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Abstract

We earlier introduced an approach to categorical shape description based on the

singularities (shocks) of curve evolution equations. We now consider the simplest com-

positions of shocks, and show that they lead to three classes of parametrically ordered

shape sequences, organized along the sides of a shape triangle. By conducting several

psychophysical experiments we demonstrate that shock-based descriptions are predic-

tive of performance in shape perception. Most signi�cantly, the experiments reveal

a fundamental di�erence between perceptual e�ects dominated by when shocks form

with respect to one another, versus those dominated by where they form. The shock-

based theory provides a foundation for unifying tasks as diverse as shape bisection,

recognition, and categorization.

1 Introduction

Whether one views a colleague at a distance, a D�urer woodcut in a museum, or a Koren

cartoon in a magazine, the human form is immediately recognizable despite the immense dif-

ferences in photometric and geometric detail. This exempli�es our spectacular ability to infer

the generic structure of object categories, and also to place speci�c instances within them.

Such an ability supports a consistent interpretation across deformations in the retinal image,

whether they arise from object growth, changes in viewpoint, or changes in illumination. It

also structures the organization of knowledge about objects in our world into abstraction

hierarchies, as is required for e�cient computational access to memory. As observed by

Rosch (Rosch, 1978):

...the world consists of a virtually in�nite number of discriminably di�erent stim-

uli. Since no organism can cope with in�nite diversity, one of the most basic

functions of all organisms is the cutting up of the environment into classi�ca-

tions by which nonidentical stimuli can be treated as equivalent...

How the human visual system accomplishes this task for object recognition remains an

area of active research in psychology and neurophysiology, e.g., see (Logothetis and Shein-

berg, 1996) for a recent review. Several questions are immediately raised: Are the internal

classi�cations organized around solid, volumetric models, or are they organized around ar-

rangements of features? If the former, what are the models and their invariances; how do

they compose? If the latter, what are the features, and which arrangements are legitimate?

What is the e�ect of viewpoint, and how do boundary and interior e�ects associate?

There are many di�erent proposals on either side of these questions. One group suggests

that objects are represented in a viewpoint independent fashion by a collection of volumetric
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parts derived from non-accidental properties of the retinal image (Biederman, 1987; Binford,

1971; Marr and Nishihara, 1978). Such approaches o�er the advantage of computational

e�ciency, since a single model is stored, and can explain human performance in a variety

of basic level recognition tasks. The classi�cation into \basic level" derives from studies in

cognitive psychology which indicate that, for a variety of tasks, there is a level of abstraction

which is most signi�cant with respect to several measures, such as ease of access (Rosch et al.,

1976), and below which only �ne distinctions are made. For example, in the abstraction

hierarchy \furniture, chair, arm-chair", the classi�cations chair and arm-chair are at basic

and subordinate levels, respectively. However, to date no complete theory exists for obtaining

such volumetric descriptions from retinal images (except in highly constrained domains) and

many computational issues remain to be addressed (Dickinson et al., 1997). Just laying out

the mathematical form of such a theory is a signi�cant challenge.

At the other extreme are theories motivated by viewpoint dependent performance, partic-

ularly in subordinate level recognition tasks (Tarr and Pinker, 1989; Edelman and Bultho�,

1992; Bultho� and Edelman, 1992; Logothetis et al., 1994). Such theories posit that objects

are represented by a modest collection of 2D views, and that recognition is mediated by an

interpolation between perspectives closest to the observed view. A typical computational ac-

count of this process provides a description of each stored view as a vector of image features;

the vector of observed image features is then compared with the nearest stored views using

a regularization network (Poggio and Edelman, 1990). Such a model is consistent with psy-

chophysical data obtained for certain classes of unfamiliar objects (Bultho� et al., 1995), but

its extension to more complex domains is non-trivial. In particular: 1) how should relevant

image features be determined?, 2) how should they be organized to allow for an alignment

of an observation vector with vectors representing stored views?, 3) how should a small set

of informative views be obtained? Once again, just laying out the mathematical form of a

theory based on features is a serious challenge.

The debate between proponents of viewpoint invariant and viewpoint dependent repre-

sentations remains an active one, e.g., see (Biederman and Gerhardstein, 1993; Biederman

and Gerhardstein, 1995; Hummel and Stankiewicz, 1996; Kurbat, 1994; Humphrey and

Khan, 1992; Tarr and Bultho�, 1995; Tarr, 1995; Liu, 1996), at the heart of which are

several subtle issues. For example, whereas viewpoint dependent performance has a default

association with viewpoint dependent representations (Edelman and Bultho�, 1992; Bultho�

and Edelman, 1992), the data could also be a reection of the (viewpoint dependent) com-

putational cost of obtaining a viewpoint invariant representation. Furthermore, it is possible

that both types of representations co-exist, but for orthogonal purposes, i.e., for recognition

tasks at di�erent levels of abstraction. In particular, the experiments of (Logothetis et al.,
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Figure 1: Representative sample stimuli upon which various psychophysical studies on object recog-

nition have been based. Top Row: \Amoebas" used in (Bultho� and Edelman, 1992; Logothetis

et al., 1994). Middle Row: Multi-part objects with geon-like components used in (Hayward,

1998). Bottom Row: \Greebles" used in (Gauthier and Tarr, 1997).

1994, p. 405) and others have found subordinate level recognition to be viewpoint dependent

but basic level recognition to be relatively robust to changes in viewpoint.

To motivate the need for both viewpoint dependent and viewpoint invariant properties,

consider the stimuli in Figure 1, which are representative of those used in several psychophys-

ical studies. Clearly, each row consists of a di�erent generic class of objects, and the columns

illustrate changes in viewpoint, or alterations of parts. Given the tremendous variation across

di�erent stimulus sets, how can the body of performance data be compared? Existing volu-

metric theories for basic level recognition, e.g. those based on geons (Biederman, 1987), are

applicable to some of these images but not others, while feature-based approaches achieve

generality only by using local structure that is restricted to a speci�c image class (follow-

ing normalization). It is instructive, therefore, to look at those properties that might play

a role in both basic and subordinate level classi�cation. One necessary condition is clear:

The answer must (at least) take into account the silhouettes obtained from the bounding
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Figure 2: A coloring of shocks into four types (Kimia et al., 1995). A 1-shock derives from a

protrusion, and traces out a curve segment of adjacent 1-shocks. A 2-shock arises at a neck, and

is immediately followed by two 1-shocks owing away from it in opposite directions. 3-shocks

correspond to an annihilation into curve segment due to a bend, and a 4-shock an annihilation into

a point or a seed. The loci of these shocks gives Blum's medial axis.

contours of the objects, which are an integral part of their descriptions. Indeed, the recent

investigation by (Hayward, 1998) con�rms that performance in a variety of recognition tasks

is predicted by changes to the outline shape, seen under projection. This is consistent with

�ndings that, in the human visual system, the degree of generalization to novel views when

three-dimensional objects undergo deformations is primarily dependent on the amount of

deformation in the image-plane (Sklar et al., 1993).

We focus on this necessary part of the description, and begin by considering 2D shapes,

and deformations of their boundaries. In this domain it is possible to develop a mathematical

theory that provides a formal answer to several of the above questions, and which leads to

parametric classes of stimuli against which shape perception can be analyzed. The key point

about outlines is that they change only slightly if a shape is deformed only slightly. This is

clear unless a catastrophic change occurs, such as the nose appearing on the pro�le of a face.

Such changes are singular events, and they organize di�erent shapes into equivalence classes.

Within each class is a generic category, and class transitions are signaled by the singularity.

We submit that for shape analysis, such equivalence classes are, in mathematical terms, what

Rosch was seeking. The feature-based geometric detail, so important for subordinate level

recognition, is the quantitative information within each equivalence class. In this paper we

consider the perceptual consequences of both qualitative and quantitative changes.

The fundamentals of our theory are reviewed in Appendix A. A structural description is

derived from the shocks (singularities) of a curve evolution process acting on the bounding
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Figure 3: The detection of shocks for a dumbbell shape undergoing constant inward motion. Each

sub-�gure is a snapshot of the evolution in time, with the outline of the original shape shown in

black, the evolved curve overlaid within, and the arrows representing velocity vectors for the current

1-shocks. Note the structural description of the shape as two parts connected at a neck, with each

part described by three protrusions merging onto a seed. Adapted from (Siddiqi and Kimia, 1996).

contour of an object (Kimia et al., 1995). Four types of shocks arise, each of which has a

direct perceptual correlate, as illustrated in Figure 2. Speci�cally, a connected segment of

1-shocks corresponds to a protrusion, a 2-shock corresponds to the partitioning of a shape

at a neck, a 3-shock corresponds to an extended region with parallel sides or a bend, and a

4-shock corresponds to a local center of mass or a seed. To illustrate the formation of shocks,

consider the numerical simulation of a dumbbell shape, evolving under constant inward

motion, shown in Figure 3. Note the emergence of a qualitative description of the shape as

that of two parts separated at a neck (2-shock), with each part consisting of three protrusions

(1-shock groups) merging onto a seed (4-shock). An abstraction of this description into a

graph of shock groups provides a mathematical framework in which to investigate shape

recognition at di�erent levels of abstraction (Siddiqi et al., 1998; Pelillo et al., 1998).

Returning to our earlier discussion, it is worth noting that our theory can be applied to

the (2D) outlines of all of the stimuli in Figure 1. The shock-based descriptions are shown

in Figure 4, with the associated shock graphs in Figure 5. The representation in Figure 4

illustrates the spatial con�guration of shocks: where they form and the positions through

which they migrate. The abstraction in Figure 5 illustrates the (reverse) order of their for-

mation in time. Views which are qualitatively similar, e.g., Figure 1 (second row, left and

middle), produce qualitatively similar shock graphs, Figure 5 (second row, left and middle).

Observe that the same property holds for all the \greeble" objects, despite variations in the

shapes of the individual parts. On the other hand, the emergence of new parts and thus a

qualitatively di�erent view, e.g., Figure 1 (second row, right), results in drastic modi�ca-

tions to the underlying shock graph, Figure 5 (second row, right). Thus, the shock graph

encodes the spatial relationship between shock groups and may be viewed as a 2D analog

of Biederman's geon-structural descriptions. It provides the requisite hierarchical structure
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Figure 4: The shock-based descriptions of the pro�les of stimuli in Figure 1: \amoebas" (top row);

multi-part geons (middle row); \greebles" (bottom row). The representation illustrates where

shocks form, and the locus of positions through which they migrate. The notation associated with

each shock group is of the form shock type-identi�er; see Appendix A for a discussion of shock

types. The corresponding shock graphs are shown in Figure 5.
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Figure 5: The shock graphs (Siddiqi et al., 1998) of the shock-based descriptions in Figure 4:

\amoebas" (top row); multi-part geons (middle row); \greebles" (bottom row). Each distinct shock

group comprises a di�erent node. The nodes are ordered in reverse time, with edges indicating

parent-child relationships, such that the last shock groups to form are highest in the hierarchy.

Although matching is not discussed in this paper, the similarity in graph structure for similar

views along each row (see Figure 1) is obvious.

for basic level recognition when objects are seen from similar views; qualitatively di�erent

views are signaled by changes to its topology. For �ner shape discrimination tasks, such as

those at subordinate levels, viewpoint dependent variations in the geometric properties of

the underlying shocks (e.g. their positions and formation times) will also play a signi�cant

role. The key advantage of working with 2D shapes and their shock-based representations

is that, in contrast to the two classes of theories discussed earlier, a precise mathematical

framework has been developed which provides predictions against which psychophysical data

can be tested.

To develop this link between our computational model and the perception of 2D shapes,

we begin by noting that whereas the interpretation of each shock type in isolation is clear,

Figure 2, the morphogenesis of even simple shapes can be ambiguous when di�erent shocks
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Figure 6: Three families of shapes that illustrate both the categorical nature of shape descriptions,

and the delicate crossover between categories. Notice, e.g., how the upper left shape is perceived as

two parts connected by a thin neck, while the lower left shape appears to have two indentations (or

four protrusions). The middle column starts as a bend (top) but ends with indentations (bottom).

The right column starts as two parts (top) but ends as a single bend (bottom). At which point

along each progression does the categorical shift occur? The left and middle sequences we created

by adding material on each side, the sequence on the right was created by shearing the left boundary

with respect to the right one.

participate in their description. To illustrate, are shapes in the left and right columns of

Figure 6 composed of one part or two? Do shapes in the middle column arise by bending

an extended region along its central axis, or by carving out undulations on the boundary

of a rectangle? The answer to such questions must consider the role of structural context,

since the shocks arise from a global evolution. Stated di�erently, categories for shape are

not rigid, but rather are subject to shifts under the action of deformations to the bounding

contour. When such a deformation alters the topological shock structure su�ciently, new

perceptual categories can arise.

To order the possibilities, we arrange the earlier sequences along the sides of a shape

triangle (Kimia, 1990). Informally, the idea is that the interpretation of each shape lies

on a continuum between distinct categories represented by the parts, protrusions and bends

nodes, Figure 7. For example, along the parts-bends axis the percept changes from that of
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Bends

Parts

Protrusions

The
Shape

Triangle

Figure 7: The sides of the shape triangle represent continua of shapes; the extremes correspond

to the \parts", \protrusions" and \bends" nodes (Kimia, 1990).

a dumbbell shape with two distinct parts to that of a worm shape with a single part. The

sides of the triangle reect these continua and capture the tension between object compo-

sition (parts), boundary deformation (protrusions) and region deformation (bends). Most

importantly, we know from the theory that, for such simple shapes, the shocks in Figure 2

are the only possible types. In analogy to Leyton's process grammar for shape (Leyton,

1988), the composition of a more complex shape from these shock types is characterized by

a small number of rewrite rules (Siddiqi et al., 1998).

The stimuli provide a class of parametrically ordered shapes which can be used for psy-

chophysical studies: the parts-protrusions and bends-protrusions sequences were created by

adding material to each side; the parts-bends sequence was created by shearing the left bound-

ary with respect to the right one. Thus, while the shapes have similar shock structures, the

shock formation times and positions are gradually varied. Nevertheless, it is possible to in-

terpret each sequence according to whether shock formation times are perceptually dominant

over shock positions, or vice versa.

First, the shock formation times, or equivalently their distance to the boundary of the

shape, are related to their classi�cation into distinct types (see Appendix A). Our prediction

is that non-uniform alterations to shock formation times, which result in qualitative changes

to the shock structure, are dominant over changes to shock locations. This phenomena occurs

along both the parts-protrusions and parts-bends axes. We hypothesize that an encoding of

this non-uniformity is at the heart of an observer's ability to discriminate between any two

shapes from within each sequence. Speci�cally,
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Hypothesis 1 A human observer's ability to discriminate between shapes lying on the parts-

protrusions or parts-bends axes is primarily determined by their minimum (local) width to

maximum (local) width ratios.

Regions of minimum local width (necks) correspond to 2-shocks and regions of maximal local

width (seeds) to 4-shocks, see Figure 2.

Second, the shock positions provide quantitative geometric information, which is or-

thogonal to their classi�cation into types. We expect that such geometric properties are

dominant only when the qualitative shock structure is preserved, as is the case along the

bends-protrusions axis where there is a uniform addition of mass. Observe that these shapes

closely resemble wiggles (Burbeck et al., 1996). For thin objects placed close to the bends

node the central axis is seen to wiggle, for thicker objects placed close to the protrusions

node the central axis is perceived to be straight. Our second prediction relates such e�ects

to the positions of high-order shocks which arise, Figure 26. Speci�cally,

Hypothesis 2 For a \wiggle" shape taken from the bends-protrusions axis, the perceived

center along a horizontal line in alignment with a sinusoidal peak coincides with a high-order

shock.

These will be type 3 shocks if the opposing boundaries are exactly parallel, and type 4 shocks

otherwise, see Appendix A.

Thus, considerations of when shocks form versus where they form comprise the two main

lines of investigation in this paper. In Section 2 we use a visual search paradigm to test

the �rst hypothesis, which is related to \when"-dominated perceptual e�ects. In Section 3

we review the psychophysical experiments of (Burbeck et al., 1996), in which subjects were

required to bisect wiggle like stimuli. We demonstrate that the results are consistent with

our second hypothesis, which is related to \where"-dominated e�ects. This is followed by a

general discussion in Section 4.

2 The E�ects of \When" Shocks Form

We used a visual search paradigm to test our �rst hypothesis that the role of context,

i.e., the relative formation times of di�erent shocks, is the dominant factor a�ecting shape

discrimination along the parts-protrusions and parts-bends axes. The speed with which a

subject located a target shape, randomly placed in a �eld comprised of repeated copies of a

distractor shape, was recorded. The results were then compared against di�erences between

the relative shock formation times (speci�cally the minimum/maximum width ratios) of
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(a) (b) (c)

Figure 8: A visual search sequence. First an example of the target is shown in the center of the

display (a). In each trial a display containing exactly one target embedded in a �eld composed

of several copies of a distractor element is presented (b). The subject is asked to press a mouse

button upon �nding the target, and then identify its location in a validation display composed of

small dots (c).

the target and distractor elements. We �rst describe the experiments and then provide a

discussion of the results.

2.1 Methods

Our experimental procedure closely follows that introduced in (Elder and Zucker, 1993),

with only slight modi�cations. Visual search displays were created on a 60 Hz color SUN

monitor, driven by a SPARC 10 computer. Subjects sat in a dimly lit room, 2 meters from

the screen. A 7� � 7� square display window of luminance 2.3 cd=m2 was positioned in the

center of the screen against a background luminance of 0.9 cd=m2. Stimuli were drawn in

the display window with a luminance of 36.7 cd=m2.

The stimuli were approximately 0:5��0:5� in size. Their placement in the display window

was based on a regular 5�5 grid, with nodes spaced 1:4� apart in the vertical and horizontal

directions. A node was selected using a psuedorandom number generator and the precise

location of each stimulus was then chosen pseudorandomly from the set of positions within a

0:3� horizontal and vertical distance from the selected node. Each stimulus appeared oriented

at 0, 45, 90 or 135 degrees, with equal probability.

Displays contained either 7, 15 or 23 distractor stimuli and one target stimulus. First an

example of the target is shown in the center of the display (Figure 8(a)). The subject then

presses a mouse button to trigger a sequence of 30 visual search trials (10 for each display

size, randomly interleaved). In each trial a display is presented which always contains exactly

12



one target (Figure 8(b)). The subject presses a mouse button when the target is detected.

The response time for detection is recorded and the visual search display is immediately

replaced with a validation display, where the stimulus positions are represented by small

reference dots (Figure 8(c)). The subject must identify the target location by moving the

mouse to and clicking on the appropriate dot. If an error is made, the trial is considered

invalid and another trial with the same display size and stimulus type is randomly inserted

into the sequence as a replacement.

Before each session, subjects completed a practice sequence identical to the recorded one,

but including only four trials for each display condition. Note that the method di�ers from

traditional approaches, in which only half of the displays actually contain a target, and one

of two mouse buttons is pressed depending upon whether the subject perceives the target

to be present or absent (Triesman and Gelade, 1980). This modi�cation avoids a systematic

bias that the traditional method su�ers from, and typically gives lower error rates (Elder

and Zucker, 1993).

2.2 Subjects

Three subjects participated in each of the main experiments in this study (all male). There

was su�cient consistency in results so that only one subject was used for the control ex-

periments. Each subject participated voluntarily and reported normal or corrected vision.

One subject was completely aware of the goals of the study; the other two had only limited

awareness. Results are averaged over all participating subjects, with error bars indicating

standard deviation from the mean.

2.3 Stimuli

Magni�ed versions of the stimuli were drawn at each of the four orientations (0, 45, 90 and

135 degrees) using spline functions of the IDRAW computer program. This allowed for the

precise placement and manipulation of control points, and a minimization of discretization

artifacts when the stimuli were digitized and scaled down to 0:5� � 0:5� (70 x 70 pixels at

a viewing distance of 2 meters). Details of each stimulus set are presented along with the

experiments. Note that the dashed rectangles in Figures 9, 11 and 13 were not present in

the psychophysical displays.
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Figure 9: The stimuli used in the parts-protrusions visual search experiment were created by

pulling apart the opposing boundaries of the bowtie shape (on the left) at its neck. Each stimulus

had the same overall size, as indicated by the dashed rectangle. The dashed rectangle was not

visible in the psychophysical display.
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Figure 10: Results for the parts-protrusions visual search experiment.

2.4 Experiment I: Parts Versus Protrusions

Stimuli: The stimuli for the �rst experiment consisted of shapes along the parts-protrusions

axis. The sequence was created by pulling apart the opposing boundaries of a bowtie shape

in the region of the neck, Figure 9. Each stimulus had the same overall size, as indicated by

the dashed rectangle in the �gure, but not the same overall area.

For each session, the distractor stimulus was taken from one of the extremes, with the

target stimulus being one of the four other shapes. Thus there were a total of 2� 4 sessions

for each subject (each session consisting of 30 trials in total). The results are summarized in
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Figure 11: The stimuli used in the parts-bends visual search experiment were created by shearing

the opposing boundaries of the bowtie shape (on the left) with respect to each other. Each stimulus

had the same overall size, as indicated by the dashed rectangle, as well as the same total area. The

dashed rectangle was not visible in the psychophysical display.

Figure 10. The search time decreases monotonically as the two stimuli are further separated

along the parts-protrusions axis.

2.5 Experiment II: Parts Versus Bends
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Figure 12: Results for the parts-bends visual search experiment.

Stimuli: The stimuli for the second experiment consisted of shapes along the parts-bends

axis. The sequence was created by incrementally shearing one side of a bowtie shape with

respect to the other, Figure 11. Each stimulus had the same overall size, as indicated by the

dashed rectangle, as well as the same total area.

For each session, the distractor stimulus was taken from one of the extremes, with the

target stimulus being one of the �ve other shapes. Thus there were a total of 2� 5 sessions

for each subject (each session consisting of 30 trials in total). The results are summarized

in Figure 12. Once again, the search time is a monotonically decreasing function of the

separation between the two stimuli along the parts-bends axis.
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Figure 13: The stimuli used in the bends-protrusions visual search experiment were created by

incrementally adding mass to the concave regions of the worm shape on the left. Each stimulus had

the same overall size, as indicated by the dashed rectangle. The dashed rectangle was not visible

in the psychophysical display.

2.6 Experiment III: Bends Versus Protrusions
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Figure 14: Results for the bends-protrusions visual search experiment.

Stimuli: The stimuli for the third experiment consisted of shapes along the bends-protrusions

axis. The sequence was created by incrementally adding mass to the concave regions of the

worm shape, Figure 13. Each stimulus had the same overall size, as indicated by the dashed

rectangle in the �gure, but not the same total area.

For each session, the distractor stimulus was taken from one of the extremes, with the

target stimulus being one of the �ve other shapes. Thus there were a total of 2� 5 sessions

for each subject (each session consisting of 30 trials in total). The results are summarized in

Figure 14. It is clear that the search time is a monotonic function of the separation between

the two stimuli along the bends-protrusions axis.
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Figure 15: The control stimuli used in the parts-protrusions visual search experiment. The same

amount of mass incrementally added to the neck region in Figure 9 is now added to the top and

bottom of the bowtie shape.

2.7 Control Experiments

We note that care was taken to preserve local properties of the stimuli, such as the number

of curvature extrema (Ho�man and Richards, 1985), as well as global ones, such as overall

size. However, total area was preserved only in Experiment II, since mass was added to

create the sequences in Figures 9 and 13. Therefore, it is possible that discrimination in

Experiments I and III was based on total area. To test for this we ran the following two

control experiments.
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Figure 16: Results for the parts-protrusions control experiment. The signi�cantly larger search

times suggest that the localization of additional mass to the neck region is critical for discrimination

in the original experiment.
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Figure 17: The control stimuli used in the protrusions-bends visual search experiment. The thick-

ened rectangles have the same relative areas as the corresponding stimuli in Figure 13.

Experiment I: Parts Versus Protrusions (Control) The control sequence was created

by incrementally adding the same amount of mass as in Figure 9, but now distributing it over

the top and bottom of the bowtie shape, Figure 15. We ran a set of search trials on a single

subject, the results of which are summarized in Figure 16. The large search times and error

bars indicate that discrimination between the target and distractor stimuli is signi�cantly

more di�cult. We conclude that the results of the original experiment are not due to a total

area e�ect, since the localization of added mass to the neck region is critical.

8 16 24

1000

2000

3000

4000

Display Size

R
es

po
ns

e 
tim

e 
(m

s)

5000

Target Dist

Target Dist

Target Dist

Target Dist

Target Dist

6000

7000

Figure 18: Results for the bends-protrusions control experiment. The search times compare with

those in Figure 14 suggesting that discrimination for the original stimuli is primarily based on total

area.
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2−shock

4−shock 4−shock

2−shock 3−shocks

(a) (b) (c)

Figure 19: The high-order shocks of samples taken from (a) the parts-protrusions axis, (b) the

parts-bends axis and (c) the protrusions-bends axis, in Figure 7. These were computed using the

algorithm developed in (Siddiqi and Kimia, 1996). 2-shocks occur at (local) minima in object

width, 3-shocks at regions of constant width and 4-shocks at (local) maxima in width, as indicated

by the inscribed discs, see Appendix A.

Experiment III: Bends Versus Protrusions (Control) The control sequence consisted

of incrementally thickened rectangles with rounded corners, Figure 17, with the area ratios

between successive stimuli the same as that between successive members of the original

sequence in Figure 13. We ran a set of search trials on a single subject, the results of which

are summarized in Figure 18. The search times are comparable to those in Figure 141,

suggesting that discrimination in the original experiment may be based on total area.

2.8 Analysis and Discussion

The results thus far can be summarized as follows: 1) There is a partial ordering of vi-

sual search times for all axes of the shape triangle, and 2) only the data along the bends-

protrusions axis can be accounted for by a change in total area. In order to test our �rst

hypothesis we now examine the shock-based descriptions of the stimuli used. Figure 19 de-

picts the high order shocks computed for one representative sample from each axis of the

shape triangle (Figures 9, 11 and 13). The ratio of minimum (local) width to maximum

(local) width is obtained from the ratio of the radii of the maximal inscribed discs at the

underlying 2-shocks and 4-shocks, respectively. We plot this ratio for each of the three

sequences in Figure 20.

The partial ordering of the 2-shock/4-shock ratios along the parts-protrusions and parts-

1With the exception of the topmost target-distractor pair.
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Figure 20: The ratio of radii of the maximal inscribed discs at the underlying 2-shocks and 4-shocks

is plotted for the three sequences in Figures 9, 11 and 13.

bends axes reects the nature of the visual search results. In Figure 21 we plot the magnitude

of the 2-shock/4-shock ratio di�erences between successive target-distractor pairs. These dif-

ferences are consistent with the separation of the visual search data along any column (Fig-

ures 10 and 12), supporting our hypothesis that discrimination along the parts-protrusions

and parts-bends axes is primarily based on di�erences between the minimum (local) width

to maximum (local) width ratios of the underlying stimuli.

A necessary condition for this hypothesis to be correct is that the partial ordering of

visual search times should be preserved when the target and distractors are exchanged. To

test for this we ran a new set of experiments on a single subject that included complementary

trials in which the target and distractors were interchanged. The results, shown in Figures 22

and 23, verify the prediction.

On the other hand, for the protrusions-bends sequence the minimum width to maximum

width ratio approaches 1, Figure 20, and cannot explain the partial ordering of visual search

times. As indicated earlier, the search data can be considered a total area e�ect. Similar

results have been reported in visual search tasks using a sequence of scaled ellipses (Tries-

man and Gelade, 1980), as well as in apparent motion (Anstis, 1978). The visual search

paradigm confounds such area e�ects with the e�ects of where shocks form; i.e., with the
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Figure 21: The magnitude of the 2-shock/4-shock ratio di�erences between target-distractor pairs

for Experiment I (left) and Experiment II (right).
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cluded in which the target and distractors are interchanged (right).
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Figure 23: Testing for symmetry along the parts-bends axis: complementary trials are included in

which the target and distractors are interchanged (right).

analysis of their spatial positions. What is required is a task that is normalized with respect

to area, and this is precisely the case for one class of experiments conducted by Burbeck

and Pizer (Burbeck et al., 1996). Although their motivation was quite di�erent from ours

theoretically, it is pleasing that the elongated stimuli with sinusoidal edge modulation they

used (wiggles) closely resemble members of the bends-protrusions sequence in Figure 14.

Observe that these shapes appear to be not only uniformly thickened but also increasingly

straightened versions of one another. In the following Section we review the experiments

of (Burbeck et al., 1996), and provide evidence in favor of our second hypothesis that the

perceived straightening is related to the loci of high-order shocks.

3 The E�ects of \Where" Shocks Form

Pizer etal. (Morse et al., 1994; Burbeck and Pizer, 1995; Burbeck et al., 1996) have devel-

oped an alternative approach to visual shape analysis called the core model. Underlying its

formulation is the hypothesis that the scale at which the human visual system integrates

local boundary information towards the formation of more global object representations is

proportional to object width. Psychophysical examinations of Weber's Law for separation

discrimination support this proposal (Burbeck and Hadden, 1993). Arguing that the same

mechanism explains the attenuation of edge modulation e�ects with width, Burbeck et al.

have recently described a set of psychophysical experiments where subjects were required to

bisect elongated stimuli with wiggly sides (Burbeck et al., 1996). These stimuli closely re-

semble shapes from the bends-protrusions sequence in Figure 14. In the following we present
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Figure 24: Left: The geometry of a \wiggle" stimulus. Right: Is the dot to the left or to the

right of the object's center?

their main �ndings and show that they are consistent with our second hypothesis that the

perceived centers of wiggle shapes coincide with high-order shocks.

3.1 Summary of Experimental Findings

The stimuli consisted of rectangles subtending 4 degrees of visual arc in height, with sinu-

soidal edge modulation, Figure 24 (left). Two widths were considered (0:75� and 1:5�) and

for each width there were 6 edge modulation frequencies (0:25; 0:5; 1; 2; 4; 8 cycles=�) and 2

edge modulation amplitudes (20% and 40% of object width). A black probe dot appeared

near the center of each stimulus, in horizontal alignment with a sinusoidal peak. The subject

was asked to indicate \whether the probe dot appeared to be left or right of the center of

the object, as measured along a horizontal line through the dot."2

As a sample trial, view the stimulus on the right of Figure 24 for a period of one second

from a distance of 1.5 meters. You are likely to judge the dot to be to the right of the object's

center. It may surprise you to �nd that it actually lies midway between the boundaries on

either side, as can be veri�ed by placing a ruler across the �gure. In fact, despite instructions

to make a local judgement your visual system is biased towards acquiring edge information

across a more global spatial extent.

Burbeck and Pizer quanti�ed this e�ect of edge modulation on the perceived center by

varying the horizontal position of the probe dot and subjecting the data to probit analysis.

The center of the object was inferred as the 50% point on the best-�tting probit function3,

2See (Burbeck et al., 1996) for further details.
3The location at which a subject is statistically equally likely to judge the probe dot to be to the left or
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a. b. c. d.

Figure 25: The shock-based description of selected 40% amplitude modulation stimuli used

in (Burbeck et al., 1996), computed using the algorithm in (Siddiqi and Kimia, 1996). a) 0.75

degree width, 0.25 cycles/degree edge modulation; b) 0.75 degree object, 2.0 cycles/degree edge

modulation; c) 1.5 degree object, 0.25 cycles/degree edge modulation; d) 1.5 degree object, 2.0

cycles/degree edge modulation.

and the bisection threshold was de�ned as the variance of this function. The perceived central

modulation was then obtained as the horizontal displacement between the perceived centers

in alignment with left and right sinusoidal peaks. The main �ndings were:

Result 1 For a �xed edge modulation frequency the perceived central modulation decreases

with increasing object width.

Result 2 For a �xed object width the perceived central modulation decreases with increasing

edge modulation frequency.

These results appear to be consistent with our second hypothesis. Speci�cally, if the

perceived centers of the wiggle stimuli inferred by Burbeck et al. coincide with high-order

shocks, the central modulation computed as the horizontal displacement between fourth-

order shocks in alignment with successive left and right sinusoidal peaks, Figure 26, should

agree with the psychophysical data. Thus in the following section we compare computational

results obtained from shock-based descriptions with observer data from (Burbeck et al.,

1996).

3.2 Analysis and Discussion

We computed shock-based representations for all 24 wiggles using the algorithm in (Siddiqi

and Kimia, 1996). Results for selected stimuli are shown in Figure 25, with the geometry

to the right of the object's center.
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Figure 26: Shape (d) from Figure 25 is rotated and second-order and fourth-order shocks are

labeled (all other shocks are �rst-order). Note that the fourth-order shocks are in alignment with

the sinusoidal peaks.

of the high-order shocks explained in Figure 26. As evidence in support of our hypothesis,

consider the computed central modulations overlaid as solid lines on the original observer

data taken from (Burbeck et al., 1996), in Figure 27. The predicted central modulations are

clearly consistent with an \average" observer's data.

Whereas the core model and the shock-based representation are motivated from quite

di�erent points of view, the strong overlap between computational and psychophysical results

for each model points to a close relationship between the two. We identify two signi�cant

qualitative connections. First, the centers of cores (in horizontal alignment with sinusoidal

peaks) for the wiggle stimuli coincide with high-order shocks. Second, the \fuzziness" of

the core model, whereby the width of the core scales with object width, is paralleled by the

ratio of a shock's formation time to the lifetime of the shape, a measure of local width/global

width. This property is also reected in the \bisection-threshold" or variance of the perceived

centers in (Burbeck et al., 1996). Underlying this notion is the concept that the scale at

which boundaries should interact to form more global object models is proportional to the

spatial extent across which they communicate.

4 General Discussion

The problem of shape representation is an extremely subtle one. Di�erent tasks exercise

di�erent aspects of it; at certain times more qualitative, generic (or basic level) e�ects

appear to dominate, while at others more quantitative, geometric (or subordinate level)

e�ects dominate. Medial axis style representations of shape have been popular for several

decades as a candidate description, in part because they carry both qualitative as well as

quantitative information. Blum placed an emphasis on the former type of information early

on in his classic work on axis-morphologies (Blum, 1973), where he attempted to interpret
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Figure 27: Central modulations computed from shock-based descriptions (solid lines) are overlaid

on the data averaged over the two observers in (Burbeck et al., 1996) (dashed lines). The central

modulations are expressed as a percentage of the edge modulation amplitude and are plotted against

edge modulation frequency for amplitudes of 20% of the object width (left) and 40% of the object

width (right). Results for the wider 1:5� object are depicted by the circles and for the narrower

0:75� object by the squares.

the skeleton as a directed graph. Curiously, the wealth of computational literature on the

medial axis, with the exception of (Leyton, 1987; Leyton, 1988), has focussed primarily on

the latter quantitative information, e.g., (Arcelli et al., 1981; Arcelli and di Baja, 1993; Brady

and Asada, 1984; Pizer et al., 1987; Leymarie and Levine, 1992; Ogniewicz, 1993; Rom and

Medioni, 1993; Kelly and Levine, 1995). In addition, some physiological evidence (Lamme,

1995; Lee, 1996; Lee et al., 1995) as well as psychophysical evidence (Kovacs and Julesz,

1993; Kovacs and Julesz, 1994) has begun to emerge which suggests a role for medial axes in

sensitivity maps. In particular, Kov�acs and Julesz have shown that in displays composed of

Gabor patches (Gaussian-modulated sinusoids), contrast sensitivity can be enhanced within

a �gure due to long range e�ects from an enclosing con�guration of boundary elements. The

location of points of maximal contrast sensitivity enhancement have been shown to coincide

with certain special points of the medial axis.

This composite experience implies a role for skeletons in shape, and even suggests how the

di�erent performance criteria can be met. We have provided several examples to support the
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argument that generic recognition is mediated by the topology of the skeletal branches, while

subordinate level di�erences are based primarily on their geometry (Section 1). However,

topological information is known to be sensitive to boundary noise (Serra, 1982), a property

at odds with requirements for generic recognition. To complicate matters, variations on

the skeleton theme, such as the core model (Morse et al., 1994; Burbeck and Pizer, 1995;

Burbeck et al., 1996) introduce new issues of scale. While this has led to novel psychophys-

ical experiments (such as shape bisection, Section 3), it is not clear how to compare these

results against those obtained in more classical object recognition experiments. Moreover,

the relationship between bisection performance and sensitivity maps remains obscure. There

appears to be little agreement concerning even the type of data set that might provide a

parametric variation relevant to each of these tasks.

We believe that our shock-based theory addresses many of these dilemmas. The theory

derives from a position signi�cantly more abstract than the medial axis skeleton, and provides

a natural mathematical structure on which shape descriptions can be based: the singularities

of a curve evolution process. While we have focussed on the projection of the occluding

contour of an object, and hence the boundary evolution of 2D shapes, the descriptions are

clearly relevant to the larger problem of 3D object recognition. One of the key features of the

mathematics is that it provides a means to mix such boundary e�ects with area (or region)

e�ects; to our knowledge this is a unique feature of such theories.

In previous research we have been able to articulate the singularities of this curve evolu-

tion process, and to relate them to the natural components of shape. One key formal result

is that the locus of positions through which the shocks migrate corresponds to the classi-

cal Blum skeleton, which relates this class of theory to those mentioned above. However,

the shocks carry signi�cantly more information than that obtained from the locus of their

positions: we calculate their type as well as the order in which they form. This additional

information is instrumental, we believe, in making the computation robust, in separating

entry-level from subordinate-level information, and in supporting tasks as diverse as bisec-

tion, recognition, and categorization.

In this paper we have considered some of the simplest possible compositions of shock

types, and have shown how they lead to explicit classes of parametrically ordered shapes.

We have denoted these by a shape triangle, and have examined several of their psychophys-

ical properties. These experiments not only uni�ed visual search and bisection tasks over

comparable data, but more importantly revealed di�erences in tasks related to when shocks

form as opposed to where they form. There also appears to be a fundamental connection

to the sensitivity maps: the points of maximal sensitivity for the class of shapes studied

in (Kov�acs et al., 1997) bear a close resemblance to high-order (3 and 4) shocks.
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Figure 28: The deformation of an initial curve is described by the displacement of each point in

the tangential and normal directions (Kimia et al., 1990; Kimia et al., 1995).

We expect other performance di�erences to emerge that can also be related to shocks.

Computational experiments in shape recognition (Siddiqi et al., 1998; Pelillo et al., 1998) sep-

arate the topology of the shock graph and the shock types, from the quantitative information

associated with the shock geometry. We hope to extend these results to the psychophysics

of recognition as well.

A Curve Evolution And Shocks

The mathematical theory underlying the investigations in this paper is built on the insight

that shapes which are slight deformations of one another appear similar. An arbitrary

deformation is illustrated in Figure 28, where each point on an initial curve is displaced by

a velocity vector with components in the tangential and normal directions. Without loss

of generality, it is possible to drop the tangential component (by a reparametrization of

the evolved curve). Kimia et al. proposed the following evolution equation for 2D shape

analysis (Kimia et al., 1990; Kimia et al., 1995):

Ct = (1 + ��)N

C(p; 0) = C0(p):
(1)

Here C(p; t) is the vector of curve coordinates, N (p; t) is the inward normal, p is the curve

parameter, and t is the evolutionary time of the deformation. The constant � � 0 controls

the regularizing e�ects of curvature �. When � is large, the equation becomes a geometric

heat equation which smooths the curve. In this paper we focus on the case where � = 0, for

which the equation is hyperbolic and shocks (Lax, 1971), or entropy-satisfying singularities,
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can form. The locus of points through which the shocks migrate is related to Blum's grass�re

transformation (Brockett and Maragos, 1992; Kimia et al., 1995), although signi�cantly more

information is available via a \coloring" of these positions. Four types can arise, according

to the local variation of the radius function along the medial axis (Figure 2). Intuitively, the

radius function varies monotonically at a type 1, reaches a strict local minimum at a type 2,

is constant at a type 34 and reaches a strict local maximum at a type 4. The classi�cation

of shock positions according to their colors is at the heart of the results in this paper.

The numerical simulation of equation (1) is based on level set methods developed by Osher

and Sethian (Osher and Sethian, 1988; Sethian, 1996). The essential idea is to represent

the curve C(p; t) as the zero level set of a smooth and Lipschitz continuous function 	 :

R2 � [0; � )! R, given by fX 2 R2 : 	(X; t) = 0g: Since C(p; t) is on the zero level set, it

satis�es

	(C; t) = 0 : (2)

By di�erentiating equation (2) with respect to t, and then with respect to the curve parameter

p, it can be shown that

	t = (1 + ��)jjr	jj: (3)

Equation (3) is solved using a combination of discretization and numerical techniques derived

from hyperbolic conservation laws. The curve C, evolving according to equation (1), is then

obtained as the zero level set of 	.

A convenient choice for 	 is the signed distance function to the shape, which can be

computed e�ciently (Danielsson, 1980). The real-valued embedding surface also provides

high resolution information for detecting and localizing shocks. In particular, the four shock

types can be classi�ed using di�erential properties of 	 (see Figure 29). These ideas have

been developed to provide an algorithm for shock detection (Siddiqi and Kimia, 1996), which

was used to compute the shock-based descriptions in Figures 3, 4 and 25. An abstraction into

a graph of shock groups provides a structural description for shape matching using graph

theory (Siddiqi et al., 1998; Pelillo et al., 1998), see Figure 5.
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Figure 29: A classi�cation of shock types based on properties of the embedding surface 	 (in this

case the signed distance function, shown as a shaded surface). Top Left: First-order shocks occur

at corners of the square shape, corresponding to creases on the surface with jr	j > 0. Top Right:

A second-order shock forms at the \neck" of the peanut shape, corresponding to a hyperbolic point

with jr	j = 0. Bottom Left: A set of third-order shocks forms along the central axis of the

worm shape, where �1�2 = jr	j = 0. Bottom Right: A fourth-order shock forms in the center

of the circle shape, where �1�2 > 0 and jr	j = 0. Adapted from (Siddiqi and Kimia, 1996).
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