse. Additional constraints and further corrections are then required [62, 124].

Another type of shape-based segmentation uses an aspect hierarchy of part shapes [41,

39, 101]. These methods also commonly employ a �nite set of distinctive part models.

Each model exhibits a restricted number of con�gurations of surface patches in all possible

views. Thus, for all models, the number of surface con�gurations in all possible views is also

limited. The procedure is to �rst identify surface patches using region growing [61] or edge

detection [30] and then group surface patches into a potential part according to possible

surface con�gurations. For \clean" image data and perfect object shapes, this approach

would be e�cient. However, if image data contain noise and object part shapes are not

exactly the same as that of the models, errors in surface patch segmentation and actual

surface combinations will cause incorrect part segmentation. This kind of approach cannot

deal with the elbow problem shown in Figure 2.2 because the front surface which belongs

to di�erent parts will be treated by this approach as the surface on one object part.

1.2. Boundary-based Approaches This approach uses a predicate P (�) to �nd

object part boundaries instead of part shapes. The predicate de�nes the part boundary,

permitting us to extract the boundary points and divide the surface data into di�erent sets,

each of which corresponds to one part. Let S be the set of data representing the surface of
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parabolic lines
line of negative principal
curvature  extrema

Figure 2.3. Parabolic lines and negative curvature extrema. Parabolic lines divide the object
into two parts and a connecting region. The negative curvature extrema separate the object into
two parts which are consistent with human intuition.

an object and Si � S; i = 1; :::; N be a part, a subset of the object surface. Let Sb � S be

the set of data points on the part boundaries. A predicate P (�) is de�ned for part boundary

points:

Definition 2.3. A boundary-based segmentation of S is a partition of S into Si; i =

1; :::; N, such that

1. Si
T
Sj = 0 di�erent subsets of object surface belong to di�erent parts

2. Si
T
Sb = 0 data points on part boundaries and on parts do not overlap

3.
�SN

i=1 Si
�S

Sb = S every data point must be either on parts or on part

boundaries

4. P (Sb)=TRUE evaluation of boundary points

5. P (S �
SN
i=1;i6=j Si)=FALSE, Sj is any subset of object surface belonging to a part,

surface points on parts do not belong to boundaries

In the literature, there are two theories to de�ne part boundaries. Koenderink and Van

Doorn [72] have proposed parabolic lines as part boundaries. At the parabolic line, one of

the principal curvatures [89] of the surface changes from convex to concave. That is, the

Gaussian curvature [89] at the parabolic line is zero as shown in Figure 2.3. Such parabolic

lines possess several attractive properties. For example, parabolic lines do not intersect and

are always closed curves [72], which outline elliptic surfaces. However, parabolic lines may

not always indicate boundaries of actual parts [105]. An example is given in Figure 2.4.

The parabolic line (the dashed black line) is contained in a single-part object and does

not lie between two perceptually intuitive parts. Ho�man and Richards have also shown
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1. PART SEGMENTATION

Figure 2.4. The parabolic line shown by the black dashed line is not a boundary of two intuitive parts.

that Gaussian curvature cannot indicate part boundaries on cylindrical surfaces [60]. Also,

since this method is based on the classi�cation of positive and negative Gaussian curvature

regions, it is not clear how to apply it to objects containing planar surfaces. Moreover, it

sometimes produces results which are not consistent with human visual perception of volu-

metric parts. For example, in Figure 2.3 the object will be segmented by this approach into

two parts, corresponding to two elliptical regions, and a connecting surface corresponding

to the hyperbolic region between the two parts. These three surfaces are separated by two

dashed lines. The theory does not indicate how to deal with the separating surface. Readers

are referred to Rom and Medioni [105] who have performed part decomposition based on

this theory using range data as input.

Ho�man and Richards [60] have proposed another criterion for de�ning part bound-

aries. They claimed that the mental concept of a part is based upon a particular regularity

in nature { transversality [56]. This theory states that when two arbitrarily shaped surfaces

are made to interpenetrate, they always meet at a contour of concave discontinuity of their

tangent planes, as shown in Figure 2.5. Here two ellipsoids interpenetrate and their surfaces

meet at a contour of concave discontinuity of the tangent planes.

In fact, many objects actually contain parts which are joined smoothly as shown in

Figure 2.3. This can be viewed as a smoothed transversal intersection where the surface is

observed to have greatest negative curvature 2. Accordingly, the rule of part segmentation

has been proposed as follows [60]:

Definition 2.4. Minimum rule. Divide a surface into parts at loci of negative minima

of each principal curvature along its associated family of lines of curvature.

Figure 2.3 shows an example of loci of local minima of negative curvature by a dashed-

dotted line. According to the minimum rule, this object can be segmented into two parts,

separated by this line of negative curvature minima.

2In 1989, Bennett and Ho�man proved that near the intersection contour, there are points of arbitrarily large
negative curvature on the slightly-smoothed surface [11].
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contour of concave discontinuity 
of tangent planes

Figure 2.5. Transversality. Two ellipsoids joined together create a contour of concave discon-
tinuity at their intersection.

This part de�nition has been used for segmenting range images [49, 47, 134] and

2D [12], 3D [88] line drawings. The advantage of this approach when compared to those

based on shape is that it is independent of the number and shape of the parts. The

transversality assumption implies that a part boundary is explicitly demarcated by surface

concavities. In other words, a part boundary must be a closed contour of the principal

curvature minima. In this way, each individual part is completely separated by the part

boundary. Note that if a concavity does not exist where two parts meet, as in the \elbow"

problem shown in Figure 2.2, the segmentation algorithm will not be able to �nd the

boundary between these two parts. Therefore it could not separate them. In the case where

the part boundary is slightly broken, Lejeune and Ferrie [76] have used as putative parts,

regions which have positive principal curvature to interpolate the part boundary.

All boundary-based approaches are based on surface curvature which measures the

changing rate of the surface tangent plane in a neighbourhood. Its computation involves

the �rst and second partial derivatives of the surface. Thus, an assumption on smoothness

of the object surface is mandatory [14]. Since curvature computation uses local data and

the surface is represented by discrete data, the results are often very sensitive to noise and

data sampling errors. A smoothing operation on the range data is usually required [135].

Therefore, it would be desirable to develop a new computational approach which does not

require smoothing and is not very sensitive to noise and sampling errors. Moreover, all part

segmentation algorithms work on partially-viewed objects that can be easily indexed by a
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2D image grid. However, if complete shape information has been obtained [128], a one-

to-one mapping from a 2D grid to surface points is rarely obtained. Thus, a segmentation

algorithm which does not rely on a 2D grid is required.

2. Part Models

By part models, we mean volumetric primitives which describe shapes of object parts.

The models embody information about the spatial distribution of a shape [82] and repre-

sent the most intuitive decomposition of an object into parts. The volumetric primitives

developed in previous research can be categorised as qualitative or quantitative (parametric)

models.

2.1. Qualitative Models Qualitative models do not rely on a �ne metric and pro-

vide distinctive shape characteristics which are useful for symbolic object recognition. These

qualitative models di�er mainly by the types of shapes and the speci�cation of their at-

tributes. Ferrie and Levine [49] used ellipsoids and cylinders as coarse descriptions of object

parts. The axis lengths, position and orientation of parts were also provided by the part

models. Since only two shape types were used for the part models, this approach produced

only very coarse object descriptions. Shapiro et al. [115] have proposed sticks, plates and

blobs as 3D part models. Sticks are long, thin parts that have only one signi�cant dimension.

Plates are attish, wide parts with two nearly at surfaces connected by a thin edge between

them. They have two signi�cant dimensions. Blobs are parts that have all three signi�cant

dimensions. A few simple parameters, such as centre of mass, length, area and volume, are

also associated with each shape type. These shape models are distinctive perceptually and

capture certain salient features of volumetric primitives. This model emphasises volumetric

information and contains no intuitive shape information.

Biederman [15] has proposed geons as qualitative part models. Geons are thirty-six

volumetric component shapes3, which are described in terms of four qualitative attributes

of generalised cylinders [22] as shown in Figure 2.6. It is claimed that these properties

can be readily detected by an analysis of relatively perfect 2D line drawings. Furthermore,

the geons can be di�erentiated in a 2D image on the basis of perceptual attributes that

are largely independent of viewing position and degradation. Psychological experimenta-

tion [18, 19] and computational frameworks [13, 41, 85] have provided support for the

descriptive power of such geon-based descriptions.

3Biederman later changed the number to twenty-four by merging two asymmetrical attributes [17].
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Figure 2.6. Biederman's Geons. The geons are de�ned in terms of three attributes of their
cross-sections and one attribute of their axes.

The selection of the actual number of primitives is an open question. In general,

the larger the number of primitives a system uses, the greater the descriptive power it

has. However, complexity also increases with a larger number. Clearly, there is also a

tradeo� between the descriptive and discriminative power of volumetric primitives. There

are other systems which use subsets of Biederman's geons. Dickinson et al. [41] have

de�ned ten qualitative primitives as part models. They explicitly speci�ed the properties of

the volumetric primitives, for example, rectangular or elliptic instead of straight or curved

cross-sectional shape. The property of the asymmetrical cross section was not included

in their models. Raja and Jain [101] have employed 12 primitives by eliminating the

asymmetrical property in Biederman's geons.

2.2. Quantitative Models In contrast to qualitative models, quantitative models

provide metrics or parameters to control model shapes and attributes on a continuous

scale. Binford [22] �rst proposed generalised cylinders as object part models. A generalised

cylinder is the volume swept out according to a rule by an arbitrary planar shape (the

cross-section) moving along a 3D curve (the axis). The axis, the cross section and the

sweeping rule are parameterised individually. This formalism has been accepted as a useful

volumetric primitive for a wide variety of shapes [3, 87, 125, 121]. However, generalised
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cylinders are not unique. There exists a large number of descriptions corresponding to one

volumetric shape, depending on how the axis and cross sections are selected. Thus the usage

of generalised cylinders has been restricted to certain subsets of the model, for example,

straight and homogeneous generalised cylinders (SHGC) [113]. Accordingly, the shapes

of object parts are often assumed to be consistent with the shapes of the more restricted

SHGC.

Pentland [93] has proposed the use of superellipsoids4, which are a parameterised family

of closed surfaces [51, 8]. Superellipsoids and their normals are de�ned parametrically as

follows [8]:
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Here � is a north-south parameter, like latitude, and ! is an east-west parameter, like longi-

tude. �1 is the \squareness" parameter in the north-south direction; �2 is the \squareness"

parameter in the east-west direction. a1; a2; a3 are scale parameters along the x; y; z axes,

respectively. Superellipsoids can be also expressed in the form of an implicit equation as

follows [8]:  ���� xa1
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The advantage of adopting the superellipsoid model is that by using only two more param-

eters than ellipsoids, it can describe a large variety of volumetric shapes.

Hyperquadrics [74] and fourth order polynomials [70] employ parametric equations and

can also be used to describe a large number of volumetric shapes. However, the parameters

obtained are not intuitively related to the object shapes. The number of degrees of freedom

associated with these two models weakens their uniqueness in describing individual object

classes.

4Superellipsoids are a subset of the class of superquadrics [8] and are also referred to as superquadrics in the
literature.
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Terzopoulos et al. [132] have proposed the symmetry-seeking deformable model which is

constructed from generalised splines. This physics-based model is active in the sense that the

model continuously reacts to external forces produced by the image data. Model recovery

is performed by applying forces to models in space so that the shape of its projection onto

the image plane is consistent with an object of interest. This model is a powerful means of

describing the �ne details of irregular objects. However, the solution depends on the initial

estimation and does not provide unique information about the volumetric shape. Following

this work, Metaxas and Terzopoulos [133] have further developed a deformable superquadric

model which provides both global and local deformation information. Also, the resulting

models are not unique with respect to object shapes since di�erent combinations of local

and global deformations can describe the same shape.

Pentland [96] has proposed an alternative physically-based model inspired by modal

analysis. The modal representation yields mode parameters which do possess intuitive

interpretations of object shapes. However, without the higher modes and special care taken

with respect to the correspondence between data points and nodes, it is di�cult to represent

objects with surfaces of high curvature.

No previous work has used part models that provide both qualitative symbolic shape

types and a quantitative formulation for each shape type. This kind of model can take

advantage of the merits of both qualitative and quantitative models. The parametric geons

proposed in this thesis have this property.

3. Model Recovery

As discussed in Section 1.1, part segmentation and model recovery may be accomplished

simultaneously if the model shape is consistent with the part shape. This type of approach

has already been reviewed in that section. Here we only consider approaches to model

recovery in which part segmentation has been previously done. More precisely, the problem

can be stated as:

Problem 2.1. Given a set of image data of an object part, D = fdi; i = 1; :::; Ng � R3, a

set of part models,M = fMj ; j = 1; :::; Nmg and a di�erence measure Y between D and Mj,

part model recovery is the problem of �nding a particular model Mj 2 M that minimises

Y (D;Mj).

Almost all techniques for part model recovery can be categorised as either bottom-up

or top-down approaches. Bottom-up approaches take advantage of the small set of local

shape features of ideal models. They infer a model for a part by collecting and grouping
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(b)(a)

(c)

Figure 2.7. Some imperfect geon-like parts.

local evidence. These features can be shapes of line segments [13, 88] and regions [41],

curvature of surface patches [101], and the relationships between line segments and surface

patches. However, when there are variations in the part shapes, these approaches will fall

short. Figure 2.7 shows some examples of imperfect geon-like parts. Geon models cannot

be uniquely determined from these part shapes. In (a) the cross section boundary contains

both straight and curved portions; in (b) the axis is actually straight but a curved axis

would be inferred based on information obtained from the object silhouette; in (c) the

part can have either a constant or non-constant cross section depending on how the axis is

selected. Since none of these shapes satis�es an exact geon de�nition, it is very di�cult for

a bottom-up approach to determine an appropriate geon label.

In top-down schemes, part models are derived by �tting models to all data points [123,

153, 70, 74, 96, 133, 100]. In this case, parametric models of parts are explicitly de�ned

before model recovery. These models provide global shape constraints for model recovery.

An optimisation problem is formulated to minimise the di�erence between a part model

and part data. The advantage of such an approach is that it does not critically rely on

local support. Also, the imposed global shape constraint helps to reduce the inuence of
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missing data, image noise and minor variations in object shape. In this way, approximate

shape descriptions of objects can be obtained e�ciently, thereby bypassing some of the

common error-prone processing steps such as building point-by-point descriptions of lines

and surfaces.

An appropriate objective function is important for optimisation procedures. Solina and

Bajcsy de�ned an objective function based on the relative position of a data point respect

to the inside or outside of the model surface [123]. Gross and Boult proposed an objective

function based on the mean distance between each data point and the corresponding point

on the surface of the model along a line connecting the data point with the centre of the

model [55]. After carefully studying four kinds of objective functions, they pointed out that

their objective function has signi�cant advantages over the others in terms of convergence

and accuracy. Yokoya et al. have introduced a two-term objective function [153]. The �rst

term is the sum of the squared distance between the data point and the model surface.

The second term is a measure of the squared di�erence between the normals of the object

surface and the model surface. The solution of the resulting nonlinear optimisation problem

is stabilised by introducing the second term. This is because the surface normal is invariant

to scale.

Due to the complex shapes of object parts, the objective function for model �tting

usually contains many local minima. A straightforward gradient decent method for func-

tion optimisation will often fail to converge to the global minimum. To counteract this,

some researchers have used a nonlinear least squares minimisation (Levenberg-Marquardt)

method, adding random walks to escape local minima [55, 123, 131]. In some cases, where

the properties of the objective function are known or an initial parameter estimation close

to the global minimum in a nearly convex region can be obtained, this approach will usually

take much less time than general global optimisation methods. However, with an inappro-

priate initial guess, the algorithm may get stuck at a local minimum. This is because global

convergence cannot be assured. Yokoya et al. [153] employed a global optimisation tech-

nique, simulated annealing, whose global convergence has been proven theoretically [52].

However it requires a long computational time to �nd the optimal solution.

Geons can be also derived from quantitative models. Raja and Jain [100] have explored

the recovery of 12 geons from single-view range images by classifying the actual parameters

of globally-deformed superellipsoids. They obtained good results using synthetic data and

real objects with smooth surfaces. However, they also found that the estimated parameters

were extremely sensitive to viewpoint, noise and objects with coarse surfaces. One of

26



4. CHAPTER SUMMARY

the reasons for their poor results in these latter circumstances is that superellipsoids are

nonunique and cause uncertainties in the estimated model parameters, especially when

representing noisy and partially-viewed data [140]. Certain parameters in globally-deformed

superellipsoids tend to interact with each other in ways that make the model di�cult to

control.

An interesting addendum to superellipsoid parameter classi�cation is provided by Arbel

et al. They have proposed a method for recognising typical superellipsoid shapes from mul-

tiview range images [4]. A conditional probability density function is derived by combining

model information with a priori context-dependent information, the parameter estimated

for the unknown object, and the uncertainties of the parameters. They showed that recog-

nition performance is nearly perfect when complete object surface information is available

to the algorithm, and that it falls o� when only partial information is known. Since they

used objects that were regular superellipsoids, they did not deal with tapered and curved

shapes and also did not investigate the issue of qualitative shape approximation of imperfect

objects.

4. Chapter Summary

This chapter has reviewed previous work on part-based 3D object representation. We

have concentrated on three subjects: (1) object segmentation, (2) part models and (3) model

recovery. Object segmentation has been accomplished using both shape- and boundary-

based approaches. We have seen that all boundary-based segmentation approaches have

used a particular geometrical feature, the surface curvature. However, surface curvature

computation is known to be extremely unstable. Part models are categorised as being

qualitative and quantitative. Qualitative models are de�ned in terms of a �nite number

of distinctive shape types. Quantitative models are de�ned in terms of numerical metrics.

A strategy for part recovery usually depends on how the part model is de�ned. Most ap-

proaches for recovering qualitative models follow a bottom-up strategy, which have shown

disadvantages in handling imperfect shapes. The techniques for quantitative shape re-

covery have some useful properties. A computation of qualitative shape primitives from

quantitative models has indeed been implemented by classifying superellipsoid parameters.

However, the approach did not work well for noisy and coarse-surfaced objects. In the next

chapter, we describe the motivation and methodology for our research, and in the following

two chapters, present our techniques in detail.
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CHAPTER 3

Motivation and Methodology

We begin this chapter with a summary of the Recognition-By-Components (RBC) theory.

Then we discuss certain limitations of this theory, as well as previous computational im-

plementations, and describe the methodology proposed in this thesis. These issues include

the di�culty of line drawing extraction, ambiguous de�nition of geon shapes, sensitivity

of model recovery to the amount of input data and robustness of part segmentation. We

also elaborate the general assumptions made in our research and present the general frame-

work of this thesis. Finally we make comparisons of our research with previous work on

part-based, especially geon-based, representations of 3D objects.

1. Overview of RBC Theory

Starting with range data, our objective is to compute part-based descriptions of 3D

objects in terms of a �nite number of volumetric primitives. This is motivated by a theory

of human image understanding, Recognition-by-Components [15]. Inspired by speech per-

ception, a process mediated by the identi�cation of individual elements, phonemes, from a

relatively small set of primitives, this theory is meant to account for what can be called

primal access: the �rst contact of perceptual input from an isolated, unanticipated object

to a representation in memory. With support from psychophysical experimentation, RBC

posits that:

(i) Objects can be e�ciently represented by a set of natural components, the parts;

(ii) Detection of these components from 2D object line drawings is relatively invariant

over viewpoints, object size and line drawing degradations;

(iii) If the components in their speci�ed arrangement can be readily identi�ed, object

recognition will be fast and accurate.

In addition, this theory hypothesises that:

(i) Parts are segmented at points of deep surface concavities;
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(ii) Thirty-six geons are derived qualitatively using four attributes of generalised cylin-

ders. The features can be detected from 2D line drawings based on �ve non-

accidental and detectable properties of edges in images [81];

(iii) The geon description includes shape labels, relative size and aspect ratio of each

geon, as well as the spatial relationships between geons.

RBC's central contribution is its proposal for a particular vocabulary of components de-

rived from perceptual mechanisms and how it accounts for rapid object recognition using

an arrangement of these components. Since RBC was introduced to the computer vision

community, it has motivated considerable research [13, 68, 41, 38, 44, 65, 88, 101, 116,

139, 145]. However, it is realized that there exist certain limitations on both the theory [75]

and its computational implementation [36]. In the next few sections, we discuss some of

these issues and describe the methodology adopted in this thesis.

2. From Line Drawings to Range Data

RBC assumes that the line drawings of an object can be obtained by applying an

edge detection technique to the intensity image of the object. However, line drawings and

edges are not exactly the same in computational vision. Edge detection extracts curves

in the image where rapid changes occur in intensity [63]. The detected edges may be

due to the changes in surface orientation and reectance properties, colour, texture, object

occlusions, shadows and noise. On the other hand, line drawings convey information about

object surface discontinuities in orientation and depth. In practice, \clean" line drawings

are rarely obtained from edge maps because of insu�cient constraints for extracting line

drawings. Only with carefully selected objects and well controlled lighting conditions can

perfect line drawings be produced. This is equivalent to imposing a constraint on the image

acquisition process for the extraction of the desired properties of the objects. This can be

readily accomplished in machine vision by using an alternative sensing device, such as a laser

range�nder [69]. With such a range sensor, the explicit 3D information about an object

surface can be directly obtained while other e�ects due to colour, texture and shadows are

inhibited. An edge-junction graph containing the surface discontinuity information can be

extracted relatively easily from range images [54] and geon-based descriptions can be built

from the graph [88]. From a practical point of view, raw range data provide 3D surface

information and can be directly used for object segmentation and model recovery. Since

geons are volumetric shape models derived from generalised cylinders [22], it should not

matter whether the input data are from intensity or range images. Hence, our approach
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(a) (b)

Figure 3.1. Ambiguous geon shapes. Two visually di�erent shapes in (a) and (b) have the
same geon de�nition.

employs a laser range�nder and uses surface information to derive part-based descriptions of

objects. Other researchers have also used range data for geon recovery [101, 88, 100, 39].

However, their techniques di�er from ours (see Section 9).

3. Unambiguous De�nition

There are shapes that are quite di�erent in appearance but which have the same shape

type in terms of the RBC's geon de�nitions. Figure 3.1 shows two tubular shapes having

square and hexagonal cross sections, respectively. Although they are perceptually di�erent

in shape, they have the same geon de�nition -namely straight axes, straight cross section

edges, symmetrical cross sections and constant cross section sizes. This is caused by the

ambiguity of the geon de�nitions in the RBC theory. Because the geon de�nitions are im-

portant constraints for designing the geon recovery systems in some cases [13, 88, 101],

this ambiguity makes the design of such systems extremely di�cult. In practice, all com-

putational implementations have regarded the shape in Figure 3.1 (a) as the default shape

of this type of geon. In addition, geons are a subset of generalised cylinders [22], whose

description is usually nonunique (see discussion in Chapter 2). Thus, strictly speaking, the

geon de�nition of Biederman is insu�cient for developing geon recovery algorithms and

more constraints are required. Our approach is to make explicit the speci�cations for the

qualitative shapes of models, thereby ensuring unambiguity in model recovery. We note

that the qualitative part models used by Dickinson et al. [41] were de�ned in terms of

explicit speci�cations of the attributes of volumetric shapes.

4. Shape Approximation

Nearly all of the work inspired by RBC has focused on the recovery of geon models

from objects consisting of perfect geon-like parts. In these cases, the input was the edge map
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(a) (b)

Figure 3.2. Perfect and imperfect geon shapes. (a) A block whose shape is a perfect geon.
(b) A block with minor shape virations depicting an imperfect geon-like shape. Note that all geon
properties of the block in (a) do not exist for this shape.

or line drawings. The geon shapes were de�ned in terms of attributes. The computation

of these attributes was constrained by local evidence. As such, part descriptions were

determined in a bottom-up fashion, inferring global properties by aggregating local features.

This type of approach cannot succeed when object features do not fully satisfy the exact

de�nitions of the geons. This is illustrated in Figure 3.2. The shape of a perfect block

conforms well to the de�nition of the geon, which is speci�ed by a symmetrical cross-

section, straight cross-sectional edges, a constant cross-sectional size and a straight axis.

If minor shape variations are introduced to the block as shown in Figure 3.2 (b), all of

the geon properties the block possessed do not exist for this shape. It is clear that object

shapes in the real world vary in many ways and that image data are often contaminated by

noise. However, the number of geons is �nite and can never completely depict all possible

shape variations of parts. Thus, the process of �nding geons for imperfect data of a non-

ideally shaped object must focus on shape approximation, that is, deriving a simpli�ed and

compressed description in terms of perfect models. According to RBC [15], \the memory

of a slight(sic) irregular form would be coded as the closest regularised neighbour of that

form". In order to accomplish this, we de�ne our models in terms of implicit functions, �t

these models to data of objects having imperfect geon-like parts, and then select the model

for the data based on the minimum �tting residual. In this way, we actually impose global

shape constraints during the model recovery procedure so that the result must be one of

the prede�ned shapes. In this way, the purpose of the shape approximation of imperfect

geon-like parts by perfect models is achieved.
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5. Amount of Information

RBC hypothesises that any geon is rapidly identi�able and invariant over viewpoints.

This assumption is reasonable in many situations where a fair amount of shape information

about the object and certain constraints on object shape are available. However, for general

single-view data, complete shape information of a part will never be available due to self-

occlusion. Palmer et al. [91] studied the perceptibility of various objects presented in many

views. They showed that their subjects clearly preferred a three-quarters frontal view over

all others for recognition. This study revealed that the amount of information present for

recognition varies in di�erent views. RBC also concurs with this view that objects can be

more readily identi�ed from certain orientations than others [15].

A few research results have pointed out the e�ect of the amount of data on sensitivity

when �tting quantitative models. Boult and Gross [27] concluded that single-view range

data may not be su�cient for reconstruction of superellipsoids without additional assump-

tions and multiview data yield much better results. In the study of the discriminative ability

of superellipsoid parameters, Raja and Jain found that estimates of model parameters are

highly dependent on the viewpoint [101]. More extensive studies carried out by Whaite

and Ferrie have demonstrated the nonuniqueness of �tting superellipsoids to single-view

range data [140]. They have shown, by an example, that the lack of a unique �t can be

attributed to the extra degree of freedom allowed by a superellipsoid shape parameter. Thus

many models can be �t to data resulting in almost the same �tting residuals. Since there

is generally no a priori knowledge of which view should be taken, the authors suggested

two basic alternatives for dealing with the ambiguity of interpretation: (1) impose further

constraints on the superellipsoid models or (2) seek additional data by minimising some

measurement of uncertainty in the model. In accordance with their suggestions, we have

postulated the parametric geon model by restricting the superellipsoid shape parameters.

We also investigate the uniqueness of parametric geon recovery with both single-view and

multiview data when the shape of object parts is not fully consistent with any parametric

geon.

6. Part Segmentation

RBC proposes that objects be segmented into parts at deep surface concavities. This

boundary-based segmentation scheme was originally proposed by Ho�man and Richards [60].

The reason for this approach is that it conforms well with human intuition about parts,

exploits a property of nature - transversality, and does not require a priori knowledge of
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part shapes - even in the case of a nonsense object [15]. A common tactic in this kind of

segmentation is to compute surface features which contrast boundary and non-boundary

points and decompose the object into parts at boundary points. The key issue here is how to

reliably locate the part boundaries. To our knowledge, the only feature used in all previous

boundary-based segmentation approaches [49, 47, 76, 105] is surface curvature, which is

de�ned in terms of di�erential geometry [89]. However, surface curvature computation has

proven to be unreliable [134]. Contrasted with this strategy, we present a new paradigm for

part segmentation which employs a simulated electrical charge density as a surface feature.

We regard an object as a physics-based model rather than a geometrical one and compute

a physical feature which readily indicates the part boundary points. The advantage of this

approach is that the computation of the charge density does not require an assumption on

surface smoothness and is robust to noise. Therefore, object part boundaries can be reliably

located.

7. General Assumptions

Several assumptions are made in this thesis. These provide the constraints necessary

for developing the algorithms and the basis for comparison with other related work.

Objects: We use isolated objects composed of either one or multiple parts. All objects

are simply connected. Object surfaces need not be smooth. For multi-part objects,

parts must be completely separated by relatively sharp surface concavities which

delineate part boundaries. Each part boundary must be a closed 3D curve on the

object surface.

Part Models: The set of part models consists of seven volumetric primitives whose

shapes are distinctive and are explicitly represented by restricted deformed superel-

lipsoids.

Part Shapes: The shapes of object parts and single-part objects may vary from per-

fect geon shapes. These variations should be moderate and a human should de�nitely

be capable of categorising their qualitative shape.

Input Data: The input data are obtained by a laser range�nder which scans objects

supported by a turntable. Multiview (four views) data and single-view data are

collected. No smoothing operation is applied to the range data. Segmentation of

the object from its background should be simple. A triangular mesh which tessellates

the object surface must be readily computed from both multiview and single-view

data for charge density computations.
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Evaluation: The performance of the algorithms is evaluated through systematic ex-

perimentation on both synthetic data and real data. Comparisons with both theo-

retical results and subjective criteria are made.

8. General Framework

In this section, we provide a formal description of the task performed in this thesis. Let

x � R3 be a set of input data of a multi-part object. The index i = 1; :::; Nt represents the

shape types associated with a part model, where Nt = 7 is the total number of shape types.

Let �i 2 f0; 1; :::g be the number of recovered part models with shape type i, where j(i) is

the index of �i. Thus, the total number Np of parts or recovered models for the object is

Np =
NtX
i=1

�i:

Let gi be the measurement of the di�erence between xj(i) � x, a subset of input data, and

�j(i), the j(i)th part model. xb � x is a set of points on the associated part boundaries.

A predicate P (�) is de�ned on part boundary points. The task of parametric geon-based

representation can be stated as:

Problem 3.1. Given x, gi, Nt and P (�), �nd a particular set of xb;xj(i), �i and �j(i) which

minimises a function

F (xj(i); �i; �j(i)) =
NtX
i=1

�iX
j(i)=1

gi(xj(i); �j(i));(3.1)

subject to:

(i)
�SNt

i=1

S�i
j(i)=1 xj(i)

�S
xb = x;

(ii) xj(i) \ xn(m) = 0; 8 : i 6= m or j(i) 6= n(m);

(iii) xj(i) \ xb = 0; 8 : j(i);

(iv) P (yb) = TRUE; 8 : yb 2 xb;

(v) P (yp) = FALSE; 8 : yp 2 xb:

The constraint (i) ensures that input data must be either belong to a part region or a part

boundary. The constraint (ii) says that part regions must not overlap. The constraint

(iii) means that there is no overlap between part boundary regions and part regions. Con-

straints (iv) and (v) are evaluations for data points on boundaries and parts, respectively.

The function given in Equation (3.1) measures the di�erence between the object model, a

combination of all part models, and the object data, in which a particular data set xj(i) for

a part model �j(i) satis�es the constraints from (i) to (v).
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By solving the above optimisation problem, we can obtain the total number of parts,

Np, the shape types i for each part, j(i), and their model parameters, �j(i). In the actual

implementation, we split the procedure into two consecutive stages: (1) object segmentation

(solving for xb;xj(i) and NP ) and (2) part identi�cation (solving for �j(i)).

9. Comparison with Previous Work

This thesis di�ers from previous research in the following ways.

9.1. Physical Model Our part segmentation strategy is consistent with boundary-

based approaches [60]. However, unlike previous work, we employ a physical property, the

simulated charge density distribution over an object surface, to �nd part boundaries. Other

work on part segmentation [49, 43, 76, 105] uses geometrical properties.

Our approach has some distinguishing characteristics and advantages. Briey speak-

ing, object segmentation into parts is a partitioning of the object surface based on surface

features. Surface feature detection has been traditionally dominated by curvature-based

approaches [14] because curvature directly reveals geometrical properties of surfaces. Since

the curvature computation is a di�erential operation, surface smoothness must be assumed.

This limits the power of the curvature-based approaches. However, a charge density com-

putation, which is based on integration, is applicable in general cases where smoothness of

the object surface is not required.

Another advantageous aspect of the charge density computation is its preference for

characterising surface properties of complete 3D objects. Curvature estimation for an object

surface embedded in a 3D Euclidean space requires a voxel-based coordinate system. Since

the latter involves a large amount of memory, a coarse resolution and an integer grid are

usually preferred. Because of the inherent noise in images and the quantisation of the coor-

dinate grid, curvature computations based on di�erentiation have proven unreliable [135].

They often need to be corrected by sophisticated analysis [110]. Alternatively, a larger

area or scale, may be employed to reduce noise e�ects. However, selecting a suitable scale is

in general a di�cult problem. Furthermore, a larger scale will increase the computational

time. In contrast, our approach uses an integral equation rather than performing surface

curvature computations. Since the charge density computation uses all data and these are

weighted by a distance factor, the inuence of noise is reduced. Scale is not an issue in this

regard. The only scale that must be selected is the one associated with the size of the trian-

gles when performing triangular mesh construction. The inuence of this scale on the result

is much less than that of scale in the curvature computation. This is because the charge
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density computation is based on an integration over the global surface while the curvature

computation is based on di�erentiating local discrete data. Moreover, if larger scales are

chosen for surface triangulation, less computational time is required for the charge density

computation. This is consistent with human perception. That is, a human can perceive the

coarse structure of an object much more rapidly than its �ne structure.

It is important to note that the charge density distribution is not equivalent to the

surface curvature. Local minima of the charge density distribution provide only an ap-

proximation to the local minima of principal curvature for the object shapes. The charge

density distribution can only provide a measure of the contrast between surface concavity

and convexity while curvature actually determines absolute geometrical information.

An alternate strategy for obtaining surface features is isotropic di�usion [151]. Working

in 3D Euclidean space, this approach simulates the propagation of a speci�c number of

particles among object voxels. At a certain intermediate stage of the di�usion process,

particle accumulations at sharp surface concavities and convexities become signi�cant. Thus

di�usion must be stopped before reaching the equilibrium state. This stopping time is very

crucial and di�cult to determine. If the di�usion process reaches equilibrium, the particle

density is uniform everywhere within the object and therefore cannot indicate any speci�c

property of the object surface. Another di�culty is that the stopping condition varies for

di�erent object shapes. We note that, if di�usion is stopped at an inappropriate time,

the distinction between particle densities at concave and convex surface points will not be

strong. In contrast, our approach evaluates the electrical equilibrium, where charge densities

at concave and convex surface points are very distinct. In addition, the di�usion-based

approach, which essentially solves a partial di�erential equation in 3D Euclidean space,

must work in a voxel-based coordinate frame. However, we consider only the surface of the

object and do not need to perform computations within its interior, as shown in Figure 3.3.

This produces a signi�cant reduction in dimensionality and requires the manipulation of

many fewer unknowns.

Two papers [1, 2] on 2D shape analysis which intended to use the electrical potential

have come to our attention. Unfortunately, they arbitrarily speci�ed an equipotential line

as the initial condition of their algorithm, either on the image border which is far from

the conductor [1], or on the contour of a uniformly charged 2D object, which cannot be

in equilibrium [2]. However, in general the potential di�erence is dependent on the charge

density distribution. Only in the particular case of electrostatic equilibrium can one state
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particle diffusion space

charge distribution space

Figure 3.3. Comparison between the particle di�usion space (the outer surface and the inte-
rior) and the charge distribution space (the outer surface) for a solid ellipsoid(section removed for
illustration purposes only).

that the 2D object contour is an equipotential line without knowing the charge density dis-

tribution. By failing to determine the equipotential line based on the actual charge density

distribution, the resulting algorithms employed a nonphysical initial condition. Thus, their

method was physically incorrect. Nevertheless the results were quite reasonable but very

slow to compute. This is because the mechanism underlying their algorithm is similar to

the 2D di�usion-based approach [120].

9.2. Qualitative Shape Approximation Another interesting aspect of our system

is the ability to achieve qualitative shape approximation. This is a prerequisite for e�cient

symbolic object recognition. This ability is a direct result of using global shape constraints

for models, an idea borrowed from the quantitative approaches. Such constraints are de�ned

in terms of implicit functions and restrict the models to a particular shape family no matter

how the input data vary. This signi�cantly assists the process of shape approximation.

Most previous work using qualitative models cannot tolerate shape variations outside their

model classes [13, 41, 88, 65]. This is because they have created their part descriptions

in a bottom-up fashion, inferring global properties by aggregating local features. This

type of methodology is not robust when object features do not fully satisfy the original

de�nition of the geon features. It is a fact that geons are simple and regular volumes, but

objects in the world actually appear in a variety of shapes. Clearly, any computer vision

system which successfully recovers qualitative descriptions must address the problem of

shape approximation.

37



9. COMPARISON WITH PREVIOUS WORK

We note that the only previously reported attempt to perform qualitative shape ap-

proximation is due to Raja and Jain [100]. They explored the recovery of 12 geons from

single-view range images by classifying the actual parameters of globally-deformed superel-

lipsoids, based on the distance in Euclidean space. Although they obtained 89% accuracy

for smooth-surfaced objects, they found that estimates may be very poor for parts with noise

or \rough" surfaces. They also noticed some \strange e�ects" in that their major classi�-

cation errors were due to misclassi�cation of straight and curved geon cross-sections [101].

We believe that this drawback is mainly caused by the Euclidean distance measure they

used for classifying part shapes. This can be easily illustrated in the 2D case where the

geon cross-section is a planar curve. Figure 3.4 shows a series of superellipses. The shape

parameter changes uniformly from 0.1 to 1. Accordingly, the shape changes gradually (row

by row) from a square to a circle. The number under each �gure indicates the value of the

associated shape parameter. If these shapes were to be classi�ed into two groups based on

the Euclidean distance of the shape parameter, the top three rows would be classi�ed into

one group and the rest into the other. However, we clearly observe that the shapes in at

least the �rst four rows are more similar to the square than the circle. Thus, if the Euclidean

classi�cation is applied to squared shapes like those in the fourth row, misclassi�cation will

occur. This example indicates that there is a signi�cant di�erence in shape discrimination

between an Euclidean distance-based method and human perception.

Another reason is the ambiguity between superellipsoid shapes and their associated

parameters, as noted by Solina and Bajcy [123]. For example, di�erent parameter sets can

correspond to the identical superellipsoid shapes. Therefore, extreme care must be taken

when using superellipsoid parameters for qualitative shape identi�cation. In contrast, with

our method, we directly compare the di�erence between the shapes of the models and the

object part, and select the part model whose shape is most similar to the object. Therefore,

our approach obtains shape approximations which are closer to the human intuition.

9.3. Parametric Geon Models We use a new set of volumetric primitives which

have qualitative shapes and are quantitatively deformable in size, tapering rate and bending

curvature. This set of parametric geons consists of a �nite number of di�erent shape types,

but their deformation property makes their shapes appear in many forms. Previous work

has been restricted to either purely quantitative models - such as superellipsoids [123],

fourth-order polynomials [70] or hyperquadrics [74], or purely qualitative models, such as
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0.10 0.13 0.16 0.19 0.22

0.26 0.29 0.32 0.35 0.38

0.41 0.44 0.47 0.50 0.53

0.57 0.60 0.63 0.66 0.69

0.72 0.75 0.78 0.81 0.84

0.88 0.91 0.94 0.97 1.00

Figure 3.4. Classi�cation of cross sections of objects. A series of shapes of a superellipse is
given row by row. The shape parameter of the superellipse changes from 0.1 to 1 and consequently
its shape changes from a square to a circle. The number under each �gure indicates the value of
the shape parameter. The task is to classify these shapes into two group, square-like shapes and
circle-like shapes. If the classi�cation were based upon the shape parameter, the shapes in the
�rst three rows would be classi�ed into square-like shapes. However, human perception seems to
classify more shapes into square-like shapes.
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geons 1. Parametric geons are de�ned in terms of implicit equations of globally deformed

superellipsoids. This formulation yields a global constraint which facilitates model recovery

from imperfect geon-like object parts. Shape constraints have also been provided by other

quantitative models such as, superellipsoids, hyperquadrics and fourth-order polynomials.

However, these constraints do not directly result in qualitative shapes. In order to convert

them into symbolic descriptions, further classi�cation is needed.

9.4. Part Model Recovery Strategy We use a new strategy to recover volumetric

primitives. A �tting scheme is used to minimise an objective function which measures a

property di�erence between an object and a model. This strategy for recovering parametric

geons is similar to that for other parametric primitives [94, 123, 74]. However, there is

an additional requirement for parametric geon recovery. The process must also produce

discriminative information such that the resulting metric data can be used to postulate a

qualitative or symbolic description. Therefore, we combine model �tting and selection in

the model recovery procedure.

A new objective function has been de�ned which measures: (i) the spatial distance

between data points and the model surface, and (ii) the squared di�erence between the

normal vectors of the model and object. This is di�erent from another two-term objective

function [153], in which the �rst term is a squared distance. Our modi�cation changes the

behaviour of the objective function, thereby enabling an e�cient model �tting procedure.

Model �tting is performed by minimising the objective function using a stochastic

global optimisation approach, Very Fast Simulated Re-annealing (VFSR), which statistically

guarantees �nding the global minimum. Yokoya et al. [153] employed the classical simulated

annealing technique to perform superellipsoid �tting. However, the algorithm we use is much

faster than theirs. This is because VFSR permits the `temperature', a control parameter, to

decrease exponentially while the classical simulated annealing can only decrease temperature

logarithmically in order to stochastically guarantee a global convergence.

The selection of the model which best �ts the data is based on the �tting residuals,

rather than on the model parameters. Thus, using parametric geons and the proposed

model recovery scheme, we can robustly obtain qualitative shape descriptions from object

data even though object shapes do not exactly conform to the shape of parametric geons.

Dickinson et al. [39] have proposed a method for recovering volumetric primitives by

integrating qualitative and quantitative techniques. Using a range image containing perfect

1Although geonmodels contain informationpertainingto the aspect ratio and the relative size, they are described
in qualitative terms, such as \much smaller", \approximately equal to" and \much longer" [15].

40



10. CHAPTER SUMMARY

geon-like objects as input, they �rst recovered a qualitative geon-based model and then

�t a deformable superquadric to range data. Their geon models and system output are

very similar to ours. However, the major di�erence between their work and ours is that

they compute qualitative and quantitative information in two consecutive steps2, while we

derive both kinds of information simultaneously. They use model shape information derived

from the �rst step in the following �tting procedure. This shape information imposes

constraints on some model shape parameters such that model �tting can be performed

e�ciently. However, such part shape information is not available in our case. Thus, global

optimisation for �nding model parameters is necessary. In addition, their qualitative shape

recovery, which is a bottom-up approach [41], is problematic when an object containing

imperfect geon-like parts is analysed. In our approach, shape approximation can be achieved

and parametric geon-based descriptions can be computed from imperfect geon objects.

Dickinson et al. have also applied a similar strategy to the more di�cult case of intensity

images [38]. The di�culty with this approach is that in the case of perspective projection,

many objects in 3D space can yield similar projections in a 2D image. Thus, they cannot

obtain the actual quantitative information from an object's 2D projection. In order to deal

with this problem, they used two images as input inspired from stereo vision.

10. Chapter Summary

Our research is motivated by a theory of human image understanding. The Recognition-

By-Components (RBC) Theory [15] postulates that if an arrangement of a few geons can

be recovered from line drawings, then objects can be quickly identi�ed, even when they

are occluded, rotated in depth and degraded. We have addressed certain issues from the

computational point-of-view and have proposed an alternative approach to qualitative vol-

umetric primitive-based representation. The features of our system include the use of range

data as input, a physics-based part segmentation, parametric geons, a shape approximation

strategy and a qualitative model recovery procedure. We have listed the general assump-

tions made in our system and presented the general framework of this research. Finally,

comparisons between our research and previous work were highlighted.

2They also performed part segmentation in the �rst step. Here we focus on a comparison of schemes for part
model identi�cation.

41



1. PHYSICS

CHAPTER 4

Object Segmentation into Parts

In this chapter, we propose a new approach to the segmentation of 3D objects into parts.

The input is either range data or a list of 3D data obtained by multiview range data

integration. Our method segments an object at deep surface concavities, resulting in several

sets of 3D data. Each set contains object data that belong to the same physical object part.

Motivated by physics, we employ the simulated electrical charge density distribution over

the object surface as the surface feature, which di�erentiates surface concave and convex

points. In order to compute the charge density distribution numerically, a �nite element

model in the form of a closed triangular mesh is created over the object surface. A direct

connection graph is then constructed based on the spatial relations between triangles in the

triangular mesh as a coordinate system over the object surface. Triangles on part boundaries

where the charge densities approach local minima are detected and removed. Thus, the

triangulated object surface is decomposed into several parts. The triangles belonging to the

same physical part are obtained by a connected component labelling process.

Section 1 describes an analogy between the concave and convex discontinuity and the

singularity in the electrical charge density distribution. Section 2 makes assumptions about

the object shapes used in this research. Section 3 and 4 present the mathematical formu-

lation and the numerical solution to the computation of the charge density distribution

over the object surface, respectively. Section 6 describes the issue of surface triangulation.

Section 5 discusses the characteristics of the charge density distribution. Section 7 intro-

duces the direct connection graph and describes the object decomposition algorithm which

is based on this graph. A summary is given in the last section.

1. Physics

Following the strategy of boundary-based approaches, we segment an object into parts

by extracting object part boundaries. Since the object data are unstructured and do not
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Figure 4.1. The charge distribution on a cross-section (shaded area) of a charged conductor.
The electrical charge indicated by \+" tends to accumulate at the convex edges and corners and
vanish at the concave ones. Thus, the object part boundary, de�ned by deep surface concavities,
can be indicated by signi�cant local charge minima.

provide explicit information about part boundaries, we must seek a principle for locating

part boundary points. According to Ho�man and Richards [60], the mental category 'part'

of shapes is based upon a regularity of nature { transversality { as de�ned as follows:

Definition 4.1. Transversality regularity. When two arbitrarily shaped surfaces are

made to interpenetrate, they always meet in a contour of concave discontinuity of their

tangent planes.

It has been proved that smoothing of such concave discontinuities gives rise to contours of

negative minima of a principal curvature [11]. Thus, it has been proposed that an object

surface can be partitioned into parts along contours of surface concave discontinuity or

negative extrema of a principal curvature. Inspired by this principle, we develop a new

computational approach to segment an object into parts.

Our algorithm for locating the part boundaries is derived from an analogy between the

curvature discontinuity and the electrical charge density distribution over the object surface.

When a charged conductor is in electrical equilibrium1 , all charge on a conductor must reside

only on its outer surface [29]. Electromagnetic theories [67, 24] and physical experiments

have shown a singular behaviour of charge density distributions (see Figure 4.1). That is,

the charge density is very high at the sharp convex edges and corners on the object surface

and close to 0 at sharp concavities.

1When there is no net motion of charge within the conductor, it is in electrostatic equilibrium.
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- edge

- corner

Figure 4.2. Examples of edges and corners.

It is important for shape analysis to know the mathematical nature of charge density

distributions. Electrical charge densities at sharp edges and corners have been carefully

studied by Jackson [67] and Van Bladel [24]. Here we give a brief description of their

�ndings. Details can be found in two books [67, 24]. By edges and corners, they mean

orientation (C1) discontinuities of the object surface. These are physical entities, which

are di�erent from those de�ned in image processing. An edge is an intersection of two

smooth surfaces, forming a line or curve segment in 3D space. A corner is an intersection of

surfaces, tapering into a point in 3D space. Figure 4.2 depicts examples of edges and corners.

By ignoring secondary global e�ects, the authors have derived the following approximate

relationship governing the charge density � at an edge formed by two conducting planes, as

shown in Figure 4.3 (a):

�(�; �)� �
a1
4�
�(�=�)�1(4.1)

Here � is the angle between two planes de�ning the edge. � is the distance from the edge

to a point P , where the charge density is measured. a1 is a constant determined by the

approximation used for deriving (4.1). Figure 4.3 (b) shows � as a function of � and �.

This relation indicates that the larger � and the smaller �, the greater the charge density.

We observe that all sections are monotonic for constant �. Note that the power of � is a

nonlinear function of �. The theoretical singular behaviour of the charge density at edges
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Figure 4.3. Charge densities at edges. (a) an edge formed by two planes with an angle �. (b)
The charge density at P (�; �).

(for � = 0) can be stated as follows:

� =

8>><
>>:

1 if � > �

constant if � = �

0 if � < �

(4.2)

This means that the charge density is in�nite, constant and zero when the angle de�ned

by two planes is convex, at and concave, respectively. The singular behaviour of charge

density at corners similar to these edges has also been studied [67, 24].

We have observed that at slightly smoothed edges and corners, the positions of local

extrema of charge densities are not changed. Consequently, by assuming that a multi-

part object is a charged conductor, we can locate the part boundaries at surface points
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where charge densities reach signi�cant local minima. It is noted that the charge density

distribution is not equivalent to the surface curvature. We will make a clear distinction

between these two surface properties in Section 5.

2. Assumptions about Object Shapes

In order to perform boundary-based part segmentation using the simulated electrical

charge density distribution, we must make assumptions about the object shapes. Obviously,

certain assumptions are required by any boundary-based segmentation approach. We note

that unlike curvature-based approaches, our method does not assume that the object surface

has to be smooth, that is, the second partial derivatives of the surface are continuous [14].

The assumptions we make are as follows:

(i) A part boundary must be explicitly indicated by deep surface concavities and closed

for a complete object. As a counter example, an \elbow" (see Figure 2.2) does

not satisfy this assumption because the surface concavity points constitute an open

curve. Additional constraints are required to segment such an object.

(ii) Objects to be segmented must be simply-connected. That is, the object has no holes2.

(iii) We assume a multi-part object. That is, at least one part boundary satisfying As-

sumption (i) must exist. Our method locates a part boundary at the local charge

density minima. Since all values of charge density are positive, it can only reveal the

relative information about concavities or convexities but cannot indicate absolute in-

formation. For example, a minimum of the charge density distribution on a convex

object will not indicate a surface concavity. This assumption on multi-part objects

ensures that at least one deep surface concavity. Curvature-based approaches do not

require this assumption.

In the following two sections, we will describe the mathematical formulation of and the

numerical solution to the charge density distribution.

3. Computation

Our physical model is the charge density distribution on a charged conductor in 3D free

space, where there is no other charge or conductor. To begin with, we list three physical

facts which can be derived from physical laws and which we will use to develop the algorithm

for the charge density computation.

2Although a hole may be viewed as an indented or negative part, we only consider protrusive parts in this thesis.
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q

Figure 4.4. Con�guration of a point charge. r is the vector position where the electrical
potential is observed. r0 is the vector position of the source point charge. r0 is the vector position
of the potential reference point.

Fact 4.1. In electrical equilibrium, any charge on an isolated conductor must reside entirely

on its outer surface [112].

This means that there is no charge inside the conductor. The structure within the

object does not a�ect the charge density distribution. This fact shows that in this case, the

charge density distribution is a surface property.

Fact 4.2. The surface of any charged conductor in electrical equilibrium is an equipotential

surface [112].

Fact 4.3. Conservation of Charge: Charge cannot be created or destroyed, for the algebraic

sum of the positive and negative charges in a closed or isolated system does not change under

any circumstances [78].

These facts provide us with the conditions needed to establish mathematical equations

with charge densities as their variables.

Consider the electrical potential at the vector position r 2 R3, produced by a point

charge q, located at the vector position r0 2 R3, as shown in Figure 4.4. The corresponding

electrical �eld at r can be calculated by an application of Gauss's law. Thus,

e(r) =
q

4��0

r� r0

jr� r0j3
(4.3)

Here �0 is a constant, known as the permitivity of free space.

The electrical potential �(r) at r can be derived by an integration of (4.3) along the

dashed line from r0 2 R
3, the vector position of the reference point, to r (see Figure 4.4):

�(r)� �(r0) =
q

4��0

�
1

jr� r0j
�

1

jr0 � r0j

�
(4.4)
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r

r

O

S

Figure 4.5. Con�guration of charge distribution over the surface. O is the origin of the
coordinate system.

In physics, it is customary to choose the reference potential to be zero at jr0j = 1.

Accordingly, �(r0) = 0 and Equation (4.4) becomes:

�(r) =
q

4��0

1

jr� r0j
(4.5)

Secondly, consider that the charge is continuously distributed over the object surface

S (see Figure 4.5). Thus the electrical potential at r is contributed by all the charge on S

and satis�es the principle of superposition. It can be expressed as follows:

�(r) =
1

4��0

Z
S

�(r0)

jr� r0j
dS0(4.6)

Here q = �(r0)dS0, �(r0) is the charge density at r0, and S0 is the area over S.

Thirdly, according to Fact 4.2 that all points on a charged conductor in electrical

equilibrium are at the same electrical potential, if we restrict r in Equation (4.6) to the

conductor surface, �(r) is constant. Thus, (4.6) may be rewritten as follows:

V =

Z
S

�(r0)

jr� r0j
dS0(4.7)

Here V = 4��0�(r) is a constant. In the next section, we will introduce a numerical

algorithm for computing the charge density based on Equation (4.7).

4. Finite Element Solution

Our objective is to compute the charge density distribution over the outer surface of

an object with an irregular shape. Since S in (4.7) is an arbitrary surface, it is impossible

to express the charge density analytically. However, we can obtain an approximate solution

to the charge density by using a �nite element method [119]. The idea is to approximate

the 3D object by a polyhedron, each face of which is a planar triangle which possesses a

constant charge density. Then the problem of integration over the complete surface (see

Equation (4.7)) can be converted into a summation of integrations over each triangle. Since
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Figure 4.6. Polyhedral approximation of an ellipsoid. When r0 is on Tk, fk = 1; fi = 0(i 6= k).

the latter can be solved analytically, the charge density on each triangle can be easily

computed.

The �nite element solution is obtained as follows. We tessellate the object surface using

a triangular mesh which has N planar triangles, Tk; k = 1; :::; N . Each triangle is assumed

to have a constant charge density, �k, as shown in Figure 4.6. A set of basis functions

fk; k = 1; :::; N is de�ned on this triangular mesh as follows:

fk(r
0) =

(
1 if r0 2 Tk

0 otherwise
(4.8)

Thus the basis function, fk, is nonzero only when r0 is on the triangle Tk, as shown in

Figure 4.6. Therefore, the charge density �(r0) can be approximated by a piecewise constant

charge density function as follows:

�(r0) �
NX
k=1

�kfk(r
0)(4.9)

Substituting (4.9) into Equation (4.7), we have

V =
NX
k=1

�k

Z
Tk

1

jr� r0j
dS0(4.10)

Since the charge density is assumed to be constant on each Tk, we may take ri as the

observation point on each Ti and rewrite Equation (4.10) as:

V =
NX
k=1

�k

Z
Tk

1

jri � r0j
dS0; i = 1; ::::::; N:(4.11)

49



4. FINITE ELEMENT SOLUTION

According to Fact 4.3, the sum of the charges on each triangle equals the total charge

on the surface of the contour. Let Q be the total charge on the contour and Sk be the area

of Tk. Then we have

Q =

Z
S
�(r)dS0 �

NX
k=1

�kSk(4.12)

Assuming Q is known, and given (4.11) and (4.12), we obtain a set of linear equations with

N + 1 unknowns, �1; :::; �N and V , as follows:

A� = �(4.13)

Here

� =

0
BBBBBBBBBBBBB@

�1

�2

:

:

:

�N

V

1
CCCCCCCCCCCCCA
; � =

0
BBBBBBBBBBBBB@

0

0

:

:

:

0

Q

1
CCCCCCCCCCCCCA
;(4.14)

and

A =

0
BBBBBBBBBBBBB@

A11 A12 : A1N �1

A21 A22 : A2N �1

: :

: :

: :

AN1 AN2 : ANN �1

S1 S2 : SN 0

1
CCCCCCCCCCCCCA

(4.15)

where

Aik =

Z
Tk

1

jri � r0j
dS0; i; j = 1; 2; :::;N:(4.16)

Since the integral in (4.16) can be evaluated analytically [142], as shown in Appendix A,

the charge density distribution �k and the constant V can be obtained by solving the set

of linear equations given in (4.13). Since the potential on a particular triangle is actually

contributed by the charge on all of the other triangles, the matrix A is dense. In the actual

computation, the observation point ri on each triangular patch is selected at its centroid.

The set of linear equations is solved by a conjugate gradient squared method [10].
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5. Characteristics of Charge Density Distribution

Computing the simulated charge density distribution is an intermediate step in the

procedure for segmenting an object into parts. In the literature, several researchers have

proposed criteria for deriving shape descriptions[82, 23, 28, 143]. These include accessi-

bility, uniqueness, stability, scope and sensitivity. In the following, we explain the criteria

and examine how well the charge density computation satis�es them.

Uniqueness: It has been proven that the charge density distribution on a charged

conductor in electrostatic equilibrium is uniquely determined [122]. Thus given a

speci�c shape of an object, our method produces a unique description of the surface

property, and in turn, obtains a unique segmentation result based on this surface

property.

Invariance: An object description which is invariant to object rotation and translation

is important. For example, when an autonomous robot looks at an object from

di�erent viewpoints, it must recognise the object as the same entity. Since the

charge density distribution depends completely upon the total charge, as well as

the shape and size of an object, it is independent of the coordinate system chosen

for the computation (see Equation (4.11) and (4.12)). Also the relative position

of the extrema in the charge density distribution will not change with object size.

Therefore, our part segmentation method is invariant to object scale, translation

and rotation.

Versatility: The charge density computation, which is based on integral equations,

does not require an assumption on smoothness of object surfaces. However, the

surface curvature computation, which is based on di�erentiation, needs a smooth

surface, namely, the continuous second partial derivatives of the object surface [86].

Note that the method based on particle di�usion [151] also does not need this

assumption. However, it su�ers from another severe problem, as will be described

in the next paragraph.

Computability: The algorithm for the charge density distribution is based upon three

physical facts and Gauss' law. There are no crucial user-de�ned parameters required.

After surface triangulation, the total computation only involves analytical function

evaluations and a set of linear equations. This approach deals with the electrical

equilibrium, which produces distinctive charge densities at concave and convex sur-

face points. However, in the particle di�usion-based approach [151], one has to set a
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5. CHARACTERISTICS OF CHARGE DENSITY DISTRIBUTION

threshold, the maximum number of iterations of the di�usion process. This param-

eter is dependent on object size and shape. It is very di�cult to determine because

shape information is generally not available beforehand. If di�usion is stopped at an

inappropriate time, the distinction between particle densities at concave and con-

vex surface points will not be strong. Moreover, to compute the surface property

of a complete 3D object, both curvature-based [110] and di�usion-based [151] ap-

proaches require a voxel-based coordinate system, which is an explicit 3D coordinate

system. By contrast, the charge density-based approach restricts its variables only

to the outer surface of the object. Therefore, the amount of computation is reduced.

Scope and sensitivity: It is often required that an object description represent shape

at di�erent scales. Descriptions at coarse scales relate to the gross shape features.

Details at �ner scales include features that are more local. The charge density

distribution carries information about scales in a di�erent way from the more com-

mon curvature-based approach [5]. This is because a strict relationship between the

charge density distribution and the curvature does not exist [98]. The heuristic that

the charge density on object surfaces changes monotonically with curvature seems

to be quite acceptable. However, we note that Jackson's theoretical result [67] (see

Section 1) holds only locally at a surface with C1 discontinuity. But the surface at

part boundaries may be C1 continuous or smooth. Curvature is completely deter-

mined by local data. But the charge density distribution is a�ected by all of the

points on the object surface. Note that these points do not contribute equally to

the potential at a particular observation point. Instead, their inuence is weighted

by the reciprocal of the distance between the observation and source points (see

Equation (4.7)). Thus, a charge density computation possesses both \quasi-global"

and \quasi-local" properties.

The \quasi-global" property helps reduce noise e�ects. In curvature-based ap-

proaches, the second partial derivatives of the object surface must be computed in

a local neighbourhood. Because of the inherent noise in the input data and the fact

that di�erentiation is required, this kind of approach has proven unreliable [135].

However, since the charge density computation uses weighted global shape infor-

mation, it reduces the sensitivity to noise and produces a more robust result. The

\quasi-global" property produces information that can also reveal the signi�cance

of the protrusion and indentation of parts.
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The \quasi-local" property helps isolate �ne local features. Because of this

property, the charge density segmentation approach can handle situations of object

self-occlusion. When only single-view range data are provided, shape information

on the \invisible surface" is not available. The surface triangulation of the \invisible

surface" could be rather arbitrary. Nevertheless, it turns out that the local distri-

bution of charge is almost not a�ected by selecting a di�erent \invisible surface".

Therefore, the position of the local minima of charge density remains essentially the

same. The property will be justi�ed by experiments in Appendix C.

These properties will be demonstrated by experiments in Chapter 6. Using cur-

vature, these gross and �ne features may be detected at di�erent scales by smoothing

with di�erent window sizes. It is noted that the selection of an appropriate scale

is very di�cult. However, our approach produces both features simultaneously and

without intervention.

Relative and absolute surface information: For the di�usion-based method and

the charge density-based method, since the number of the particles and the charge

density are positive values, they can only determine the relative contrast between

convexities and concavities. However, curvature-based approaches do compute pos-

itive and negative surface curvature, namely the absolute concave and convex infor-

mation. If an object is a single-part object, which does not have negative curvature,

a curvature-based method will detect this and not conduct any further segmentation;

both the di�usion-based and charge density-based approaches will not be able to do

this.

These characterisations will be demonstrated through experiments which will be dis-

cussed in Chapter 6.

6. Surface Triangulation

In Section 4, we described the computation of the charge density distribution over an

object surface, which we represented in terms of a triangular mesh. Since the image data

consist of a set of discrete points in 3D space, it was found necessary to use triangular mesh

tessellation. This technique, which is called surface triangulation [53], has been widely

used for reconstructing object shapes [26, 45, 32, 128]. A triangular mesh also speci�es a

data indexing system for the object surfaces, which are represented by a set of discrete 3D

points. Thus, triangulation establishes a speci�c spatial relationship between these points

and facilitates the extraction of part boundaries. In this section, we will describe the surface
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(a) (b)

Figure 4.7. Single-view range data of an object. (a) Frontal view. (b) Side view. Due to
self-occlusion, surface information on the other side cannot be seen by the laser range�nder.

triangulation using either single-view or multiview range data. The details of the algorithm

are given in Appendix C. The problem of part decomposition will be addressed in Section 7.

6.1. Constructing a Triangular Mesh for Single-View Data The single-view

range data shown in Figure 4.7 indicate object shape information on visible surfaces. The

data points di = fxi; yi; zig 2 R3 are speci�ed by a vector function f of the range image

grid, ui, as follows:

di = f(ui); i = 1; :::; N;

Here fui; i = 1; :::; Ng � U and U � I2 is the range image domain. Thus, not all

pixels contain data points. Surface triangulation of the single-view data can be performed

in the 2D image domain using the explicit neighbourhood relation speci�ed by the image

grid [126]. Triangles are constructed within individual 2 � 2 pixel regions. The triangle

vertices are range data points. If the region contains three or four data points, one or

two triangles respectively are formed. This local triangulation permits us to establish a

triangular mesh for the visible object surfaces. Since this approach is based on using the

actual data points, it requires dense data to obtain a connected mesh.

To compute the charge density, a closed triangular mesh is required. Since the data

points on the invisible surface are not available, as shown in Figure 4.7, it is impossible to

directly tessellate the invisible surface using the above method. In practice, we arti�cially

construct a mesh on the invisible side in order to make up a closed triangular mesh. As

discussed in Section 5, the actual shape of the invisible surface only a�ects the absolute

value of the charge density on the visible surfaces. The position of the extrema of the

charge density distribution remains almost the same. Thus, it makes sense to construct an

arti�cial mesh on the invisible surface. For the sake of simplicity, we construct the closed

mesh using three patches, as shown in Figure 4.8. The �rst, called the top patch, is obtained

by triangulating the range data on the visible surface. The second, called the bottom patch,

is planar, and is actually the (spatial) projection of the top patch onto an arbitrary plane
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(a)

(b)

(c)

Figure 4.8. Triangulation of the range data in Figure 4.7. (a) shows the top (real
data) and bottom patches of the closed triangular mesh. (b) shows the side patch.
(c) is the closed triangular mesh obtained by merging (a) and (b).

perpendicular to the Z axis. These two patches are illustrated in Figure 4.8 (a). The third

one , called the side patch, �lls the gap between the top and bottom patches, as shown

in (b). The complete closed triangular mesh in Figure 4.8 (c) is obtained by merging the

patches in (a) and (b). A similar strategy has been proposed for generating a closed surface

in 3D space for di�usion-based shape analysis [152].

6.2. Constructing a Triangular Mesh for Multiview Data Multiview data are

obtained by transforming multiple single-view range data into a common coordinate system
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(a) (b) (c)

Figure 4.9. Surface triangulation using multiview range data. Gray dots are data points and
the triangular mesh is in black. (a) The initial model. (b) The intermediate model. (c) The �nal
triangular mesh.

(see Appendix B). They contain more complete information about the object shape and

are expressed as a sequence of discrete 3D points. But multiview data cannot be uniquely

indexed by a particular range image grid, and their neighbourhood relations on the object

surface cannot be explicitly speci�ed. They are often referred to as unorganised or unordered

data. The method used for tessellating single-view data is not applicable for unorganised

data. Other approaches have been proposed [137, 83, 32, 73, 35].

In this thesis, an approach based on mesh blending [35] is used for surface triangula-

tion 3. Figure 4.9 illustrates the procedure of model construction. For a given set of data

points on the object surface, a triangular mesh representing a spherical shape is initialised.

During the model reconstruction, the sphere is deformed towards the shape of the object

and residuals between the model and data points are computed. At a certain stage, if resid-

uals between a subset of data and a corresponding local region on the model surface are not

reduced no matter how the model is deformed 4, both data points and the mesh model are

divided into two sets, having large and small residuals, respectively. A new triangular mesh

model is created to represent the subsurface of the old model where large residuals have been

measured. This new model is continuously deformed to �t the subset of data which have

caused the large residuals. The old model remains and represents the rest of data points.

These two models are blended at their intersection by carefully pairing vertices of triangles

between models. New models can be further generated to represent �ner subsurfaces until

the maximum residual is smaller than a prede�ned threshold. The resultant model is a

3The surface triangulation was actually performed by Douglas DeCarlo and Demitri Metaxas at the University
of Pennsylvania. We sent them range�nder data and they produced the triangular meshes.

4Since the sti�ness of the model surface is speci�ed beforehand, the model surface cannot be deformed by an
arbitrary degree.
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closed triangular mesh tessellated on the complete object surface. This approach performs

surface triangulation without the requirement of dense and uniformly-distributed data. This

makes it possible to extrapolate the object surface based on the model shape, even when

there are no data available due to object self-occlusion. However, for a complicated object,

the algorithm may not be able to perform the blending operation properly and, therefore,

cannot produce a valid triangular mesh [35].

7. Part Decomposition

This section describes the technique for decomposing a whole object into parts, given

the charge density distribution over the object surface. After obtaining the simulated charge

densities on the object surface, we segment an object into parts by detecting and then

deleting points on the part boundaries where the charge densities achieve local minima.

For a triangular mesh of multiview data, we decompose the complete mesh. For a single-

view range image, only the top patch which represents the visible surface of the object

is decomposed. Each resultant part forms a connected triangular mesh which is a subset

of the closed triangular mesh. This method is based on a so-called Direct Connection

Graph (DCG), which serves as a speci�c coordinate system de�ned on the triangular mesh.

We will �rst introduce the concept of DCG and then describe the algorithm for object

decomposition.

7.1. Direct Connection Graph We �rst give the de�nition of direct neighbours as

follows:

Definition 4.2. Two triangles are direct neighbours in a triangular mesh if and only

if they share a common side or two vertices.

Then we de�ne a Direct Connection Graph (DCG):

Definition 4.3. A Direct Connection Graph is a graph de�ned on a triangular mesh.

Its nodes represent the triangles and its branches represent the connections between a node

and its direct neighbours.

Figure 4.10 shows a triangle mesh in (a) and its DCG in (b).

The algorithm for DCG construction is described in Appendix D. Since the DCG

provides an explicit neighbourhood relationship between individual triangles on the surface

of the object, it is a convenient coordinate system over the object surface. It permits the

tracing of the part boundaries on the triangular mesh without employing a voxel-based
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Figure 4.10. Direct Connection Graph (DCG). (a) A triangular mesh. For example, triangles
1 and 2 are direct neighbours while 2 and 3 are not. (b) DCG of the triangular mesh in (a). (c)
Subgraphs of (b) after boundary node deletion. Here triangular patches 1, 2, 3 and 8 are assumed
to be located on the part boundary.

coordinate system. This signi�cantly reduces the required memory space for describing the

object and increases the computational speed.

7.2. Finding Parts As described in Chapter 2, the transversality principle states

that when two objects interpenetrate, they intersect transversally with probability one[11].

This means that the tangent planes to the two intersecting surfaces are of di�erent ori-

entations at all points where the surfaces meet (see Figure 2.5). Following this, we have

assumed that a part boundary is explicitly de�ned by deep surface concavities. For a com-

plete object, the part boundary is a closed contour. This ensures that the decomposition

algorithm will be able to segment a part from the rest of the object. The assumption also

provides a stopping criterion for the boundary tracing procedure. Since the part boundary

is located at local charge density minima, it can be traced along the \valley" of the charge

density distribution. We note that for single-view data, the top patch of triangular mesh

is not closed and therefore, the part boundary may not be a closed contour. In this case,

when the tracing process reaches the mesh boundary, which has only two direct neighbours,

it stops.

The algorithm examines the charge density on all triangles to �nd an initial triangle

for tracing each boundary. An initial triangle must satisfy the following conditions:

(i) It must be a concave extremum; that is, its charge density must be a local minimum.

(ii) It must be located at a deep concavity. Thus the charge density on the triangle must

be lower than a preselected threshold5.

(iii) It and its neighbours must not have been visited before. This ensures that the same

boundary will not be traced again.

5This threshold determines when an object should not be decomposed any further. If the charge density at an
initial triangle is greater than this threshold, we assume that all boundary points have been found. The selection of
the threshold depends on a priori knowledge of the surface concavity and there is no universal rule for selecting it.
Obviously, the higher the threshold, the more segmented parts will be found . Currently we choose 120% of the lowest
charge density on the object surface as the threshold.
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Beginning at the initial triangle, the algorithm proceeds to the neighbour with the lowest

charge density. During the tracing procedure, all triangles detected on the boundary are

marked. The marked ones will not be checked again and eventually will be deleted from

the DCG. For the mesh constructed from multiview data, the process continues until it

returns to the initial triangle. As a result of the assumption stated at the beginning of

this section, this means that all triangles on this part boundary have been visited. For the

mesh constructed from single-view data as illustrated in Figure 4.10, the process continues

until it reaches a triangle(face 3 in Figure 4.10) on the boundary of the mesh. If the initial

triangle(face 2 in Figure 4.10) possesses three direct neighbours, the procedure will move in

the other direction until reaching a triangle(face 8 in Figure 4.10) on the boundary of the

mesh. Thus all triangles on the part boundary have been visited. Next the algorithm �nds

a new initial triangle and traces another boundary. It repeats the same tracing procedure,

and �nally stops when the charge density at an initial triangle is higher than the preselected

threshold. After all triangles on part boundaries have been found, the nodes of the DCG

representing these triangles are deleted. Thus the original DCG is now divided into a set of

disconnected subgraphs, as shown in Figure 4.10 (c). Physically the object has been broken

into parts. Each object part can be obtained by applying a component labelling algorithm

to a subgraph of the DCG. The result of this algorithm is several lists of triangles. Each

list contains the triangles which belong to the same object part. These triangle lists are

then ready for part model identi�cation. The algorithms for tracing part boundaries and

�nding individual parts are elaborated in Appendix D.

8. Chapter Summary

In this chapter, we have introduced a novel approach to object segmentation into parts.

Following the boundary-based segmentation strategy, we obtain object parts without using

part shape information. Rather than geometrical properties, we compute part boundaries

using a physical property of object surfaces { the simulated electrical charge density dis-

tribution. Assuming that the object considered is a perfect conductor, we computed the

charge density distribution over its surface, which has been tessellated by a triangular mesh.

The charge density distribution indicates the contrast produced by surface concavities or

convexities. We then detect part boundaries at deep concave surface points where the charge

density is a local minimum. Finally we decompose the object into parts at the boundary

points.
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Our approach is unique for a particular shape and invariant to object scale, rotation

and translation. It works well on both single-view range data and 3D data integrated from

multiple views. There is no crucial parameter that needs to be selected and no assumption is

made about the smoothness of object surfaces. Our approach restricts its unknowns to the

object's surface instead of the entire 3D space. It does not compute the interior of objects.

Unlike previous di�usion-based approaches, this method computes local surface information

without the frustration of having to choose a crucial stopping condition. Triangle tessellation

of the object surface provides an e�ective coordinate system over the object surface for part

boundary tracing and part labelling. The charge density is determined by global data

weighted by the distance to the point where the charge density is being considered. This

mechanism permits a more stable solution than pure local feature-based approaches.

We will illustrate the experimental results pertaining to object segmentation in Chap-

ter 6. The next step is to derive part models from segmented parts. This will be presented

in the following chapter.
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1. PARAMETRIC GEONS

CHAPTER 5

Part Identi�cation

We describe an approach to part model identi�cation, in this chapter. Object segmentation

produces a few sets of 3D data. In each set, all data belong to the same object part. The

next task is to generate a symbolic object description for each part. To do this, we need

to answer the following questions: (1) What kind of part models will be used to represent

the object parts? (2) What strategy and technique will be employed to recover the part

models? Following the shape approximation scheme discussed in Chapter 3, we propose to

use parametric geons as object part models. We formulate model recovery as an optimisation

problem. All parametric geon models are �tted to an object part by minimising a function of

the di�erence between the shape and size of a part and the models; the best model for that

part is selected based on the minimum �tting residuals. Global optimisation { Very Fast

Simulated Annealing { is used for minimisation. The part model, the objective function for

optimisation and the optimisation algorithm are described in the following sections.

1. Parametric Geons

1.1. Shape Types Similar to Biederman's geons, the class of parametric geons con-

sists of a �nite set of distinct shapes. We believe that these shapes should reect the

essential geometry of objects in the real world. The shapes of the part models are primarily

motivated by the art of sculpture, perhaps the most traditional framework for 3D object

representation. One of the most obvious features of sculptured objects is that they consist

of a con�guration of solids of di�erent shapes and sizes which are joined together but which

can be perceived as distinct units. The individual volume is the fundamental unit in our

perception of sculptural form, as indeed it is in our perception of fully 3D solid form in

general [104]. Figure 5.1 shows some shape primitives described by sculptors, and objects

composed of these primitives. The �rst column indicates a few 3D shape primitives. The
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1. PARAMETRIC GEONS

Figure 5.1. Shape primitives described by sculptors and objects composed by
these primitives. (From W. Zorach, \Zorach Explains Sculpture: What It Means
and How It Is Made", Tudor Publishing Company, 1960)

second shows a description of a human body composed of rectangular and triangular prim-

itives. The third column is a representation of the human body in terms of 3D primitives.
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1. PARAMETRIC GEONS

The last column indicates the human body and its articulate parts. From a sculptors point

of view, all sculptures are composed of variations of �ve basic forms: the cube, the sphere,

the cone, the pyramid and the cylinder [99, 154]. Another important belief in the world of

sculpture is that each form originates either as a straight line or a curve [154]. Straightness

and curvature are signi�cant for characterising the main axis of elongated objects and were

employed in de�ning the original geon properties [15]. By generalising the �ve primitive

shapes used in sculpture and adding two curved primitives, we arrive at the following seven

shapes for parametric geons: the ellipsoid, the cylinder1 , the cuboid, the tapered cylinder,

the tapered cuboid, the curved cylinder and the curved cuboid.

1.2. Formulation We choose parametric forms to describe these seven shapes. Their

formulations are derived from the superellipsoid equations (2.3) by (i) specifying the shape

parameters, �1 and �2 and (ii) applying tapering and bending deformations.

1.2.1. Implicit Equations for the Three Basic Shapes Since �1 and �2 in (2.3) control

the degree of \roundness" or \squareness" of superellipsoids in two orthogonal directions,

respectively, three of the parametric geons can be derived as follows:

� Given �1 = �2 = 1, the equation of an ellipsoid is�
x

a1

�2
+

�
y

a2

�2
+

�
z

a3

�2
= 1:(5.1)

� Given �1 = 0:12 and �2 = 1, the equation of a cylinder is given by �
x

a1

�2

+

�
y

a2

�2
!10

+

�
z

a3

�20
= 1:(5.2)

� Given �1 = �2 = 0:1, the equation of a cuboid is�
x

a1

�20

+

�
y

a2

�20
+

�
z

a3

�20
= 1:(5.3)

In the following, we will call these three shapes regular primitives and other shapes

deformed primitives.

1.2.2. Implicit Equations for Tapered Shapes Two assumptions are made regarding

the tapering formulation: (i) tapering deformation is performed along the z axis; (ii) the

tapering rate is linear with respect to z. Although this linearity assumption is sometimes

1Actually this can be a cylindrical shape with an elliptical cross-section.
2Superellpsoidshape changes smoothlywith �1 and �2. We choose �1 = 0:1 for a cylinder, based on computational

robustness and the perceptual acceptance of its shape. The same reasoning applies to the cuboid.
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1. PARAMETRIC GEONS

(a) (b)

Figure 5.2. Tapering deformation (a) Downward tapering; (b) Invalid tapering deformation.

violated for real objects, our model is only designed to approximate the shape of tapered

object parts. Thus, tapering deformation is given by(
X = (Kx

a3
z + 1)x

Y = (
Ky

a3
z + 1)y

(5.4)

where X and Y are the transformed coordinates of the primitives after tapering has been

applied to the coordinates x and y. Kx; Ky are tapering parameters in the x and y coordi-

nates. The equation of inverse tapering is given by:8><
>:

x = X
(Kx
a3
z+1)

y = Y

(
Ky
a3
z+1)

(5.5)

To permit downward tapering only in the formulation and avoid invalid tapering (see Figure

5.2), we impose the constraints 0 � Kx � 1 and 0 � Ky � 1.

By substituting (5.4) into (5.2) and (5.3), respectively, we obtain implicit equations for

a tapered cylinder and cuboid, respectively, as follows:0
@ X

a1(
Kx

a3
Z + 1)

!2

+

 
Y

a2(
Ky

a3
Z + 1)

!2
1
A
10

+

�
Z

a3

�20

= 1(5.6)

 
X

a1(
Kx

a3
Z + 1)

!20

+

 
Y

a2(
Ky

a3
Z + 1)

!20

+

�
Z

a3

�20
= 1(5.7)
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Figure 5.3. Bending deformation in the xz plane. Axis y is perpendicular to this plane,
projecting into the paper. The shaded area delimits the original primitive. The thick lines depict
the curved primitive. O is the centre of bending curvature and � is the bending angle. Point
(x0; z0) is transformed into the coordinate (X0;Z0) by the bending operation.

1.2.3. Implicit Equations for Curved Shapes We use a simple bending operation which

corresponds to a circular section, as shown in Figure 5.3. This bending feature is described

by only one parameter, i.e. the curvature � of the circular section. Although many curved

object parts do not have constant curvature, we can still amply approximate curved object

parts using this qualitative shape model. The bending operation is applied along the z axis

in the positive x direction. The operation transforms vectors (x; y; z) into vectors (X; Y; Z).

The equations describing the bending deformation are given by (see Figure 5.3):

8>><
>>:

X = ��1 � cos �(��1 � x)

Y = y

Z = (��1 � x) sin �

(5.8)

Here � = �z is the bending angle. The inverse transformation is given by

8>><
>>:

x = ��1 �
p
Z2 + (��1 �X)2

y = Y

z = ��1� = ��1 arctan Z
��1�X

(5.9)
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Figure 5.4. The seven parametric geons. The numbers in the brackets at the bottom right of
each shape represent the index of parametric geon shape types, 1-ellipsoid, 2-cylinder, 3-cuboid,
4-tapered cylinder, 5-tapered cuboid, 6-curved cylinder, 7-curved cuboid.

The equations for curved cylinders and cuboids, as given in (5.10) and (5.11), can be

obtained by substituting (5.9) into (5.2) and (5.3):0
@ ��1 �pZ2 + (��1 �X)2

a1

!2

+

�
Y

a2

�21A
10

+

 
��1 arctan Z

��1�X

a3

!20

= 1(5.10)

 
��1 �

p
Z2 + (��1 �X)2

a1

!20

+

�
Y

a2

�20

+

 
��1 arctan Z

��1�X

a3

!20

= 1(5.11)

The seven typical shapes of the parametric geons are illustrated in Figure 5.4. Although

these seven shape types are de�ned qualitatively, their variations can represent a variety of

di�erent shapes. Other examples of parametric geon shapes are shown in Figure 5.5.

1.2.4. Normal Equations A normal vector at a point on the surface of the parametric

geons can be computed from their implicit equations given in (5.1), (5.2), (5.3), (5.6), (5.7),
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Figure 5.5. Some variations of parametric geon shapes. The number beside each shape
indicates its geon type de�ned in Figure 5.4.

(5.10) and (5.11). Let an implicit equation of a parametric geon be de�ned as g(x; a) = 0,

where x = fx; y; zgT is the point on the model surface and a is a parameter vector. A

normal vector on the surface of parametric geons is given as follows:

Definition 5.1. The normal vector to a parametric geon at a point x is given by the

gradient vector

nm =

�
@g(x; a)

@x
;
@g(x; a)

@y
;
@g(x; a)

@z

�
:(5.12)

An alternative and simpler approach to computing normals for deformed primitives is

to apply a transformation to the normal vectors of the three regular shapes. Let tapering

or bending be expressed by the equation

X = F(x)(5.13)

where X is the transformed point of x. The normal vectors on the surface of deformed

parametric geons are given as follows:

Definition 5.2. A normal vector for deformed parametric geons is given by

nXm = Bnxm(5.14)

where B = (detJ)J�T is the inverse transpose of the Jacobian matrix of the deformation

function and J denotes the Jacobian matrix [9] whose ith column is obtained by the partial
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derivative of F(x) with respect to ith component in x as follows:

J(x) =

�
@F(x)

@x
;
@F(x)

@y
;
@F(x)

@z

�
(5.15)

The determinant of J can be ignored because only the direction of the normals is important.

The normal transformation matrix for tapered primitives can be obtained by apply-

ing (5.15) to (5.4) as follows:

J�T =

0
BB@

ky
a3
z + 1 0 0

0 kx
a3
z + 1 0

�(
ky
a3
z + 1)kxa3 x �(kxa3 z + 1)

ky
a3
y (kxa3 z + 1)(

ky
a3
z + 1)

1
CCA(5.16)

The normal transformation matrix for curved primitives can be obtained by applying (5.15)

to (5.8) as follows:

J�T =

0
BB@

k(k�1 � x) cos� 0 sin �

0 k(k�1 � x) 0

�k(k�1 � x) sin � 0 cos �

1
CCA(5.17)

Given the normal vectors for the regular primitives obtained from (5.12), one can multiply

them by either (5.16) or (5.17) to obtain the normal vectors for tapered and curved primi-

tives, respectively. A more detailed discussion of the global deformation of solid shapes can

be found in [9, 123].

2. Comparison with Original Geons

The major distinction between parametric geons and the conventional geons of Bie-

derman is that the latter are de�ned in terms of certain speci�c attributes of volumetric

shapes, which do not provide global shape constraints. In contrast, parametric geons are

de�ned in terms of analytical equations, which do provide such constraints. In addition,

geons are described in strictly qualitative terms. However, parametric geon descriptions

simultaneously supply both qualitative and quantitative characterisations of object parts.

The geometrical di�erences between these two sets of primitives are given in Table 5.1.

Certain qualitative properties of the parametric geons are simpli�ed in comparison with

the original geons of Biederman. For example, an asymmetrical cross section is not used

in de�ning any of the parametric geons because of the symmetrical nature of superellipsoid

shapes. Biederman has also stated [16]:

Given that a convex volume is parsed from matching adjacent concavities, it

may not be necessary to assume geons with asymmetrical cross-sections ...

To my knowledge, there are no cases where basic level classi�cation requires
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3. THE OBJECTIVE FUNCTION

ATTRIBUTES PARAMETRIC GEONS GEONS

cross sectional shape symmetrical symmetrical, asymmetrical

cross sectional size constant, expanding constant, expanding,

expanding & contracting

combination either tapering both tapering

of properties or bending and bending

Table 5.1. Di�erence in qualitative properties between parametric geons and
Biederman's original geons.

the presence of an asymmetrical cross-section. This does not mean that a

component of an exemplar could not have an asymmetrical cross-section, but

that primal access need not depend on the preservation of this asymmetry in

the image.

The assumption that all parametric geons are symmetrical with respect to their major

axes is also consistent with the well-known human perceptual tendency toward phenomeno-

logical simplicity and regularity [59]. Symmetrical primitives have also been employed in

alternatives to the original geons discussed by other researchers [100, 40].

3. The Objective Function

The strategy for recovering parametric geons bears some resemblance to that for other

parametric primitives. That is, a �tting scheme is used to minimise an objective function

which measures some property di�erence between an object and a model [55, 74, 94, 123,

153]. The procedure for �tting parametric geons is formulated as a functional optimisation

(minimisation) problem as follows:

Problem 5.1. Given an objective function

E(a) : Rn ! R

having a 2 Rn as a model parameter set, �nd a particular set of model parameters a� 2 Rn

for which

E(a�) � E(a); for all a 6= a�:

Besides model �tting, there is an additional requirement for parametric geon recovery.

The process must also produce discriminative information such that the resultant metric
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data can be converted to a qualitative description. The objective functions studied pre-

viously by several researchers were neither intended nor used for this purpose. However,

the magnitude of �tting residuals has been used to guide volumetric segmentation [57]. To

identify individual qualitative shapes based on �tting residuals, we require that the values

of the objective function correctly reect the di�erence in size and shape between the object

data and the parametric models. When a model and an object are close to being the same

shape, the objective function should produce a small residual value. When a model is �tted

to another class of objects, this same objective function should give a large residual value.

Our objective function consists of two terms expressed as follows:

E = t1 + �t2(5.18)

The �rst term, t1, measures the distance between object data points and the model surface;

the second term, t2, measures the squared di�erence between the object and model normals.

� and  are parameters which controls the contribution of t2 made to the objective function.

When the model and object pose are the same, the intuitive interpretation of these two

terms corresponds to size and shape similarity, respectively. This is a modi�ed version of

the objective function proposed in [153]. We change the �rst term from an L2 norm to an

L1 norm in order to conduct an e�cient search (see Section 3.3). In addition, we employ

a di�erent weighting coe�cient for the second term to be able to discriminate the di�erent

objective function values.

3.1. The Distance Measure The �rst term of the objective function is given by

t1 =
1

N

NX
i=1

je(di; a)j(5.19)

Here N is the number of data points, fdi 2 R3; i = 1; :::; Ng is the set of data points

described in terms of the model coordinate system, and a is the vector of model parameters.

For the three regular primitives (ellipsoid, cylinder and cuboid), e(di; a) is de�ned as

the Euclidean distance from a data point to the model surface along a line passing through

the origin O of the model and the data point [55, 140] (see Figure 5.6). Let xs = ldi where

l is a scalar and xs is the model surface point on the line joining di and O. A is the distance

from di to O. Substituting xs into Equations (5.1), (5.2) and (5.3), we obtain

e(di; a) = A

�
1�

1

[g(di; a)]1=p

�
(5.20)
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Figure 5.6. De�ning the objective function. nm and nd are the model and data surface
normals, respectively . O is the origin of the model. A is the distance between a particular data
point and the centre of the model. xs is a point on the model surface. �i is the angle between a
model and object surface normals.

where

p =

(
2 for the ellipsoid;

20 for the cylinder and cuboid;

For tapered and curved primitives, the computation of e(di; a) can be formulated as

follows. Let e(di; a) = � and let

g(xs; a) = 0(5.21)

be the implicit equation of the model. We can also write (see Figure 5.6)

xs =
A � �

A
di:(5.22)

Substituting Equation (5.22) into Equation (5.21) we get

g(
A� �

A
di; a) = 0(5.23)

The problem is as follows: �nd the minimum value 1 of � � 0, such that Equation (5.23) is

satis�ed. Since tapering or bending signi�cantly complicates the implicit equations of the

deformed primitives, we cannot obtain a closed-form solution for � or e(di; a), as was done in

Equation (5.20). Thus an iterative method would be indicated. However, objective function

evaluation is the largest computational component of the model recovery procedure. Hence,

for the sake of simplicity, we compute an approximate distance measure for the tapered and

1There are at least two intersections of the model surface and the line joining O and di. � is the distance from
di to the closest intersection.
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Figure 5.7. The cylinders on the right in (a) and (b) are obtained by applying inverse tapering

and bending transformations to the left tapered and curved cylinder, respectively. e(d0i;a) is the

Euclidean distance along a line Od0i in the inverse transformed case.

curved models. No iteration is required. First, we apply an inverse tapering (see (5.5)) or

bending transformation (see (5.9)) to both the data and the model in order to obtain the

transformed data d0i as shown in Figures 5.7; this gives either a regular cuboid or regular

cylinder. Second, we use (5.20) to compute the distance from the transformed data point

d0i to the transformed model surface along a line passing through d0i and the model origin

O. We interpret e(d0i; a) as the approximation of the distance along a line from di to the

model surface. Although this approximation creates a small error in the distance measure,

it tremendously speeds up computation. Another advantage of this approximation is that

one can still use the same Equation (5.20) in the case of regular primitives and replace the
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plane
supporting

object

surface
invisible best

model
underestimated
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Figure 5.8. Since data on the bottom surface is not available due to occlusion, two models
- the best model and the overestimated model - could be �t to the data equally well without
employing . If  is used, the underestimated model causes both terms in the objective function
to be large, while the overestimated model causes the second term to be large. The best model
results in the smallest residual value of the objective function.

function g[di; a] with that of deformed primitives. We note that the objective function used

in [123] does not have this problem; however, it is not a true distance measure [55].

3.2. The Normal Measure We de�ne the second term (t2) of the objective function

by measuring a squared di�erence between the surface normal vectors nd of objects and the

surface normal vectors nm of models at each corresponding position, de�ned in the same

way as in the �rst term (see Figure 5.6):

t2 =
1

N

NX
i=1

en(i)(5.24)

Here N is the number of data points and

en(i) = knd(i)� nm(i)k
2 :(5.25)

The nd are computed from range image data and nm are computed based on methods

described in Section 1.2.

In (5.18),  = (ax + ay + az)=3, which makes the second term adapt to the size of the

parametric geons, and ax; ay and az are model size parameters. The units for the �rst term

of the objective function is millimetres but t2 is the average of di�erences of unit normals.

When multiplied by , t2 has the same units as the �rst term. This factor also forces the

selection of a model with a smaller size if object data are �t equally well by a model with

di�erent parameter sets. This can occur when the data on the bottom surface of an object

cannot be obtained. Figure 5.8 demonstrates that the overestimated model and the best

model can produce the same residual value of t2. By multiplying , the model having the

smaller  gives a smaller residual than the overestimated model. However, the size of the
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model is prevented from being arbitrarily small since the value of the objective function

increases if the the model size is smaller than the object size. This feature is similar to that

of the volume factor used in superellipsoid recovery [123, 153].

In (5.18), the weighting constant �, controls the contribution of the second term to the

objective function. It is very di�cult to determine this parameter on the basis of speci�ed

principles. If it is chosen too small, the second term, t2, will almost not make its contribution

to the objective function. If it is chosen too large, t2 will dominate the objective function.

In this case, the �tting procedure cannot obtain accurate size parameters because t2 is

independent of the model size. Yokoya et al. arbitrarily chose � = 1 for their two-term

objective function [153]. We would like the value selected for � to permit the model �tting

procedure to produce the most discriminative residuals. Since the objects may possess

arbitrary shapes, there seems to be no general rule for selecting �. Based on the ideal shape

comparisions between certain models, we use � = 5 [144].

3.3. Biasing the Objective Function with Di�erent Norms We have suggested

an L1 norm in (5.19) and L2 norm in (5.25) to measure di�erences in distance and orienta-

tion, respectively. It is known [58] that the sensitivity of an L2 norm gradually increases. In

other words, this norm is insensitive to small values of the objective function and becomes

sensitive to outliers. On the other hand, the sensitivity of an L1 norm is the same for

all residual values. When the shape types or the pose of the objects and models are very

di�erent, the data which are far from the model surface can be viewed as outliers. Thus,

the �rst term with its L1 norm makes a much smaller contribution to the objective function

than it would an L2 norm. In this case, the second term, in the form of the L2 norm, is

very large and dominates the objective function. With the objective function de�ned in

this way, we can achieve e�cient model recovery which will be discussed in Section 5.

4. Minimising the Objective Function

4.1. Optimisation Technique The procedure for �tting parametric geons is a search

for a particular set of parameters ~a, which minimises the objective function in (5.18). This

function has a few deep and many shallow local minima indicated in Figure 5.9. The

deep local minima are caused by an inappropriate tapering, bending or rotation parame-

ters of the model. The shallow minima are caused by noise and minor changes in object

shape. In order to obtain the best �t of a model to an object, we need to �nd model

parameters corresponding to the global minimum of the objective function. To accomplish

this, we employ a stochastic optimisation technique, Very Fast Simulated Re-annealing
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Figure 5.9. The logarithm of the objective function in terms of two rotation parameters. The
actual parameter space is in from nine to eleven dimensions.

(VFSR) [66]. Motivated by an analogy to the statistical mechanics of annealing in solids,

the simulated annealing technique uses a \temperature cooling" operation for non-physical

optimisation problems, thereby transforming a poor solution into a highly optimised, de-

sirable solution[71]. The salient feature of this approach is that it statistically �nds a

global optimal solution. VFSR uses an annealing schedule which decreases exponentially,

making it much faster than traditional (Boltzmann) annealing [71], where the annealing

schedule decreases logarithmly. The re-annealing property permits adaptation to changing

sensitivities in the multidimensional parameter space. Using VFSR, we can reliably and

e�ciently obtain parameters which describe the best �t between models and data based on

our objective function.

Some researchers have used a nonlinear least squares minimisation (Levenberg- Mar-

quardt) method, adding random walks to escape local minima [55, 123, 131]. This is

similar to simulated annealing but with an extremely fast annealing schedule. In some

cases, where the properties of the objective functions are known or a good initial param-

eter estimation can be obtained, this approach will usually take much less time than the

general global optimisation methods. However, using an inappropriate initial guess with

an extremely fast annealing schedule may trap the algorithm at a local minimum. This is

because global convergence cannot be assured. with VFSR, only a coarse range is needed

for each parameter. In addition, methods which require a good initial estimate must also
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parameter lower bound upper bound

ax l=2 L=2

ay l=2 L=2

az l=2 L=2

tx cx � d cx + d

ty cy � d cy + d

tz cz � d cz + d

rx �� �

ry �� �

rz �� �

kx 0 1

ky 0 1

� 0 2=h

Table 5.2. Parameter constraints.

assume that bending and tapering deformation takes place along only the longest side [123].

This assumption restricts the object shapes to be recovered. By using a global optimisa-

tion method, we do not necessarily need to impose this constraint. Therefore, volumetric

primitive models can be recovered from more shapes.

A classical simulated annealing algorithm [71] has been used for parametric model

�tting [153]. However, this algorithm is too slow because it decreases temperature loga-

rithmically. The algorithm VFSR we used decreases temperature exponentially and is much

faster than the classical simulated annealing.

4.2. Determining the Parameter Space For any optimisation problem, the range

of the parameters de�ning the objective function must be known beforehand. Constraints

for a total of 12 parameters are speci�ed as shown in Table 5.2. In order determine the

range of the size parameters, ax; ay; az , we have calculated a rectangular region in 3D space

bounded by maximum and minimum x; y; z coordinates fXmax; Xmin; Ymax; Ymin; Zmax;

Zming of range data shown in Figure 5.10. The maximum dimension in this space is

L =
p
(Xmax �Xmin)2 + (Ymax � Ymin)2 + (Zmax � Zmin)2(5.26)

l > 0 is the minimum possible length of objects. The centroid (cx; cy; cz) of the data set

is calculated to estimate the translation parameters, tx; ty ; tz. d is the deviation from the
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Figure 5.10. A cylindrical part enclosed by a rectangular region in 3D space which is used
for estimating the range of the size parameters.

centroid. l and d are free parameters set according to a priori knowledge. Since the upper

bound of the bending curvature � can be set to the inverse of the minimum possible radius,

we select h = min(Xmax �Xmin; Ymax � Ymin; Zmax � Zmin) as the minimum diameter of

the bent sector. Thus h=2 is the minimum possible radius. Rotation parameters, rx; ry and

rz are set to the range of [0; 2�). Tapering parameters, kx; ky, are set to their valid range

(see Section 1.2.2).

4.3. Stopping Conditions A practical issue in using simulated annealing is to select

an appropriate condition for stopping the process. The parameter search procedure, done

with VFSR, stops when any of the following conditions is reached.

(i) Smallest temperature value.

(ii) Minimum value of the objective function.

(iii) Maximum number of times sampling the same point.

(iv) Maximum number of times of state acceptance.

(v) Maximum number of evaluations of the objective function.

(vi) Approximate relative di�erence between two objective function values.

All parameter values are given in Chapter 6.

5. Discussion

In Section 3.2, we de�ned the objective function as a sum of a distance measure (t1)

and a normal measure (t2) in terms of L1 and L2 norms, respectively. In Section 3.3, we
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indicated that the L1 norm is less sensitive to outliers than the L2 norm. It is also known

that the absolute size of a model is independent of the measurement of the di�erences

between normals. These properties can be used to construct an e�cient parameter search

during model �tting. E�ectively, the procedure automatically endeavours to compute the

correct result in what amounts to two successive `stages'. In the �rst `stage', when the �tting

procedure begins, the models and objects are not well aligned, so most of the data can be

viewed as outliers. Thus the second term is much larger than the �rst, thereby dominating

the search. Obviously the exact size of the model has little e�ect on the second term. Hence,

the actual search space mainly involves transformation and deformation parameters, as well

as the ratio of the size parameters. Clearly, this search space will be smaller than the entire

parameter space. As the �tting procedure progresses, the position, orientation and shape

of the model will approach that of the object. Now the contribution of the second term

gradually decreases and the �rst term becomes progressively `larger'. When the value of the

�rst term is similar to that of the second, the search enters the second `stage' in which both

terms will contribute equally to the objective function, and the search space becomes the

full parameter space. Thus a search in full parameter space without good initial estimations

is e�ectively achieved by a `subspace' search followed by a full-space search with good initial

estimates of transformation parameters, as shown in Figure 5.11.

Yokoya et al. have proposed a di�erent two-term objective function [153], in which the

�rst term is an L2 norm. Accordingly, this term will contribute signi�cantly to the objective

function right from the beginning of the parameter search. Since this term depends on all

of the model parameters, this method conducts a full-space search throughout the whole

procedure. Therefore, their objective function is less e�cient than ours.

6. Chapter Summary

This chapter describes an approach to qualitative volumetric shape representation by

approximating object parts with minor shape variations by a �nite set of primitives. We have

proposed a new set of volumetric primitives, parametric geons, founded on the basic forms

of sculpture and globally-deformed superellipsoids. Parametric geons provide distinctive

qualitative shape classes as well as quantitative size and deformation information required

for object recognition. The models impose constraints which facilitate shape approximation

in the qualitative shape recovery process.

We have proposed an approach to recover parametric geon models from range data.

An objective function involving a measure of distance and normal di�erences, and global
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Figure 5.11. Values of distance measures (t1) and normal measures (�t1) vs number of
decrements in the objective function. The curves show the convergence of the distance measure
t1 and the normal measure �t2 as they change during the search. The solid line indicates values
of the distance measure. The dotted line gives values for the normal measure. The dashed line
presents the values of the complete objective function. These curves were obtained when a curved
cylinder model was �t to data from the same type of object.

optimisation (VFSR) are all used to �t models to the data. The combination of the L1

and L2 norms in the objective function permits an e�cient and hierarchical search of the

model parameters resulting in more discriminative �tting residuals. The best model is

selected based on the minimum �tting residual. The VFSR works very e�ciently by allowing

temperature decrease exponentially while the classical simulated annealing can only decrease

temperature logarithmically to ensure the statistic global convergence. The experimental

results will be reported in the next chapter.
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CHAPTER 6

Experiments

In previous chapters we presented the motivation and techniques for computing part-based

representations of 3D objects. In this chapter, we will provide experimental results to

demonstrate the various aspects of the algorithms.

Section 1 describes the experimental setup, including the laser range�nder, data acqui-

sition and computer facilities. Section 2 explains the user-de�ned parameters required for

our algorithms. Section 3 presents the results of the charge density computation. In order

to illustrate some characteristics of the charge density distribution clearly, we also show

its distribution over a 2D contour. Section 4 presents the results of object segmentation.

Section 5 gives the experimental results of part identi�cation. Di�erent aspects of model

recovery are investigated in this section. A chapter summary is provided in the last section.

1. Data Acquisition

Multiview and single-view range data were used throughout all of the experiments.

Acquisition of the range images was accomplished using a NRC/McGill laser range�nder

which scanned objects supported by a turntable. The objects were placed from 30cm to

60cm from the range�nder. Simple thresholding was used to remove the background data.

This threshold was determined o�-line by a calibration of the 3D workspace. For multiview

range data, four views were obtained for each object. View transformation parameters were

initially computed based on a calibration between the range�nder coordinate system, and

the turntable coordinate system and then re�ned by a method described in [25]. With

these parameters, our method transformed the range data in each range�nder coordinate

system into a world coordinate system and redundant data which could be seen from more

than one view were removed. The approach used for data transformation and redundant

data deletion is described in Appendix B. Figure 6.1 shows the range images obtained from
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2. PARAMETER SPECIFICATIONS

(c)

(a)

(b)

Figure 6.1. Multiview integration. (a) Four images of a curved wooden cuboid taken from
di�erent viewpoints. (b) Range data in each view after redundant data are removed. (c) Range
data viewed in the four directions around a horizontal axis after merging the four data sets in (b).

four viewpoints, the range data after most redundant data are removed, and the range data

integrated into the world coordinate system.

Objects used in experiments include machine-made wooden objects, carved stone ob-

jects, toy bowling pins and bananas. Beside the data we acquired in our laboratory, some

data were also obtained from the GRASP Lab at the University Pennsylvania, the PRIP Lab

at Michigan State University, and InnovMetric Software Inc.. All programs were written in

C or C++ and were run on SPARC-10 or SGI R4000 and R8000 workstations.

2. Parameter Speci�cations

In this section, we list all user-de�ned parameters, some of which are data dependent

and may not work in all circumstances.

(i) Total charge Q: Q = 1000. This parameter sets the total charge on a conducting

object in Equation (4.12). Since we are interested in the simulated charge density,

this parameter is data-independent.
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3. CHARGE DENSITY DISTRIBUTION

(ii) Separation between top and bottom patches: 20% of the maximum range of

data in the Z direction. This parameter, which is de�ned in Equation (C.2), sets

the position of the bottom patch of a triangular mesh when triangulating single-view

range data. The larger its value, the more triangles are created and the longer the

charge density computation will be. Although changing the parameter a�ects the

charge distribution on the visible surface, it has little e�ect on the ultimate position

of the extrema of the charge density. Therefore, the segmentation results are not

sensitive to this parameter.

(iii) The charge density for determining a part boundary, �t: 120% of the min-

imum charge density over the object surface. This parameter, which is used in

Algorithm 4.3, determines when an object should not be decomposed any further.

Its selection depends on a priori knowledge of the surface concavity.

(iv) Weighting factor � in the objective function: � = 5. This parameter, which

occurs in Equation (5.18), sets the contribution of the second term to the objective

function. It depends on the similarities between the parametric geon shapes.

(v) Maximum number of objective function evaluations in VFSR: 10,000. This

parameter sets the maximum number of objective function evaluations performed

by the global optimisation algorithm, VFSR. The higher this number, the longer the

algorithm runs and the more accurate the model parameters.

(vi) Relative di�erence between two objective function values: 0.003. This

parameter is one of the stopping conditions for VFSR (see Section 4.3). It is de�ned

as

ObjectiveFunction(i� STEP )� ObjectiveFunction(i)

ObjectiveFunction(i� STEP )

Here i is the decrement index of the objective function. STEP is the number of

times an objective function value is lower than all previous values, as shown in

Figure 6.2. We set STEP = 10. This parameter reects the coarse slope of the

objective function. The larger its value, the less time the �tting procedure will take,

the less accurate the model parameters.

3. Charge Density Distribution

The results of the charge density distribution are presented in this section. In order to

explain the behaviour of charge density distributions in a convenient way we �rst discuss

the algorithm by computing the charge density distribution for 2D objects.
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Figure 6.2. The decrement (STEP ) of the objective function. The black dots represent the
samples of the objective function. The �gures beside the dots indicate the number of the decre-
ments starting at the (i� STEP )th evaluation.

3.1. 2D Case

3.1.1. Method The algorithm for a 2D shape is slightly di�erent from the 3D case.

The physical model we have used is the charge density distribution on a 2D contour. To do

this, we examine an in�nitely long charged conductor having this 2D contour as a constant

cross-section, as shown in Figure 6.3. Since the cross-sections have constant size and are

parallel to each other, the charge density distribution is the same at any plane along the

in�nitely long conductor. The charge on the contour is treated as line of charge, that is, a

uniformly charged in�nitely long line perpendicular to the cross section. We have developed

the algorithm for computing the 2D charge density distribution [150].

Since a contour in an image is composed of a sequence of pixel points, a polygonal

approximation can be formed automatically by linking all consecutive pixels on the contour

by line segments. This is di�erent from the 3D case where a triangular mesh is constructed.

The middle point of each segment is selected as the observation point. The actual charge

density on each contour pixel is computed by taking the average of the charge densities at

the observation points, on each side of this pixel along the contour.

3.1.2. Using Synthetic Data First, we tested our algorithm using a perfect ellipse to

verify its correctness:

r(�) = d=(cos2 � + d2 sin2 �)1=2(6.1)
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line of charge

infinitely long conductor

constant
cross section

Figure 6.3. Con�guration of charged 2D contours. The 2D charge density distribution is
computed along a cross section of the in�nitely long conductor. The thin vertical line indicates
the line of charge.

Here d is the ratio of the major to minor axes of the ellipse. The discrete data are generated

by sampling the variable � 2 [0; 2�] at N points. Here N = 360:We compared the result to

the analytical expression for the charge density along an ellipse, known to be proportional

to [111]:

�(�) =

�
cos2 � + d2 sin2 �

cos2 � + d4 sin2 �

�1=2

(2�)�1(6.2)

Figure 6.4 contrasts the computed (solid curve) and theoretical charge density distri-

butions (dashed curve). It can be seen that the two curves are very similar. We also note

that there exist two other algorithms in the physics literature for 2D charge density com-

putation [108, 111]. Since both have ignored the potential produced at the observation

point, we have found them not to be as accurate as the method proposed here. In addition,

we speed up the computation by evaluating the line integral1 analytically while they do this

numerically.

Next we show results from two other contours of analytical functions, the hypocycloid

and the generalised epicycloid, containing either sharp convexities or concavities. Figure 6.5

shows that the charge density is very high at the sharp convexities and is close to 0 at

the sharp concavities. Figure 6.5 also reveals that the charge density curve is sharper at

convexities than concavities. This suggests that the charge density is more sensitive to the

convexities than concavities.

1In the 2D case, the integration domain is a line segment rather than a planar triangle.
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Figure 6.4. The theoretical (dashed line) and computed(solid line) charge density distributions
along the contour of an ellipse. Both curves are normalised by their maximum values.

3.1.3. Using Real Data For data obtained from a real image, the actual contour is

distorted by the image sampling process. Therefore, the high frequency noise contaminates

the contour (see Figure 6.6 (a)) and also the computed charge density distribution (see

Figure 6.6 (b)). However, we note that the noise a�ects the computation of the charge

density distribution much less than it would a curvature computation.

Let us examine this hypothesis. In a similar fashion to computing the incremental

curvature [50], we approximate the curvature of a contour based on the changing rate of

the discrete tangent at a point on the contour. The increment is 1. A comparison of noise

sensitivity between the charge density and the curvature for the object contour in Figure 6.6

(a) is given in Figure 6.7. We show the charge density distribution in the left column and the

curvature distribution in the right column. Without any smoothing operation, all corners

on the contour can be indicated by the charge density distribution (see Figure 6.7 (a)) but

the concave corners are poorly indicated by the curvature distribution (see Figure 6.7 (f)).

Next we applied lowpass �ltering to the discrete Fourier transform of the polygon data to

remove the high frequency components. The amount of smoothing was increased from 1%

to 4% energy from the largest component. The results are shown in the rest of �gures. It is

clearly seen that the charge density computation is more robust to noise than the curvature

computation.
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Figure 6.5. The charge density distribution along analytical contours. The arc length is
referenced to the right most point. (a) A contour with sharp convexities and the charge density
distribution along the contour. (b) A contour with sharp concavities and the charge density
distributionalong the contour. It can be seen that the charge density curve is sharper at convexities
than concavities.
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Figure 6.6. E�ect of a noisy contour. (a) The smooth contour in an image is distorted by
the image sampling process. (b) The charge density distribution along the contour given in (a).

In distinction to a local shape computation, such as curvature, the signi�cance of the

charge density distribution is its ability to reveal both �ne and gross shape information. We

demonstrate this with the following two examples. Figure 6.8 (a) illustrates a dumbbell-

like object with wiggles superimposed. The gray levels indicate charge densities, which

are normalised to the range between 20 (darkest intensity) and 255 (white). The object

contains two kinds of structures. They are: (1) the �ne structure, which is represented by

small wiggles and (2) the gross structure, which is delineated by the two major components

of the dumbbell. Figure 6.8 (b) shows the charge density distribution along the arc length

of this object. This curve simultaneously indicates the �ne and gross structures of the

contour. The dashed line depicts the two gross components de�ned by the envelop of the

charge density distribution. However, the incremental curvature of the contour only denotes

the �ne structure, as shown in Figure 6.8 (c).
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Figure 6.7. Comparison between charge density and curvature computations. The left and
right columns show the charge density and curvature distributions, respectively. In the �rst row,
no smoothing is applied. In the rest of rows, we have applied lowpass �ltering to the Fourier
components of the contour by removing from 1% to 4% of the energy in the largest Fourier
component. At each level of smoothing, the charge density computation is more robust to high
frequency noise than the curvature computation.
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Figure 6.8. Fine and gross features. (a) The charge density for a dumbbell object with wiggles
superimposed. The brightest and darkest intensities indicate the maximum and minimum charge
densities, respectively. (b) The charge density distribution over the contour in (a). The arc length
is referenced at the highest pixel on the contour and goes counterclockwise. The frequent peaks
indicate small wiggles on the contour. The two peaks of the envelope (the dashed line) of the curve
denote the two major parts of the dumbbell. (c) The incremental curvature distribution along the
contour in (a). In this computation, the smoothing factor was chosen to be 2% and the increment
for the curvature computation was equal to 1.

In another example, Figure 6.9 shows (a) the charge density on the object contour and

(b) the charge density distribution along the arc length. We observe that the peaks and

valleys in the charge density distribution can indicate not only the convexity and concavity

of the contour shape but also the signi�cance of protrusive parts. For example, the higher

the charge density, the larger the part protrusion. We note that these are consistent with

human intuition. However, the incremental curvature is not able to do so, as shown in

Figure 6.9 (c).

To summarise, we have demonstrated in the 2D case that the charge density compu-

tation is less sensitive to high frequency noise than the curvature computation. Therefore,
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Figure 6.9. The charge density distribution on an image contour. (a) an object contour
superimposed by the charge density distribution. (b) The charge density distribution along the
arclength of the contour. The height of peaks indicate the signi�cances of object parts. (c) The
incremental curvature along the contour. In the computation, the smoothing factor is 2% and the
increment for the curvature computation is 1.

detection of part boundaries using the charge density distribution is more robust than us-

ing curvature. Moreover, the charge density can reveal shape information at both �ne and

gross scales. It can also indicate the signi�cance of parts. These features have not been

demonstrated by any previous approach.

3.2. 3D Case In this section, we will show experimental results of the charge density

computation for surfaces of 3D objects. The �rst object is a vase, consisting of sphere and

a cylinder. The raw range image (sphere+cylinder.Z) originated from the PRIP Lab at
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(a) (b)

Figure 6.10. Charge density for a vase. (a) The triangularmesh tessellation; (b) the computed
charge density distribution.

Michigan State University. The mesh data for the object, shown in Figure 6.10 (a), were

obtained by a deformable model �tting algorithm developed by D. Decarlo and D. Metaxas

at the University of Pennsylvania [35]. Figure 6.10 (b) gives the computed charge density

distribution over the object surface. The gray levels indicate charge densities, which are

normalised to the range between 0 (darkest intensity) and 250 (white). It can be clearly

seen that the lowest charge densities are located at surface concavities, which are at the

intersection of the spherical and cylindrical portions of the object. Conversely, since the

edge on the top of the object is sharply convex, the charge density at these points reaches

a maximum.

The second 3D object is a toy bowling pin. The range data were obtained by multiview

integration, as described in Appendix B. The triangular mesh of the object in Figure 6.11

(a) was computed in the same way as the previous object. Figure 6.11 (b) shows the

simulated charge density distribution. Again the charge density easily distinguishes between

the locations of the deep surface concavities and convexities.

The third 3D object is a toy elephant. Multiview data were obtained from InnovMetric

Software Inc. who also computed the tessellation [128], shown in Figure 6.12 (a). Fig-

ure 6.12 (b) shows the computed charge density distribution. Although the shape of the

elephant is very complex, our method successfully indicates, by the bright gray levels, the

protrusions caused by the legs, nose, ears and teeth of the elephant. The charge density also

reveals the concave portions around the neck and between the legs (as dark gray levels).

So far we have illustrated the charge density distributions using triangular meshes,

which model the complete 3D shape of the objects. Next we will show experimental results

91



4. OBJECT DECOMPOSITION

(a) (b)

Figure 6.11. Charge density for the bowling pin. (a) The triangular mesh tessellation. (b)
The computed charge density distribution.

obtained from single-view range data. In this case, since only partial shape information is

available, we construct a closed triangular mesh for the purpose of computation.

Figure 6.13 (a) shows the triangular mesh of the visible surface of a carved stone owl

and (b) shows the computed charge density distribution over its surface. Figure 6.14 (a)

illustrates the triangular mesh of the visible surface of a clock with two ringers on the top

and (b) shows the computed charge density distribution over this surface. In both examples,

dark and bright regions indicate surface concavity and convexity, respectively. Although

only partial shape information of the complete objects are available in these experiments

and the construction of the closed triangular meshes is rather arbitrary, our algorithm can

still produce the desired results for the visible surfaces. The shape of the invisible portions

of the object do actually a�ect the absolute values of the charge density distribution on the

visible surfaces. However, the relative values of the high and low charge densities almost

remain the same. We note that the size of triangles is not crucial to the charge density

computation. During the experiments, we observed that even with a ratio of maximum to

minimum triangle areas of about 200, our algorithm still produced satisfactory results.

For the bowling pin, which consists of 864 triangles, the charge density computation

takes 80 seconds on a SGI-R8000 workstation. The complexity of this computation of is

O(N2). N is the number of triangles in the triangular mesh.

4. Object Decomposition

Given that the charge density distributions shown in Section 3.2, our algorithm de-

composes an object into parts by locating and then deleting triangles on part boundaries.

Examples are given in Figure 6.15. The bowling pin and the vase are segmented into two
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(a)

(b)

Figure 6.12. A toy elephant. (a) The triangular tessellation. (b) The charge density distribution.

parts. The owl and the clock were segmented into three parts. These results are consistent

with our intuition of object parts.

We note two issues regarding part segmentation. The �rst concerns the criterion for part

decomposition. We have claimed that low charge density indicates part boundary points.

The question is: How low should the charge density be to indicate a part boundary? In

fact, it appears that, for human beings, there is no universal criterion for determining parts.

It always depends on personal experience and preferences. Thus, it is also reasonable for

users to set a threshold for the value of the low charge density. In order to determine a
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(a) (b)

Figure 6.13. An owl sensed in a single view. (a) The triangular tessellation on the visible
surface. (b) The charge density distribution.

(a) (b)

Figure 6.14. An alarm clock with two bells on top sensed in a single frontal view. (a) The
triangular tessellation for the visible surface. (b) The charge density distribution.

threshold, one must know the absolute or relative depth of a concavity that forms a part

boundary. We know that the charge density is not a pure local shape measure and therefore

cannot provide absolute information. Hence, this threshold must be determined by relative

information, originating from a priori knowledge of the surface concavity.

The second issue is related to the assumption about object shape. Although the

transversality principle states that when two objects interpenetrate they intersect transver-

sally with probability one [11], a surface concavity does not always appear for all objects.
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(a) (b)

(c) (d)

Figure 6.15. Results of part segmentation. (a) and (b) show the segmented parts of objects
tessellated by a model �tting technique, which uses multiview data. (c) and (d) show the segmented
parts of objects tessellated by a local triangulation technique, which takes single-view range data.

We stated in Chapter 3 that the part boundaries of objects segmented by this method must

be delimited by a closed contour of surface concave points. This ensures that a part can

be completely separated from the rest of the object. Here we show an example where the

part segmentation assumption is violated. Figure 6.16 (a) illustrates the segmentation of

the elephant. Although one can see some intuitive parts, such as nose, four legs and ears,

etc., only the left front leg is separated from the object by our segmentation method. This

occurs because that the part boundaries are not delineated by a closed contour of deep

surface concave points.

Nevertheless, using a di�erent decomposition strategy may produce a better segmen-

tation. Figure 6.16 (b) shows the result obtained by simple thresholding. This method
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(a)

(b)

Figure 6.16. The segmented result for the elephant. (a) shows the segmentation obtained by
the part boundary tracing method. (b) shows the segmentation obtained by thresholding.

extracts these triangles that are located on protrusive parts. The charge density values

on these triangles are greater than the selected threshold. We can see that all protrusive

parts have been found, although they are not complete. This example again shows that the

charge density is a good indicator for protrusive parts.

5. Part Identi�cation

In the previous section, we presented the experimental results for object segmentation

into parts. The next stage of our system derives a parametric geon model for the seg-

mented part. The task is performed by �tting all models to the part data and selecting
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the best model based on the minimum �tting residual. In this section, we will discuss some

experimental results and investigate the following issues:

(i) The e�ciency of the objective function for model �tting

(ii) The discriminative properties of parametric geons

(iii) The e�ect of object shape imperfection

(iv) The importance of multiview data for shape approximation

We are interested in examining the residual di�erences for all of the models, especially when

object data contain noise and object shapes do not exactly conform to the parametric geons.

The inputs in the experiments are single-view and multiview 3D data of single-part objects

and segmented parts. Part model recovery requires the data points and surface normals.

Since each segmented part is represented in terms of a set of triangles, we use the centroids

and orientations of all triangles as the data points and normals, respectively.

The execution time varied according to the data, models and stopping conditions. The

approximate average time taken for obtaining acceptable �tting results was around 3 min-

utes on an SGI(Personal Iris) R4000 workstation. However, to achieve very accurate model

parameters, the computation could require about two hours for most complex parametric

geon shapes, i.e. tapered and curved models. The relative error of the objective function

residuals produced is less than 5%.

5.1. Using Range Data of Geon-like Objects In this experiment, we matched

each parametric geon model to multiview range data of seven machine-made wooden objects

and examined the �tting residuals. Since they are single-part objects, no segmentation is

needed. The shape of each object was similar to one of the parametric geons. Four views

were used to collect the range images. Surface normals were computed by a least squares

�tting method. After multiview integration, these dense 3D data were subsampled at a

50 : 1 sampling rate for parametric geon recovery.

Table 6.1 shows that the residuals obtained by �tting models to their own object type

are much smaller than those obtained by �tting to other object types. Thus the seven

selected parametric geons are seen to be very discriminative. The types of objects used

are listed in the �rst column. The bold �gures on the diagonal are the residuals given by

�tting a model to its own type of data. The underlined �gures are residuals produced by

�tting tapered and curved models to a cylinder or a cuboid. When this is done, kx; ky, or

� take values which are very close to 0. Thus, the data from the deformed models can be

very nicely characterised by the non-deformed models (regular cylinder or cuboid). If two

residuals are very close and much smaller than the others, the algorithm arbitrarily selects
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MODELS

OBJECTS 1 2 3 4 5 6 7

1 1.206 12.075 19.368 16.511 26.449 14.512 24.162

2 22.535 0.7968 12.976 0:864 12.834 0:871 14.432

3 36.156 17.819 1.313 28.707 1:327 17.807 1:338

4 17.993 20.740 27.190 2.339 15.203 17.625 25.740

5 34.276 28.241 14.256 20.156 1.667 28.228 14.242

6 24.153 21.986 22.148 21.197 47.987 3.300 22.197

7 34.209 29.887 23.213 25.130 16.291 14.341 2.949

Table 6.1. Fitting models to range data of geon-like objects. Items in each row are the
residuals from �tting di�erent models to the data of a particular object, as listed in the �rst
column. The numbers from 1 to 7 denote ellipsoid, cylinder, cuboid, tapered cylinder, tapered
cuboid, curved cylinder and curved cuboid, respectively. The bold �gures denote the residuals
from �tting a model to its own object type. The underlined �gures are the residuals from �tting
tapered or curved models to a regular cylinder or cuboid.

the simplest of the two shapes. Figure 6.17 shows the results of �tting the seven parametric

geons to the range data of a curved cuboid. The lighter shaded volumes are the models

obtained by the �tting procedure and the darker sparse spots indicate the input data. (a)

through (g) illustrate models of the ellipsoid, the cylinder, the cuboid, the tapered cylinder,

the tapered cuboid, the curved cylinder and the curved cuboid superimposed on the 3D

data, respectively. We indicate the residuals at the top left corner in each image. The

algorithm selected the curved cuboid shown in (g) as the best model for the wooden object.

This result is consistent with our expectations.

5.2. Using Range Data of Imperfect Geon-like Objects The purpose of this

experiment was to examine the uniqueness of shape approximations using parametric geons

when given multiview data of a set of single-part objects whose shapes varied. In this case,

eleven real bananas were taken as the objects. Figure 6.18 shows four of the bananas used

in the experiments. Their shapes cannot be exactly depicted by any of the parametric

geons. The apparently noisy surfaces of the bananas shown in the �gure were due to the

range�nder's sampling error. This was because the bananas had to be placed relatively far

from the range�nder in order for them to �t within its scanning �eld-of-view.

Figure 6.19 shows the results of �tting the seven parametric geons to the 3D data of

a particular banana. The algorithm selected the curved cylinder shown in (f) as the best

model. The numbers at the top left corner in each image indicate the �tting residuals.
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30.735

2.818

16.29123.213 21.595

(b)

(g)

(a)

(d)(c) (e)

26.664

(f)

14.341

Figure 6.17. Fitted models superimposed on range data of a curved cuboid. As expected
the curved cuboid in (g) yielded the minimum �tting residual. The values of �tting residuals are
indicated at the top left corner in each image.

Clearly this result is consistent with our intuition of the banana's actual shape. Table 6.2

gives the average, maximum and minimum �tting residuals for all of the bananas. Since

these are all of di�erent size, we cannot make an absolute comparison of the �tting resid-

uals. Thus, each residual was normalised by the minimum residual among those obtained

for the same banana. The results show that the best model for all of the bananas is the

curved cylinder, which gives the smallest average residual value. The results of parametric
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Figure 6.18. Four bananas used in the experiments.

MODELS

1 2 3 4 5 6 7

Mean

residual 3.255 2.889 3.851 3.324 3.611 1.000 2.987

Maximum

residual 4.001 3.489 4.717 5.018 4.328 1.000 3.802

Minimum

residual 2.656 2.458 3.102 2.464 3.073 1.000 2.385

Table 6.2. Results of �tting di�erent models to range data of eleven bananas. The models
are numbered in the same way as Table 6.1.

geon �tting can be also appreciated from Figure 6.20. The circles linked by dotted lines

correspond to residuals from one particular set of data. In order to show the di�erences

in the residuals clearly, they were normalised by the minimum residuals obtained for each

banana. One can see that all minimum residuals are signi�cantly lower than others. There-

fore, the parametric geon models and recovery procedure demonstrate robust behaviour and

uniquely represent the di�erent banana shapes.

5.3. Comparing Di�erent Objective Functions In this experiment, we recov-

ered parametric geons from the same eleven bananas using just t1 (see Equation (5.19) in

Chapter 5) as the objective function for �tting. This objective function measures the sum of
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38.229

(d)38.229

42.822

(a)

37.87641.395

42.822 41.395(e)

39.840

(b)

(c)

(g)(f)

11.397 40.727

Figure 6.19. Fitted models superimposed on the range data obtained from a banana.

the spatial distances from the data points to the model surface along a line passing through

a datum and the model centre. It has been shown to have a signi�cant advantage over some

others as an objective function for superellipsoid �tting [55]. Although our 3D data were

obtained from multiple views, the data at the bottom of the bananas were still missing, a
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Figure 6.20. Fitting residuals obtained using eleven bananas. The horizontal axis represents
each individual parametric geon model (1-ellipsoid, 2-cylinder, 3-cuboid, 4-tapered cylinder, 5-
tapered cuboid, 6-curved cylinder, 7-curved cuboid). Circles connected by a dotted line correspond
to residuals obtained from one set of data. All residuals are normalised by the minimum residuals.
The objective function in Equation(5.18) was used.

0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

model types

fi
tti

ng
 r

es
id

ua
ls

Figure 6.21. Fitting residuals obtained using a di�erent objective function with eleven ba-
nanas. All residuals are normalised by the minimum residuals. In the objective function, only
weighted t1 is used.

situation which would cause the model size to be underconstrained. Thus we multiply t1

by a size factor . The e�ect is same as that of  presented in Section 3.2, Chapter 5.
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Figure 6.21 shows the �tting residuals obtained using the weighted t1 with eleven

bananas. Although this simpli�ed objective function actually produces the correct shape

type, the minimum residuals are not signi�cantly lower than the others. In addition, for

some data sets the algorithm required many more evaluations to �nd the global minimum

than the objective function proposed in this paper. The latter shows superior performance

because the component due to the normal measure makes the global minimum deeper, as

indicated in Figure 6.20). This facilitates global optimisation and makes the �tting residuals

more discriminating.

5.4. Comparing Single-view and Multiview Data This experiment examined

the quality of �tting when using single-view data of the same eleven bananas. Figure 6.22

shows the normalised �tting residuals. The algorithm again selected the curved cylinder

as the model for all of the bananas. This is consistent with the results for multiview data.

However, compared with Figure 6.20, the �tting results are now much more diverse, and the

di�erences between the minimum residuals and the others are signi�cantly reduced. Because

the banana shape was not regular, the model estimated from single-view data was biased

by the partial shape information in the data, as shown in Figure 6.23 (a) and (b). Using

active vision, uncertainty associated with these model parameters could be analysed further

to guide the collection of more data from other views [140, 141]. When multiview data are

used, the algorithm obtains much more accurate models, as demonstrated in Figure 6.23

(c) and (d).

5.5. Comparing Perfect and Imperfect Geon-like Objects Here we compare

the parameter dispersion obtained by �tting parametric geons to single-view data of perfect

and imperfect geon-like objects. We obtained four sets of data by scanning a curved plastic

tube whose shape resembled a perfect curved cylinder. The data of imperfect geon-like

objects consisted of 44 sets of single-view data of the eleven bananas, each of which was

scanned from four di�erent views. Three scale parameters along the X; Y; Z axes and

the bending curvature parameter were examined. We cannot compare the transformation

parameters because the two types of objects are represented in terms of their individual

views. Because of di�erences in size and axis curvature, we used the coe�cient of variation,

de�ned as the ratio of the standard deviation and the mean, as the measure of relative

dispersion of each estimated parameter.

Figure 6.24 shows that the parameter dispersion is much larger for the bananas than the

plastic tube. This is because the shape variations of imperfect objects in some views may
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Figure 6.22. Fitting residuals obtained from single-view data of the eleven bananas.

(c) (d)

(a) (b)

(c) (d)

(a) (b)

Figure 6.23. Fitting a model to single-view (a) and multiview data (b) of a banana. The left
column shows the actual range data and the right column shows the model superimposed on the
range data.

be more than in other views, and data from perfect geon-like objects in single views contain

more consistent information. Thus, the imperfection in shape makes it much more di�cult

to obtain unique quantitative information using single-view data. This also suggests that

employing multiview data is very important in parametric model recovery, especially when

the object shapes are not highly consistent with the model shapes.
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Figure 6.24. Comparing bananas and plastic tubes. The lighter bar denotes the coe�cient of
variation of four estimated parameters for the plastic tube. The darker bar indicates the coe�cient
of variation of four parameters averaged over eleven bananas. The horizontal axis indicates the
parameters. 1, 2, 3 are the model size parameters along the X; Y; Z axes, respectively, and 4 is
the bending curvature.

5.6. Using Multi-part Objects We have also conducted experiments with multi-

part objects, which have been segmented into parts by the method described in Chapter 4.

Figure 6.25 (a) is the side view of range data of an object and (b) is its parametric geon

model consisting of a cylinder and an ellipsoid. Figure 6.25 (c) is the range image of a

toy bowling pin and (d) is its model consisting of a tapered cylinder and an ellipsoid.

Figure 6.25 (e) is the range image of a carved stone owl and (f) is its model. The head and

torso are identi�ed as two curved cylinders and the model of the feet is a tapered cylinder.

These results again indicate that (1) our method works best when an object is composed

of perfect geon-like parts and complete shape information is available (see (a) and (b));

(2) When complete shape information is available but the object is composed of imperfect

geon-like parts, our method can also obtain a good result (see (c) and (d)); (3) when only

partial shape information is available and the object is not composed of perfect geon-like

parts, our method can still obtain the satisfactory qualitative results (see (e) and (f)).

6. Chapter Summary

We have conducted systematic experiments using multiview and single-view range data

to test our part segmentation and identi�cation methods. Experimental results demonstrate

that charge density distributions possess both �ne and gross shape information and can be

computed e�ciently and robustly. Part segmentation using the charge density distribution

105



6. CHAPTER SUMMARY

(a) (b)

(c) (d)

(e) (f)

Figure 6.25. Part-based descriptions of objects. Range data of three objects are shown in
the left column. The part-based descriptions of these three objects are presented in the right

column.
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as a surface feature indicator is successful if the object shape satis�es our segmentation

assumption.

We have also demonstrated the strong performance of our approach to shape approxi-

mation of object parts by parametric geons. When using single-view data of objects which

do not consist of geon-like parts, we can uniquely obtain qualitative shape information.

However the quantitative information of parametric geons is often diverse and unreliable.

When multiview data of the same objects are used, we can robustly recover the paramet-

ric geon models with much more consistent quantitative information. The newly de�ned

objective function with both t1 and t2 terms produces much more discriminative �tting

residuals than that with only the term t1. Our �tting technique using global optimisation

can reliably produce unique shape types of object parts. By directly comparing the part

shape with model shapes, we accomplish explicit shape veri�cation of the resultant part

models.
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CHAPTER 7

CONCLUSIONS

In the previous chapters, we have presented a new approach to qualitative volumetric shape-

based representation of 3D objects sensed by a laser range�nder. Here we summarise the

thesis and consider: (1) the contributions made to knowledge in the �eld of computer vision,

(2) the limitations of the current system, and (3) potential improvements.

1. Thesis Summary

A prerequisite for an autonomous robot to explore its environment is its ability to

recognise objects perceived by a visual sensor. In general, image data acquired by a laser

range�nder only provide the distances from the sensor to object surfaces in the scene. Thus,

range images alone cannot be directly used for identifying individual objects. E�cient object

recognition by machine requires a symbolic description derived from image data of the object

which can be matched to existing models in a database. To compute such descriptions, it

is necessary to impose meaningful constraints derived from human vision studies. Object

descriptions must be able to characterise a variety of the sensed objects and be insensitive

to sensor noise and minor object shape variations. Moreover, the object representation

process must be able to verify the resultant shape descriptions with the object shapes.

From nature we observe that many objects consist of parts. Consider the theory of

human image understanding, Recognition-By-Components (RBC) [15], which addresses the

issue of part-based recognition. To represent object parts, the RBC theory derives a �nite

set of generic volumetric primitives, called geons. It also postulates that if an arrangement

of a few geons can be recovered from the image, objects can be recognised quickly even when

they are occluded, rotated in depth or degraded. Inspired by RBC, considerable research

has been carried out on geon-based object representation and recognition. However, nearly

all of this work has focused on the recovery of geon models from complete edge maps or

ideal line drawings depicting objects whose parts are instances of geon models. The problem
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of recovering a part description in terms of perfect models from a non-ideally shaped part

has not been considered. This thesis addresses this challenging issue. Speci�cally, a novel

physics-based approach is proposed for part segmentation and a new top-down strategy is

introduced for recovering geon models from imperfect geon-like parts.

Object segmentation decomposes an object into parts at the part boundaries. In Chap-

ter 4, we introduced a physics-based property, the simulated electrical charge density distri-

bution, to characterise the object shape, and segment the object into parts at deep surface

concavities where the charge density achieves a local minimum. This method is motivated

by the analogy between the singularity in surface tangents and the singularity in the charge

density distribution over object surfaces. The simulated charge density di�ers signi�cantly

from surface curvature, a commonly-used surface property. The former is computed by solv-

ing a set of integral equations which does not require smooth surfaces. However, surface

curvature is derived from second derivatives which does require surface smoothness. Cur-

vature computations depend on local data [14] while the charge density computation uses

global data. Local computations based on di�erentiation are very sensitive to sensor noise,

and a local scale must be speci�ed for the computation. It is usually di�cult to choose such

a scale since it depends on the object structure which is not explicitly provided by range

data. By contrast, the global electrical charge computation reduces the local noise e�ects

and does not require that a particular scale be selected. In addition, the charge density can

reveal the object's �ne and gross structures simultaneously and indicate the signi�cance of

part protrusions. Although the charge density computation requires a complete triangula-

tion of object surfaces, it does not work in a voxel-based coordinate system and furthermore

does not perform computations in object interiors. Thus, it requires much less parameter

selection and works more e�ciently than a particle di�usion-based approach [151], which

must compute the interior of objects in a voxel-based coordinate system.

Part model identi�cation obtains shape approximations using parametric geons. In

Chapter 5, we have de�ned parametric geons as seven qualitative shapes inspired by the

volumetric primitives commonly used in sculpture. Each parametric geon is formulated by

an implicit equation of restricted deformed superellipsoids. The attributes of the parametric

geons such as pose, size, tapering rates and curvature of the axis are speci�ed by parameters.

We �t all of the parametric geons to an object part and select the best model based on

the minimum �tting residual. The formulation of the models provides explicit global shape

constraints, which restricts the resultant part descriptions to prede�ned models. Thus, this

approach can recover part models even when objects consist of imperfect geon-like parts.
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More importantly, since we directly examine the similarity between part and the model

shapes, an explicit shape veri�cation of the resulting descriptions can be accomplished. This

is in contrast to all previous work on geon-based representations, which did not perform

explicit shape veri�cation. The new objective function and the use of global optimisation

technique (Very Fast Simulated Re-annealing) have made the part model recovery more

robust.

Chapter 6 examined our approach through systematic experimentation using both

single- and multiple-view range data. We showed that the charge density computation

is more robust to high frequency noise than the curvature computation. The charge den-

sity distribution can provide both gross and �ne shape information and can indicate the

signi�cance of part protrusions. We successfully performed object segmentation into parts.

We demonstrated that our approach can recover models from object parts, whose shapes

were not consistent with the model shapes. Experimental results also revealed that (1)

the newly-de�ned objective function produced more distinctive �tting residuals for shape

discrimination than that used in previous work [55]; (2) for single-view data, the model

�tting results were more stable when using perfect geon-like parts than imperfect geon-like

ones; (3) for imperfect parts, the model �tting procedure using multiview data produced

much more robust results than using single-view data.

2. Thesis Contributions

We have introduced a new paradigm for qualitative volumetric shape-based represen-

tation of 3D objects found in range data. The major contribution that this research makes

to knowledge in the �eld of computer vision is the physics-based approach to object seg-

mentation into parts. It is based on an analysis of the simulated electrical charge density

distribution on the object surface. To our knowledge, this is the �rst time such an analogy

has been used to characterise an object's shape and segment an object into parts. This

approach provides a superior alternative to the traditional geometry-based approaches and

creates a new direction for object shape representation. The novel aspects of our research

are described as follows:

Shape Characterisation: We propose a physical property, the simulated electrical

charge density distribution, to characterise object shapes. The charge density ex-

hibits the relative contrast of concavity and convexity of object shapes. It is com-

puted by using global data but clearly manifests local features. The computation of
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charge densities is unique for a given shape, invariant to translation and rotation,

robust to sensor noise and not sensitive to surface triangulation.

Part Segmentation: We segment an object into parts at the part boundaries which

are characterised by the local minima of the simulated charge densities. This ap-

proach is motivated by an analogy between the singularity of surface tangent planes

and the singularity of the charge density distribution on the surface of a perfect

conductor. All traditional approaches have employed geometrical properties, such

as curvature or volumetric shape models, for part segmentation.

Model Recovery: We introduce parametric geons as the part models by explicitly

specifying the qualitative shapes of deformed superellipsoids. Parametric geons con-

vey qualitative shape and quantitative pose and deformation information. We di-

rectly compare the part shape with all parametric geons and select the model whose

shape is most similar to the part shape. In this way, we can achieve an explicit

shape veri�cation of the resultant descriptions of parts. All previous approaches on

geon recovery do not perform explicit shape veri�cation. A new objective function

de�ned in terms of mixed L1 and L2 norms and a fast global optimisation technique

(Very Fast Simulated Re-Annealing) are employed to obtain models robustly.

Experimentation: We have developed a software system for achieving above and

successfully obtained parametric geon descriptions of multi-part objects. We have

also studied the properties of charge density distributions on 2D contours and 3D

surfaces and compared the characteristics of the charge density and curvature. In ad-

dition, we have investigated the performance of model recovery a�ected by di�erent

objective functions, shape imperfection and the amount of input data.

3. Limitations

3D object representation is obviously a complex problem, and this research has at-

tempted to address only certain issues. Those omitted must be dealt with in future re-

search in order to produce a usable object recognition system. We elaborate on some of the

problems in the following:

� We have assumed that the segmentation of an object from its background could be

easily performed. In practice, we achieved this �gure-ground separation by using

a priori information of 3D space obtained from an o�-line calibration process. If
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a robot navigates in an unknown environment, this calibration would not be avail-

able. Other context free approaches are required to segment the object from its

background.

� We have assumed that the part boundary on the object surface must be explicitly

indicated by deep surface concavities. This is the requirement for all boundary-

based approaches which follow the principle of transversality regularity [60, 56].

However, in practical situations, many objects do have obvious parts, which are

not completely separated by deep surface concavities. Examples are the \elbow" in

Figure 2.2 and the elephant in Figure 6.12. A di�erent part segmentation theory is

needed for segmenting these kinds of objects.

� We have assumed that the object of interest consists of multiple parts. This is

because the charge density alone is insu�cient to distinguish between multi-part

and single-part objects. The charge density only indicates the contrast between

concavity and convexity and cannot measure the absolute convexity and concavity.

In practice, an approach to object representation should �rst examine whether a

sensed object is composed of multiple parts. If it is, then part segmentation is

needed.

� In order to compute the charge density distribution, a triangular mesh tessellation

on the object surface is required. In the case of multiview data whose local spatial

relations are not explicitly speci�ed, it is still di�cult to do surface tessellation

automatically for complex shapes. In the case of single-view range data whose local

spatial relations are speci�ed by the range image grid, surface tessellation can be

done easily. However, since this operation is based on local data, dense range data

is required.

By taking these limitations into consideration, a more powerful object representation

system can be developed.

4. Future Work

To improve the current system and extend our research, we suggest the following:

� An investigation can be carried out for a part-based object recognition system us-

ing parametric geons. Matching the object descriptions computed from range data

against parametric geon models in a database can be conducted in the following way.

Qualitative shape and the number parts should be examined �rst. If these are not

enough to identify the object, quantitative attributes, such as pose, size, tapering
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rates and curvature of the axis should be consulted. Such a recognition system also

possesses another feature. Although the number of parametric geons totals only

seven, various spatial arrangements of these primitives can make up a large number

of object models. Therefore, such a system will be able to recognise many objects

e�ciently [15].

� More research can be carried out on the applications of simulated charge density. In

this thesis, we only use the simulated charge density distribution to extract surface

concavity. In a similar fashion, surface convexity could also be detected. Since

the simulated charge density distribution contains both gross and �ne object shape

information, it is very useful for characterising shape. In addition, the signi�cance

of parts, which is revealed in the simulated charge density distribution, can also be

used to characterise object parts. Moreover, local feature detections based on other

similar integration mechanisms would be worth studying.

� Our approach provides a useful tool to derive higher-level descriptions of objects

from triangulation models. We note that research on object shape reconstruction

has extensively used such triangular mesh descriptions. However, there is almost no

work which directly uses the triangular meshes as the model for recognition tasks.

This is because surface triangulation models lack uniqueness with respect to scale

and viewpoints. The number and positions of triangles will vary when an object is

sensed from di�erent directions and distances. Thus, triangulation models do not

appear particularly well for de�ning object classes. By simulating charge density

distributions on the complete mesh, the object shape could be characterised and

higher-level shape descriptions could be derived.

� Another important future research direction is the integration of di�erent sources of

information to perform �gure-ground separation. Range images contain only depth

information, which may sometimes be insu�cient for the extraction of an object

from its background. Consider a cup on the top of a table and a laser range�nder

scanning the scene from a 45 degree angle. The distances from data points on the

table top to the sensor may be larger, or equal to or smaller than the distances from

the cup to the sensor. In this case, the cup cannot be completely separated from the

table top based only on depth information. Thus, other sources of information, such

as colour or gray level intensity, may provide superior contrast for the object and its

background and, therefore, be useful for �gure-ground separation. Of course, this

requires a video camera and a calibration between range and intensity images.
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� Future research can be extended to decrease the computational time required. The

most time-consuming stage in the charge density computation is the construction of

the coe�cient matrix A in Equation (4.13). Since the computation of each matrix

element is independent of others, parallel computation could be used. Similarly, the

most time-consuming stage in the model �tting procedure is the evaluation of the

complex objective function in Equation (5.18). Again the evaluation at each data

point is independent of the others. Thus, parallel computation could be useful here

as well.

In conclusion, this thesis presents a new approach to qualitative part-based representa-

tions of 3D objects sensed by a laser range�nder. The research is a theoretical investigation

of a generic object recognition system rather than being limited to a single application. We

focus on the issues of part segmentation and part model identi�cation. The experimental

results demonstrate that our approach can recover qualitative part-based descriptions even

when objects consist of imperfect geon-like parts. This research provides a basis for future

study in qualitative shape recognition and autonomous robot task performance.
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APPENDIX A

Integral Evaluation

In order to solve the set of linear equations given in Equation (4.13) in Chapter 4, we must

�rst compute the integral in (4.16), which is referred to as the potential integral [142]. It

is an integration of a 3D function over a polygonal domain. The problem can be stated

formally as:

Problem A.1. Given a function F = 1=jr� r0j : R3 ! R and three vertices (vi 2 R
3; i =

1; 2; 3) of a triangle T , compute the integration of F over T .

Fortunately, the analytical expression of the potential integral has been obtained [142].

This signi�cantly improves the accuracy and e�ciency of the numerical computation. For

the sake of completeness, we present the integral evaluation here. The derivation of this

expression can be found in [103].

Figure A.1 shows the geometrical quantities used in the computation. The notation is

similar to that used in [142]. The darker shaded triangle is the integration domain, T . The

quantities used for computation are listed below:

P : a plane shown by a lighter shaded region containing the triangle, T

n: the normal of P and T

i: the index of the sides of T

li: the vector containing the ith side (thick solid line) of T

ui: the normal vector of li in P

r: the vector position of the observation point

�: the vector position of the orthogonal projection of the observation point onto P

R: the vector from the observation point to a point on T

P0
i : a vector perpendicular to the ith side of T and passing through the point at �

R0
i : the distance from the observation point to the vector li

R�i : distances from the observation point to two endpoints of the ith side of T
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Figure A.1. The triangle patch of the charge source. Vector quantities and scalar quantities
are denoted by solid lines with arrows and dashed lines, respectively. This is an adaptation of
Figure 2 in [142].

d: the distance from the observation point to P

P�i : distances from a point at � to two endpoints of the ith side of T

r�i : vector positions of two endpoints of the ith side of T

l�i : distances from two endpoints of the ith side to the projection of the point at � onto li

��i : vectors from the projection of the origin onto P to two endpoints of the ith side.

Let

��i = v1; �+i = v2; n =
(v1 � v3)� (v2 � v3)

j(v1 � v3)� (v2 � v3)j

The evaluation of the integral in Equation (4.16) is given as follows [142]:

Z
T

dS0

jr� r0j
=

3X
i=1

P0
i � ui

�
P 0
i ln

R+
i + l+i

R�i + l�i

�jdj

�
tan�1

P 0
i l

+
i

(R0
i )
2 + jdjR+

i

� tan�1
P 0
i l
�
i

(R0
i )
2 + jdjR�i

��
(A.1)

where

li =
r+i � r�i
jr+i � r�i j

; ui = li � n; ��i = r�i � n(n � r�i );

� = r� n(n � r); P 0
i = j(��i � �) � uij; P�i = j��i � �j;

l� = (��i � �) � l; d = n � (r� r�); R�i =
q
(P�i )

2 + d2;

P0
i =

(��i � �)� l�l

P 0
; R0

i =
q
(P 0

i )
2 + d2:
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Note that in (A.1), the �rst term within the square brackets is equal to zero if either R+
i +l

+
i

or R�i + l�i is equal to 0. This is because P 0
i equals zero. With the analytical evaluation of

the integral in (A.1), we can compute the charge density distribution over a 3D surface by

solving the set of linear equations in Equation (4.13).
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APPENDIX B

Multiview Integration

Our approach to parametric geon-based shape representation starts with either single- or

multi-view range data. Construction of multiview data of 3D objects is described in this

section. Multiview data are produced by a three-step procedure, called multiple view in-

tegration [48, 127, 97, 138, 31, 25]. In the �rst step - data acquisition - the range data

from di�erent views are collected as viewer-centred data descriptions speci�ed in each cam-

era coordinate system. In the second step - view registration - a transformation between a

camera coordinate system and the world coordinate system is calculated. In the last step

- view integration - range data in each camera coordinate system are transformed into the

world coordinate system and usually the redundant data seen in more than one view are

removed. Here we present a simple and straightforward method for view integration.

Acquisition of multiview range images was accomplished with a laser range �nder which

scans objects supported by a turntable. The registration among images taken from di�erent

views was obtained by a method developed in our laboratory [25]. View integration was

performed by using the view transformation, surface normals and residuals of the normal

computation as follows:

Algorithm B.1.

(i) Input images of view m= 1,2,...M.

(ii) For each view, compute the normals and the angles between normals and visual lines.

(iii) FOR each view m,

FOR: each data point D(i,j) in the image,

FOR: each successive view, n = m+1, m+2, ......, M,

(a) Transform D(i,j) onto this view n.
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Figure B.1. Point A on the shaded object surface can be projected onto view1; view2 and
view3 resulting in data points D1;D2 and D3, respectively. Only D1 and D2 depict the same
point(A) and are treated as redundant data. D3 is not redundant with D1 and D2 since point A
cannot appear in view3 due to object self-occlusion. The dashed lines are the projection lines.

(b) IF the data D(i,j) is redundant with data in this view, THEN

mark this D(i,j) and the corresponding data with RD (ReDundant).

ELSE Mark this data NR (Not Redundant).

END: for each successive view.

IF: data are redundant, THEN select the best data in a speci�c view ac-

cording to its normal and visual angle. Then mark this best data with

NR.

END: for each data.

END for each view.

(iv) Convert data marked with NR in all views onto a common world coordinate system.

The principle of selecting the best data is shown in Figure B.1. Point A generating

a data point D1 on the image plane in view1 can be mathematically projected on image

planes in both view2 and view3 giving data points D2 and D3. If there exist data points at

D2 and D3 on the original image planes, we can compute the world coordinates for these

two points based on camera calibration. If the position of a point in the world coordinate

system is spatially overlapped1 by point A, we mark this data point in its image plane as

a redundant one. In Figure B.1, D2 is redundant with D1. However, D3 is not redundant

1Due to errors in the estimated transformation parameters, multi-view data for the same point in 3D do not
exactly overlap. Here a threshold in distance is employed.
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with D1 and D2 because point A cannot be optically projected onto the image plane in

view3 due to object self-occlusion. The world coordinates for D3 is at point B which is

not overlapped with point A in 3D space. Given redundant data D1 and D2, the angles, �

and �, between the surface normal N at point A and scan lines are examined. In general,

if a surface point faces the range�nder, and the angle between its normal and the scan line

is small, the range�nder obtains good reection of the laser beams from the surface, and

the quality of the image data is good. Thus, D1, which gives a larger angle - or a smaller

cosine value of � - is removed. If the cosine values of angles associated with a few data

are very close, we keep the data point with the smallest residual resulting from the normal

computation. In a few cases, both the cosine values and the residuals are very close; in

this case we choose data collected at an earlier stage. The integrated data is expressed as

a sequence of 3D points and used for 3D part-based representation.
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APPENDIX C

Surface Triangulation

Surface triangulation is required by the charge density computation presented in Chapter 4.

In this section, we describe in detail the surface triangulation of single-view range data. The

charge density computation requires a triangular mesh to be tessellated on the complete

surface of the object. However, the range data obtained from a particular view only reect

the visible surfaces, as shown in Figure 4.7. Thus it is impossible to perform the mesh

tessellation based on the actual shape of the invisible parts of the object. In practice, we

arti�cially construct a mesh on the invisible side in order to make up a closed triangular

mesh. This permits us to compute the charge density. We note that the actual shape of the

invisible surface only a�ects the absolute value of the charge density on the visible surfaces.

The position of the extrema of the charge density distribution remains almost the same and

thus it makes sense to construct an arti�cial mesh on the invisible surface. This argument

is later justi�ed by experiments.

Single-view range data are de�ned as a collection ofM discrete samples of an underlying

function f : I2 ! R3

di = f(ui)(C.1)

where ui 2 I2 is the index of the 2D image grid, di = fxi; yi; zig 2 R3 is the 3D coordinate

of a data point, i = 1; :::;M is the index of the data and M is the total number of pixels in

a range image. The object of interest can be segmented from its background by a simple

thresholding operation. It is represented by data di; i = 1; :::; N;N < M , as shown in

Figure 4.7. It is noted that not all image pixels contain data since the object size is smaller

than the image size. The closed triangular mesh for the object is composed of three patches

of triangular meshes, as shown in Figure 4.8. The �rst, called the top patch, is obtained by

triangulating the range data on the visible surface. The second, called the bottom patch,

is planar, and is actually the (spatial) projection of the top patch onto an arbitrary plane
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Figure C.1. Pixel relations in a 2� 2 window.

perpendicular to the Z axis. These two patches are illustrated in Figure 4.8 (a). The third

one , called the side patch, �lls the gap between the top and the bottom patches, as shown

in (b). The complete closed triangular mesh in Figure 4.8 (c) is obtained by merging the

patches in (a) and (b).

1. Top and Bottom Patch Construction

We construct top and bottom patches based on the range image grid. Since the image

grid is rectangular, the number of local spatial relations among data points is limited. Thus,

we can enumerate all possible relations and derive a rule-based algorithm to tessellate these

two patches. Consider a 2�2 window in a range image grid. We specify the left top pixel as

the currently-considered pixel. For this pixel, there are four possible spatial con�gurations 1

for making triangles, as shown in Figure C.1. They are in Windows 1; 2; 4 and 5. In addition,

there may be no data point at the top left pixel but exits one at the top right, as indicated

in Window 3. This con�guration is also considered. Triangles can be constructed for each

con�guration. We use these �ve arrangements to tessellate the top and bottom surfaces

by detecting the speci�c data con�guration and making the appropriate triangles. The

algorithm, where the boarder e�ects are not considered, is as follows:

Algorithm C.1.

1The number of pixels in the window must be either three or four in order to make a triangle. The data
con�gurations in Windows 6 and 7 in Figure C.1 are invalid and no triangle will be formed.
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(i) Start from I(1,1),

(ii) Scan the image I(i,j), i,j = 1,...,N, and consider a 2 � 2 window positioned at (i,j),

(iii) If I(i,j) 6= 0,

If: I(i+1,j), I(i,j-1), I(i+1,j+1) are not equal to zero2, make two triangles using

fI(i,j), I(i+1,j), I(i,j+1)g and fI(i,j+1), I(i+1,j+1), I(i,j+1)g, respectively;

Else: if I(i+1,j), I(i,j+1) are not equal to zero, make a triangle using fI(i,j),

I(i+1,j), I(i,j+1)g.

Else: if I(i,j+1), I(i+1,j+1) are not equal to zero, make a triangle using fI(i,j),

I(i,j+1), I(i+1,j+1)g.

Else: if I(i+1,j), I(i+1,j+1) are not equal to zero, make a triangle using fI(i,j),

I(i+1,j), I(i+1,j+1)g.

Else if I(i + 1; j); I(i; j + 1); I(i+ 1; j + 1) are not equal to zero, make a triangle

using fI(i+1,j), I(i,j+1), I(i+1,j+1)g.

(iv) If I(N,N) has been visited, stop; else goto (ii).

When constructing the bottom patch, we must specify the separation between the top

and bottom patches. Note that the distance between these two patches does not crucially

a�ect the position of the extrema of the charge density distribution on the visible surface.

To illustrate this, we de�ne a parameter  as follows:

 =
zplane � zmax
zmax � zmin

:(C.2)

As demonstrated in Figure C.2,  is the ratio of the distance from the data point having

the largest Z value to the bottom planar patch and the spatial range of all data points in

the Z direction. Figure C.3 shows the computed charge density distributions on the visible

surface of an object when (a)  = 10%, (b)  = 50% and (c)  = 100%. The gray levels

indicate charge densities, which are normalised in the range between 0 (darkest intensity)

and 255 (white). It can be seen that the minima of the charge density distributions are not

changed in these cases. In other words, the arti�cially constructed mesh on the invisible

surface does not seem to a�ect the charge density extrema on the visible surface. A similar

strategy has been proposed for generating a closed surface in 3D space for a di�usion-based

shape analysis [151].

2In range images, if there are no data points at I(i; j), it is customary to set I(i; j) = 0.
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X

Z
Y

rangefinder

zminzmax zplane

top patch

bottom patch

Figure C.2. Con�guration of the top and the bottom patches.

(a) (b) (c)

Figure C.3. Charge density distributions on visible surfaces. The charge density is normalised
between gray levels 0 and 255. The brightest and darkest intensities indicate the highest nd lowest
charge densities, respectively. When (a)  = 10%, (b)  = 50% and (c)  = 100%, the positions
of the extrema of the charge density distribution on the visible surface are almost not a�ected.

2. Side Patch Construction

The characteristic of the side surface is that it is a cylindrical surface, which can be

developed into a plane. Thus, this surface can be also triangulated in a planar domain.

We �rst generate points of triangle vertices on the plane and then create the corresponding

triangles.

Let the length of a triangle side along the boarder of the top patch (see Figure C.4) be

si; i = 1; :::; K. In order to ensure that the triangles on all patches have more or less the
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is

Figure C.4. Triangles on the boundary of the top patch are shaded. The length of a side on
the boundary is si.

zL

Boundary of top patch

Boundary of bottom patch

(a)

(b)

Figure C.5. The side patch of triangulated range data. (a) Vertices of triangles on the side
patch, which has been developed in a plane. The distance between rows of data is set to Lz.
The vertices linked by the dashed lines are on the boundaries of the top or bottom patches. (b)
Triangles on the side patch.

same size, we choose the average of triangle side lengths on the top patch as the length of

a triangle side on the side patch in the direction of Z as follows:

Lz =
1

K

KX
1

si

That is, the interval between two data points along the Z direction is Lz , as shown in

Figure C.5. Next we determine the actual locations of triangle vertices on the side patch.

Along the straight lines connecting the nodes on the bottom and top patches, we position

vertices every Lz in a bottom-to-top order, as shown in Figure C.5.
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(a) (b) (c)

.

.

.
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.

Figure C.6. Con�guration of triangle vertices on the side patch. (a) A common con�guration
having four vertices. (b) and (c) are special cases occurring at the top of a side patches. The
circles and the dashed lines indicate the possible vertices and triangles.

In a similar fashion to the top and bottom patch triangulation, all possible local con�g-

urations of triangle vertices on the side patch are used for side patch triangulation. There

are only three types of con�gurations of vertices of triangles as shown in Figure C.6. (a)

represents the most common relation appearing at the bottom and middle portions of the

side patch. Here there are four vertices, two on each column. (b) and (c) indicate the

cases occurring at the top of the side patch. There is one vertex in one column and more

than one vertex on the other. When (a) appears, two triangles are made. When (b) or (c)

appear, the number of triangles is determined according to the number of vertices on the

column containing more than one vertex. Figure 4.8 gives a complete example of a surface

triangulation for the single-view range image in Figure 4.7.
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APPENDIX D

Part Decomposition

This section describes a technique, in detail, for decomposing a whole object into parts.

Since the object surface is represented by a closed triangular mesh, part segmentation is

actually accomplished by decomposing the mesh into several components based on the

simulated charge density distribution. Each component is a connected triangular mesh

which is a subset of the closed triangular mesh of the whole object. For a single-view range

image, only that portion of the triangular mesh which represents the visible surface of the

object is considered. This method is based on a so-called Direct Connection Graph (DCG),

which serves as a speci�c coordinate system de�ned on the triangular mesh. We will �rst

describe the method of DCG construction and then give the part decomposition algorithm.

1. DCG Construction

As de�ned in Chapter 4, Direct Connection Graph is one kind of representation of the

triangular mesh. Its nodes represent the triangles and its branches represent the connections

between a node and its direct neighbours. Figure D.1 (a) shows a triangle mesh and (b)

shows its DCG.

We denote an array of triangles by Ti = fvij ; j = 1; 2; 3g; i = 1; :::; N . Here i is the

index of triangles and j is the index of triangle vertices. vij is the jth vertex of the ith

triangle. N is the number of triangles. We represent the DCG of a triangular mesh by an

2D array D[i; j], where i = 1; :::; N ; j = 1; :::; 5. D[i; 1] stores all triangles, Ti; i = 1; :::; N in

the mesh. D[i; 2]; D[i; 3]; D[i; 4] consist of a list of direct neighbours of the triangle given in

D[i; 1]. D[i; 5] indicates the total number of the direct neighbours of D[i; 1]. For a closed

mesh, D[i; 5] = 3; and for an open mesh, D[i; 5] could be either 2 or 3. An example of an

open triangular mesh and the process of its construction is given in Figure D.11. Since the

mesh in (a) is not closed, the triangles at the boundary have only two direct neighbours.

1Here we only show the DCG of the �rst six triangles. The complete DCG for this mesh contains 12 triangles.
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Figure D.1. Construction of the Direct Connection Graph (DCG). (a) A triangular mesh. (b)
The �rst step. Column 1 shows the list of triangles in the mesh. Column 2 to column 4 show
the �rst to the third neighbour, respectively, of the triangle given in the �rst column. The last
column shows the number of direct neighbours so far. (c) to (f) indicate successive steps of DCG
construction. (7) shows the �nal result for T1 to T6.

For an example, in the case of T1; D[1; 5] = 2. The algorithm for constructing this array is

described as follows:

Algorithm D.1.

(i) Load all triangles in the mesh into D[i; 1] and set D[i; 5] = 0.
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2. FINDING PART BOUNDARIES

(ii) Start with T1, for each Ti,

(a) Search downward in the �rst column for a direct neighbour of Ti, based on

De�nition 4.3. When a direct neighbour Ti of Tj is found,

(i) Put Tj in the neighbour list of Ti,

(ii) Put Ti in the neighbour list of Tj,

(iii) Increase both D(i; 5) and D(j; 5) by 1.

(b) From Tj, repeat the search procedure in (a) until TN is reached.

(iii) End for each i.

Since the DCG provides an explicit relationship between individual triangles on the

surface of the object, it serves as a convenient coordinate system over the object surface.

It permits the tracing of the part boundaries on the triangular mesh without employing a

voxel-based coordinate system. This signi�cantly reduces the required memory space for

describing the object and increases the computational speed.

2. Finding Part Boundaries

The transversality principle states that when two surfaces intersect, they intersect

transversally with probability one[11]. This means that the tangent planes to the two

intersecting surfaces are of di�erent orientations at all points where the surfaces intersect

(see Figure 2.5). Following this, we have assumed that a part boundary is explicitly de�ned

by deep surface concavities. For a complete object, the part boundary is a closed surface.

This ensures that the decomposition algorithm will be able to segment a part from the rest

of the object. The assumption also provides a stopping criterion for the boundary tracing

procedure. Since the part boundary is located at local charge density minima, it can be

traced along the `valley' of the charge density distribution. We note that the tracing algo-

rithm applied to a closed mesh is slightly di�erent from that applied to an open mesh. The

latter is constructed for representing single-view range data. Since the part boundary on

an open mesh is not closed, the stop criterion for tracing on the closed mesh is modi�ed.

The new criterion is that when the tracing algorithm reaches a triangle on the boundary

of the open mesh, it stops. The triangle on the mesh boundary is de�ned as the one with

only two direct neighbours. Since two algorithms are very similar, in the following, we only

describe the algorithm for tracing the closed triangular meshes.

The algorithm examines the charge density on all triangles to �nd a starting triangle

for tracing each boundary. A starting triangle must satisfy the following conditions:

(i) It must be a concave extremum; that is, its charge density must be a local minimum.
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2. FINDING PART BOUNDARIES

(ii) It must be located at a deep concavity. Thus the charge density on the triangle must

be lower than a preselected threshold2.

(iii) It and its neighbours must not have been visited before. This ensures that the same

boundary will not be traced again.

Beginning at the starting triangle, the algorithm proceeds to the neighbour with the lowest

charge density. During the tracing procedure, all triangles detected on the boundary are

marked. The marked ones will not be checked again and eventually will be deleted from

the DCG. The process continues until it returns to the starting triangle. As a result of the

assumption stated at the beginning of this section, this means that all triangles on this part

boundary have been visited. Next the algorithm �nds a new starting triangle and traces

another boundary. It repeats the same tracing procedure, and �nally stops when the charge

density at a starting triangle is higher than the preselected threshold. After all triangles

on part boundaries have been found, the nodes of the DCG representing these triangles are

deleted. Thus the original DCG is now divided into a set of disconnected subgraphs, as

shown in Figure 4.10 (c). Physically the object has been broken into parts. Each object

part can be obtained by applying a component labelling algorithm to a subgraph of the

DCG. The resultant part is ready for part model recovery.

In the following, we describe the boundary tracing algorithm in detail. The variables

used in the algorithm are de�ned as follows:

�min: the lowest charge density over all triangular patches, i.e., triangles.

�(j): the charge density of the jth patch

�t: the threshold for a starting patch

Bi: A set of triangles that belong to boundaries of parts, where i is the number of

boundaries.

Tstart: A set of triangles with which the boundary tracing procedure starts.

NewPatch: A ag indicating whether a new patch on the part boundary is found

(NewPatch = 1) or not (NewPatch = 0).

PminiCharge: the minimum charge density of a direct neighbour patch.

MiniCharge: the charge density for Tstart.

During the tracing, we label all patches as follows:

P0: the patches belong to Bi

2This threshold determines when an object should not be decomposed any further. If the charge density at a
starting triangle is greater than this threshold, we assume that all boundary points have been found. The selection
of the threshold depends on a priori knowledge of the surface concavity and there is no universal rule for selecting
it. Obviously, the higher the threshold, the more segmented parts will be found . Currently we choose 120% of the
lowest charge density on the object surface as the threshold.
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3. CLASSIFYING PATCHES INTO PARTS

P1: the patches have been visited

P2: the neighbours of Tstart which have been visited

P3: the patches that have not been visited

The boundary tracing algorithm is described as follows:

Algorithm D.2.

(i) Mark all triangular patches as P3.

(ii) Loop for each part boundary contour i

(a) Initially set MiniCharge = �t.

(b) Loop for j

(i) Find a patch Tj at a local charge density minimum.

(ii) If �(j) < MiniCharge, assign �(j) to MiniCharge and mark Tj as

Tstart.

(c) end of loop

(d) if MiniCharge < �t

(i) set all neighbours of Tstart to P2.

(ii) Loop for k, each neighbour of Tstart

(A) If NBk is a P3, assign the charge density of NBk to PminiCahrge,

set NewPatch = 1, mark this patch as Tn and escape the loop for

k.

(iii) end of loop for k.

(iv) if NewPatch = 1, mark Tn as P1.

(v) Loop for k

(A) If T (k) is a P3, mark it as P1.

(B) If �(k) < PminiCharge, assign �(k) to PminiCharge.

(vi) End of Loop for k

(vii) Mark T (k) as P0.

(viii) If T (k) is a neighbour of Tstart or a neighbour of Bi, stop tracing the

contour i.

(iii) End of loop for i

3. Classifying Patches into Parts

In this section, we describe a component labelling algorithm for a triangular mesh. We

would like to obtain all triangular patches in a particular subgraph of the DCG, which
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Figure D.2. Component labelling. (a) a DCG containing a part boundary, as indicated by the
shaded patches. (b) A DCG array. (c) the Updated PART array from left to right. The indexes
in the rightmost array indicate patches that belong to the same part.

represents one object part. The existing component labelling algorithms [107, 106] are

mainly for 2D binary images, in which each pixel has four direct neighbours. The di�erence

between a 2D image and a triangular mesh is that the latter is described as a 1D array with

three explicitly speci�ed neighbours. An example of this algorithm is shown in Figure D.2.

The algorithm �nds each part in sequence and is illustrated as follows:

Algorithm D.3.

(i) Loop for each object part i
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3. CLASSIFYING PATCHES INTO PARTS

(a) Open a temporary space, called PART, to store the triangle index for the ith

part and initialise a counter for the number of triangles on each part.

(b) Starting with the �rst triangle in the DCG array, �nd the �rst unchecked tri-

angle which is not on a part boundary. Add it to PART and mark it in the

DCG array as a checked triangle. Specify a pointer in the DCG array, pointing

to this triangle.

(c) In the DCG array, add the neighbours of this triangle, which (1) are not on a

part boundary and (2) have not already been in PART, into PART.

(d) In the DCG array, move the pointer down one element. Repeat step (c) until

no more triangles can be either checked or are on boundaries.

(e) Mark the triangles in PART as being on the same part i. Thus triangles

belonging to part i have been found.

(ii) End of Loop for i

(iii) Repeat from step (a) until all triangles have been checked.

The result of this algorithm is several lists of triangles. Each list contains triangles which

belong to the same object part. These triangle lists are used for part model identi�cation.
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